JPS63186130A - Ellipsometer - Google Patents

Ellipsometer

Info

Publication number
JPS63186130A
JPS63186130A JP1897987A JP1897987A JPS63186130A JP S63186130 A JPS63186130 A JP S63186130A JP 1897987 A JP1897987 A JP 1897987A JP 1897987 A JP1897987 A JP 1897987A JP S63186130 A JPS63186130 A JP S63186130A
Authority
JP
Japan
Prior art keywords
light
measured
film
analyzer
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1897987A
Other languages
Japanese (ja)
Inventor
Toshitsugu Ueda
敏嗣 植田
Eiji Ogita
英治 荻田
Yoshihiko Tachikawa
義彦 立川
Katsumi Isozaki
克巳 磯崎
Katsuya Ikezawa
克哉 池澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP1897987A priority Critical patent/JPS63186130A/en
Publication of JPS63186130A publication Critical patent/JPS63186130A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To simplify the constitution of an ellipsometer and to shorten a measurement time by setting the optical axis of irradiation light almost at right angles to a film to be measured and measuring the light intensity of a specific part of the output light of an analyzer by a photodetector. CONSTITUTION:The output light of a laser light source 3 is converted by a lens 20 into parallel light, which is polarized linearly by a polarizer 21 and projected on the film 2 to be measured almost at right angles through a 1/4 wavelength plate 22 and a half-mirror 23. Light reflected by the film 2 to be measured is converted by a lens 24 into parallel light, which is reflected by the mirror 23. Only the light of the part is extracted by a pupil 26 and the photodetector 27 measures the intensity of the light to find the film thickness and refractive index of the film 2 to be measured. Thus, the constitution is simplified and the measurement time is shortened.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、半導体表面等に形成された薄膜の膜厚およ
び屈折率を光を用いて測定するエリプソメータに関し、
特に複数の条件を有する光を同時に照射することが出来
るエリプソメータに関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to an ellipsometer that uses light to measure the thickness and refractive index of a thin film formed on a semiconductor surface, etc.
In particular, it relates to an ellipsometer that can simultaneously irradiate light with multiple conditions.

〈従来技術〉 エリプソメータは光の偏光特性を利用して数人〜数μm
の厚さの薄膜の膜厚およびこの7a膜の組成に関係する
屈折率を測定するものであり、とくにLSI等の6n発
、製造に多く用いられている。
<Prior art> Ellipsometer uses the polarization characteristics of light to
This method measures the refractive index related to the thickness of a thin film with a thickness of 100 mL and the composition of this 7a film, and is particularly used in the manufacture of 6n chips such as LSIs.

この様なエリプソメータはその測定方法によって測光形
と消光形に分けられる。
Such ellipsometers are classified into photometric type and extinction type depending on their measurement method.

第4図に測光形エリプソメータの構成を示す。FIG. 4 shows the configuration of a photometric ellipsometer.

第4図において、1は基板、2は基板1上に形成され、
そのflA厚および屈折率を測定する被測定膜である。
In FIG. 4, 1 is a substrate, 2 is formed on the substrate 1,
This is a film to be measured whose flA thickness and refractive index are measured.

3はレーザ光源であり、その出力光は漏光子4で偏光さ
れる。この偏光された光はレンズ5.1/4波長板6を
介して被測定膜2に照射される。7は入射光の光路であ
る。被測定膜2の上面および下面で反射した光は検光子
8を通り、フィルタ9でレーザ光源以外の光が除去され
た後、半導体光検出器10でその光強度が測定される。
3 is a laser light source, and its output light is polarized by a light leaker 4. This polarized light is irradiated onto the film to be measured 2 via a lens 5 and a quarter wavelength plate 6. 7 is the optical path of the incident light. The light reflected from the upper and lower surfaces of the film to be measured 2 passes through an analyzer 8, and after the light other than the laser light source is removed by a filter 9, its light intensity is measured by a semiconductor photodetector 10.

11は反射光の光路である。11 is an optical path of reflected light.

この様な構成において、偏光子4は45″方位に固定さ
れる。レーザ光源3の光はこの偏光子4によって直線偏
光に偏光され、被測定膜2に照射される。この被測定膜
2によって反射された反射光は、検光子8で特定の偏光
成分が選択され、その光強度が半導体光検出器10で測
定される。この光強度は検光子8の回転角度によって変
化する。
In such a configuration, the polarizer 4 is fixed at the 45'' direction.The light from the laser light source 3 is linearly polarized by the polarizer 4 and irradiated onto the film to be measured 2. A specific polarization component of the reflected light is selected by an analyzer 8, and its light intensity is measured by a semiconductor photodetector 10. This light intensity changes depending on the rotation angle of the analyzer 8.

検光子8の1回転をn等分し、m番目の光強度をr電と
すれば、 1m=Io  (1+αcos  (4πm/n)+β
sin  (4πm/n) ) となり、これからフーリエ係数 α−=a/I。
If one rotation of the analyzer 8 is divided into n equal parts and the m-th light intensity is r current, then 1m=Io (1+αcos (4πm/n)+β
sin (4πm/n)), and from this the Fourier coefficient α-=a/I.

β=b/I。β=b/I.

但し a−2(Σ肩、cos  (4πm/n))/nb=2
 (Σ Itasin  (4πm/n))/nFL−
1 が(qられる。このフーリエ係数α、βから反射光のS
波とp波の位相差の変化である位相ずれΔa3よび主軸
方位変化甲が Δ−cos’(β/(1−α2)π/2)v=cos−
’  (−α)/2 として求められる。位相ずれΔ、主軸方位変化甲は被測
定膜2の膜厚、屈折率の関数であるので、これらの値か
ら膜厚、屈折率を求めることが出来る。なお、1/4波
長板6はS波とp波の間に位相差を与えるものであり、
基本的な動作には関係しない。測光形は測定が迅速に出
来るという特徴がある。
However, a-2 (Σ shoulder, cos (4πm/n))/nb=2
(Σ Itasin (4πm/n))/nFL-
1 is (q). From these Fourier coefficients α and β, the reflected light S
The phase shift Δa3, which is the change in the phase difference between the wave and the p-wave, and the change in the principal axis direction A are Δ−cos'(β/(1−α2)π/2)v=cos−
'(-α)/2. Since the phase shift Δ and principal axis direction change A are functions of the film thickness and refractive index of the film 2 to be measured, the film thickness and refractive index can be determined from these values. Note that the quarter-wave plate 6 provides a phase difference between the S wave and the p wave,
It has nothing to do with basic operations. The photometric type has the characteristic of being able to perform measurements quickly.

次に消光形の動作を説明する。消光形は第4図において
1/4波長板6の方位を±45°とし、偏光子4と検光
子8の双方を回転して半導体光検出器10の出力が極小
になる点を求める。このような状態において、偏光子4
と1/4波長板6とで被測定膜2に入(ト)する光はだ
円偏光になり、このだ円偏光が被測定膜2で直線偏光と
なって反射される。半導体光検出器10の出力が極小で
あるので、検光子8は直線偏光と直交する位置にあり、
このときの偏光子4、検光子8の角度をそれぞれP、A
とすると、反射光の位相ずれΔ、主軸方位変化軍は、 △−(π/2>−2P 甲=A となる。この測定は精度が高いという特徴がある。
Next, the operation of the extinction type will be explained. In the extinction type, the orientation of the quarter-wave plate 6 is ±45° in FIG. 4, and both the polarizer 4 and the analyzer 8 are rotated to find the point where the output of the semiconductor photodetector 10 becomes minimum. In such a state, the polarizer 4
The light entering the film to be measured 2 becomes elliptical polarized light by the 1/4 wavelength plate 6 and the 1/4 wavelength plate 6, and this elliptical polarized light is reflected by the film to be measured 2 as linearly polarized light. Since the output of the semiconductor photodetector 10 is minimal, the analyzer 8 is located at a position orthogonal to the linearly polarized light.
The angles of the polarizer 4 and analyzer 8 at this time are P and A, respectively.
Then, the phase shift Δ of the reflected light and the principal axis direction change force are Δ−(π/2>−2P A=A. This measurement is characterized by high accuracy.

〈発明が解決すべき問題点〉 しかしながら、この様なエリプソメータには次のような
欠点がある。第5図はシリコン上のシリカ層の膜厚と位
相ずれΔおよび主軸方位変化里の関係を示したものであ
る。第5図において、横軸は主軸方位変化甲、縦軸は位
相ずれΔであり、矢印の付いた数字は薄膜の屈折率を表
わす。図では屈折率が1.362.1.450,1.4
75の3種類のitl!膜の測定結果である。また、曲
線の横の数字は薄膜の中を光が1往復することによって
起こる位相差δであり、屈折率が1.362の薄膜では
20’で308人に相当する。この図かられかるように
、エリプソメータでの測定には2つの問題点がある。1
つは測定値はδ=180°を周期として周期性を有し、
同じΔおよび里に対して複数の膜厚が対応することであ
る。2つ目はδ=O0の近傍では測定値を表わす曲線は
薄膜の屈折率によってほとんど変化しなくなり、そのた
めΔおよび甲から屈折率を求めることが出来なくなる。
<Problems to be Solved by the Invention> However, such an ellipsometer has the following drawbacks. FIG. 5 shows the relationship between the thickness of the silica layer on silicon, the phase shift Δ, and the change in principal axis orientation. In FIG. 5, the horizontal axis represents the change in principal axis orientation, the vertical axis represents the phase shift Δ, and the numbers with arrows represent the refractive index of the thin film. In the figure, the refractive index is 1.362, 1.450, 1.4
75 3 types of itl! These are the measurement results of the membrane. Further, the number next to the curve is the phase difference δ caused by one round trip of light in the thin film, and for a thin film with a refractive index of 1.362, 20' corresponds to 308 people. As can be seen from this figure, there are two problems with measurements using an ellipsometer. 1
One is that the measured value has periodicity with a period of δ = 180°,
A plurality of film thicknesses correspond to the same Δ and village. Second, in the vicinity of δ=O0, the curve representing the measured value hardly changes depending on the refractive index of the thin film, and therefore the refractive index cannot be determined from Δ and A.

これら2つの問題点を解決するために、薄膜に入射する
入射光の入射角を変えることが行なわれているが、入射
側と反射側の光軸がずれないようにして入射角を変える
必要があるため、大掛かりな装置が必要となる。
In order to solve these two problems, attempts have been made to change the angle of incidence of the incident light that enters the thin film, but it is necessary to change the angle of incidence so that the optical axes on the incident side and the reflective side do not shift. Therefore, large-scale equipment is required.

また、光をWIM’Aに対して斜めから大割しているの
で、入射側と反射側の光軸を調整する必要があるため操
作が繁雑になり、また調整m溝が必要になり装置が大型
になるという欠点もある。
In addition, since the light is roughly divided diagonally with respect to WIM'A, it is necessary to adjust the optical axes on the incident side and reflection side, which makes the operation complicated, and also requires an adjustment groove, which makes the device difficult. It also has the disadvantage of being large.

〈発明の目的〉 この発明の目的は、簡単な構成で、かつ光学系の移動を
伴うことなく複数の入射角での測定が実行できるエリプ
ソメータダを提供することにある。
<Object of the Invention> An object of the invention is to provide an ellipsometer that has a simple configuration and can perform measurements at a plurality of angles of incidence without moving the optical system.

〈問題点を解決するための手段〉 前記問題点を解決するために、本発明ではレーザ等の光
源の光を偏光子によって偏光し、この偏光した光をレン
ズ系で収束して被測定膜に照射し、この被測定膜からの
反射光をハーフミラ−等の光学系で入射光から分離して
検光子で特定の偏波成分を取りだしてその光の強度を光
検出器で測定するようにしたものである。さらに、前記
被測定膜に照射する照射光の光軸を被測定膜に垂直にし
、前記検光子の出力光の所定部分の光強度を前記光検出
器で測定するようにしたものである。
<Means for solving the problem> In order to solve the above problem, in the present invention, light from a light source such as a laser is polarized by a polarizer, and this polarized light is focused by a lens system and directed onto the film to be measured. The reflected light from the film to be measured is separated from the incident light using an optical system such as a half mirror, a specific polarized component is extracted using an analyzer, and the intensity of that light is measured using a photodetector. It is something. Furthermore, the optical axis of the irradiation light applied to the film to be measured is perpendicular to the film to be measured, and the light intensity of a predetermined portion of the output light from the analyzer is measured by the photodetector.

く作用〉 入射光の光軸を被測定膜に垂直になるようにしたので、
特に入射側と反射側の光軸を一致させる必要がない。ま
た、光源からの光をレンズ系で収束して被測定膜に照射
するようにしたので、入射角の異なった複数の入射光の
測定が光学系の配置を変えることなく実行出来る。
Effect> Since the optical axis of the incident light is perpendicular to the film to be measured,
In particular, it is not necessary to align the optical axes on the incident side and the reflective side. Furthermore, since the light from the light source is converged by the lens system and irradiated onto the film to be measured, measurement of a plurality of incident lights having different incident angles can be performed without changing the arrangement of the optical system.

〈実施例〉 第1図に本発明に係るエリプソメータの一実施例を示す
。なお、第4図と同じ要素には同一符号を付し、説明を
省略する。第1図において、20はレンズであり、レー
ザ光源3の出力光が入力され、平行光に変換する。21
は偏光子であり、レンズ10で平行にされた光が入射さ
れそれを偏光する。22は1/4波長板であり、偏光子
21で偏光された光が入力され、そのp波とS波の間に
位相差を与える。23はハーフミラ−であり、1/4波
長板22の透過光を透過し、また被測定膜2からの反射
光を反射させる。24はレンズであり、ハーフミラ−2
3を透過した光を収束して被測定I!M2に照射し、ま
た反射光を平行光に変換する。25は検光子であり、ハ
ーフミラ−23で反射された光を特定の偏波成分に分解
する。26は検光子25の透過光の一部を取りだ寸瞳で
あり、この瞳26を通った光はフォトダイオードアレイ
等の光検出器27でその光強度が電気信号に変換される
。フォトダイオードアレイは、後述するように光軸から
同一半径の位置に配置されている。
<Embodiment> FIG. 1 shows an embodiment of an ellipsometer according to the present invention. Note that the same elements as in FIG. 4 are given the same reference numerals, and their explanations will be omitted. In FIG. 1, 20 is a lens into which the output light from the laser light source 3 is input and converts it into parallel light. 21
is a polarizer, into which light parallelized by the lens 10 is incident and polarized. Reference numeral 22 denotes a quarter-wave plate, into which light polarized by the polarizer 21 is input, giving a phase difference between the p-wave and the s-wave. 23 is a half mirror, which transmits the light transmitted through the quarter-wave plate 22 and reflects the light reflected from the film to be measured 2. 24 is a lens, half mirror 2
3 is converged to be measured I! It irradiates M2 and converts the reflected light into parallel light. 25 is an analyzer which decomposes the light reflected by the half mirror 23 into specific polarization components. Reference numeral 26 denotes a pupil that extracts a portion of the transmitted light from the analyzer 25, and the light intensity of the light passing through the pupil 26 is converted into an electrical signal by a photodetector 27 such as a photodiode array. The photodiode arrays are arranged at the same radius from the optical axis, as will be described later.

36は光軸付近の光を制限する陰影である。36 is a shadow that restricts light near the optical axis.

次にこの実施例の動作を測光形について説明する。第2
図<A)、(B)にそれぞれ第1図のA−A=、B−B
′点における矢印の方向からみた光路の断面図を示す。
Next, the operation of this embodiment will be explained for the photometric type. Second
Figures <A) and (B) are A-A= and B-B in Figure 1, respectively.
A cross-sectional view of the optical path seen from the direction of the arrow at point ' is shown.

レーザ光源3の出力光は偏光子21で矢印28の方向に
直線偏光する。この光はハーフミラ−23を透過して被
測定膜2に照射される。1/4波長板22の主方位軸が
直!9A−A′に平行とすると1/4波長板22は実質
的にその透過光に影響を与えないので、第2図(A>の
点29.30.31を通過した光はそれぞれp波のみ、
S波のみ、p波成分とS波成分が等分に含まれたものと
なる。すなわち測光形の場合1/4波長板22はなくて
もよい。被測定膜2で反射した光はレンズ24で平行光
に変換されてハーフミラ−23で反射されるが、点29
〜31を通過した光はそれぞれ第2図(B)の点32〜
34を通過する。点29〜31および32〜34はそれ
ぞれ光軸0.0′から等距離にある点であり、光検出器
27のフォトダイオードアレイの個々のフォトダイオー
ドはこの点32〜34に対応する部分に位置するように
配置される。この光をIII 26によりその部分の光
のみ取りだして光検出器27でその光強度を測定する。
The output light from the laser light source 3 is linearly polarized in the direction of an arrow 28 by a polarizer 21 . This light passes through the half mirror 23 and is irradiated onto the film 2 to be measured. The main azimuth axis of the quarter-wave plate 22 is straight! 9A-A', the quarter-wave plate 22 does not substantially affect the transmitted light, so the light passing through points 29, 30, and 31 in FIG. ,
Only the S-wave contains equal parts of the p-wave component and the S-wave component. That is, in the case of a photometric type, the quarter wavelength plate 22 may not be provided. The light reflected by the film to be measured 2 is converted into parallel light by the lens 24 and reflected by the half mirror 23, but the point 29
The light passing through ~31 respectively points to point 32~ in Figure 2 (B).
Pass through 34. Points 29-31 and 32-34 are points equidistant from the optical axis 0.0', and each photodiode of the photodiode array of the photodetector 27 is located at a portion corresponding to these points 32-34. It is arranged so that Only that portion of this light is extracted by the III 26, and the light intensity is measured by the photodetector 27.

被測定膜2の厚さおよび屈折率によってp波、S波の反
射率が異なるので、点32を通過する光すなわちp波の
光強度をP p Nその反射率をRp、点33を通過す
る光すなわちS波の光強度をPs、その反射率をRsと
すると、2つの点の入射光の光強度は同じなので、被測
定II! 2による主軸方位変化ψは、’4f−tan
 −’  ((Pp /Po ) / (Ps /Po
 ) )=tan ′I(Rp /Rs ) となる。すなわち点32.33の光強度を光検出器27
で測定することにより、主軸方位変化型を求めることが
できる。また、点31を通過した光はp波とS波の成分
を等分に含んでおりかつその位相がπ/2ずれているの
で、その反射光が通過する点34での光は第3図のよう
にだ円偏光している。第2図(B)に示した点34で光
強度が最大または最小になる検光子25の回転角および
そのときの光強度からこのだ円部光の長軸の長さa1短
軸の長さblだ円方位角Ωを求められ、点32.33で
の測定値からp波、S波の反射率が求められる。これら
の値から位相ずれΔを算出することが出来る。この位相
ずれ△および主軸方位変化束は被測定膜2の膜厚みよび
屈折率の関数で表わされるので、これらの値から被測定
膜の膜厚、屈折率を求めることが出来る。なお、点34
を通過した光を検光子25の角度を変えてn回測定し、
従来例のようにフーリエ係数を求めて位相ずれΔ、主軸
方位変化束を求めるようにしてもよい。また、ハーフミ
ラ−23を透過した光はレンズ24で収束されて被測定
膜2に照射されるので、第2図(B)において中心から
の距離を変えると被測定II! 2に照射する入射角を
変えることが出来る。すなわち、距離rl、r2の点は
それぞれ入射角ψ+ s 9’2に対応する。
Since the reflectance of the p-wave and the S-wave differs depending on the thickness and refractive index of the film 2 to be measured, the light intensity of the light passing through the point 32, that is, the p-wave, is P p N, its reflectance is Rp, and the light passing through the point 33 is If the light intensity of the light, that is, the S wave, is Ps, and its reflectance is Rs, the light intensity of the incident light at the two points is the same, so the measured object II! The principal axis direction change ψ due to 2 is '4f-tan
-' ((Pp /Po) / (Ps /Po
) )=tan'I(Rp/Rs). In other words, the light intensity at points 32 and 33 is detected by the photodetector 27.
By measuring with , it is possible to determine the principal axis orientation change type. Furthermore, since the light passing through point 31 contains equal parts of p-wave and S-wave components, and their phases are shifted by π/2, the light at point 34 through which the reflected light passes is as shown in Figure 3. It is elliptically polarized as shown in the figure. From the rotation angle of the analyzer 25 at which the light intensity is maximum or minimum at the point 34 shown in FIG. 2 (B) and the light intensity at that time, the length of the long axis of this elliptical light a1 the length of the short axis The bl ellipse azimuth angle Ω is determined, and the reflectance of the p-wave and the S-wave is determined from the measured values at points 32 and 33. The phase shift Δ can be calculated from these values. Since this phase shift Δ and principal axis orientation change flux are expressed as functions of the film thickness and refractive index of the film to be measured 2, the film thickness and refractive index of the film to be measured can be determined from these values. In addition, point 34
The light passing through is measured n times by changing the angle of the analyzer 25,
As in the conventional example, the Fourier coefficients may be obtained to obtain the phase shift Δ and the principal axis orientation change flux. Furthermore, since the light transmitted through the half mirror 23 is converged by the lens 24 and irradiated onto the film to be measured 2, if the distance from the center is changed in FIG. 2(B), the film to be measured II! It is possible to change the angle of incidence of irradiation. That is, the points at distances rl and r2 respectively correspond to the incident angle ψ+s 9'2.

次に消光形の動作を説明する。レーザ光源3の出力光を
偏光子21で第2図<A)の矢印28方向の直線偏光に
する。次に1/4波長板22の主軸方位を点線35のよ
うに45°方位に設定する。
Next, the operation of the extinction type will be explained. The output light from the laser light source 3 is converted into linearly polarized light in the direction of arrow 28 in FIG. 2<A) by a polarizer 21. Next, the principal axis direction of the quarter-wave plate 22 is set to a 45° direction as indicated by the dotted line 35.

点2つを通過する光を考えると、被測定膜2に)ヱした
光は円偏光(p波成分とS波成分の大きさは等しくかつ
その位相差はπ/2)になり、被測定膜2のS波とp波
の反射率が異なるので点32を通過する光はだ円偏光に
なる。ここで偏光子21および検光?!25を回転させ
て点32を通過する光の強度が極小になるようにすると
、そのときの偏光子21および検光子25の回転角度を
P、Δとすると、 位相ずれΔ=π/2−2P 主軸方位変化東=A となり、これらの値から被測定膜2の膜厚、屈折率を求
めることが出来る。
Considering the light passing through two points, the light that hits the film to be measured 2 becomes circularly polarized light (the p-wave component and the S-wave component are equal in magnitude and their phase difference is π/2), Since the reflectivity of the S-wave and the P-wave of the film 2 is different, the light passing through the point 32 becomes elliptical polarized light. Polarizer 21 and analysis here? ! 25 is rotated so that the intensity of light passing through point 32 becomes minimum, and if the rotation angles of polarizer 21 and analyzer 25 at that time are P and Δ, phase shift Δ=π/2−2P The principal axis direction change east=A, and the film thickness and refractive index of the film 2 to be measured can be determined from these values.

なお、第1図実施例では光検出器27は光路の円周方向
に沿って1次元的に配置されたフォトダイオードアレイ
を用いるようにしたが、2次元的に配置されたフォトダ
イオードアレイを用いてもよい。このようにすると、異
なった入射角の測定が同時に実行できる。また、単一の
検出器を用い、この検出器を移動させて測定するように
してもよい。
In the embodiment shown in FIG. 1, the photodetector 27 uses a photodiode array arranged one-dimensionally along the circumferential direction of the optical path, but it is also possible to use a photodiode array arranged two-dimensionally. It's okay. In this way, measurements at different angles of incidence can be performed simultaneously. Alternatively, a single detector may be used and the detector may be moved for measurement.

また、偏光子としてファラデー回転素子を用い、1/4
波長板としてバビネソレイユ等の位相を変化させられる
素子を用いてもよい。
In addition, a Faraday rotation element is used as a polarizer, and 1/4
An element capable of changing the phase, such as Babinet Soleil, may be used as the wave plate.

さらに、この実施例では検光子25のみを回転(測光形
)、偏光子21と検光子25を回転(消光形)する測定
について説明したが、 ■偏光子21と検光子25を回転し、1/4波長板22
を固定する。
Furthermore, in this embodiment, measurement was explained in which only the analyzer 25 was rotated (photometric type) and the polarizer 21 and the analyzer 25 were rotated (extinction type). /4 wavelength plate 22
to be fixed.

■偏光子21と1/4波長板22を回転し、検光子25
を固定する。
■ Rotate the polarizer 21 and 1/4 wavelength plate 22, and
to be fixed.

■1/4波長板22と検光子25を回転し、偏光子21
を固定する。
■Rotate the 1/4 wavelength plate 22 and analyzer 25, and
to be fixed.

■偏光子21を回転し、1/4波長板22と検光子25
を固定する。
■ Rotate the polarizer 21, 1/4 wavelength plate 22 and analyzer 25
to be fixed.

■検光子25を回転し、偏光子21と1/4波長板22
を固定する。
■ Rotate the analyzer 25, polarizer 21 and 1/4 wavelength plate 22
to be fixed.

■偏光子21を回転し、1/4波長板22と検光子25
を固定する。
■ Rotate the polarizer 21, 1/4 wavelength plate 22 and analyzer 25
to be fixed.

■■で1/4波長板22への方位角を変えるようにする
■■ Change the azimuth to the quarter wavelength plate 22.

方法でも測定することが出来る。この場合、■〜■は1
/4波長板22の位相差は固定であり、■〜■はバビネ
ソレイユ、BSC等を用いるか複屈折を利用しててその
位相差を可変出来るようにする。
It can also be measured by In this case, ■~■ is 1
The phase difference of the /4 wavelength plate 22 is fixed, and the phase difference can be varied by using Babinet Soleil, BSC, etc. or by using birefringence.

〈発明の効果〉 以上実施例に基づいて具体的に説明したように、この発
明では光源の光を偏光子で偏光し、この偏光した光をレ
ンズ系で収束して被測定膜にほぼ垂直に照射し、この被
測定膜から反射した光を光学系で入射光から分離して検
光子を介してその光強度を光検出器で測定して前記被測
定膜の膜厚、屈折率を求めるようにした。そのため、光
検出器で測定する位置の半径を変えると被測定膜に入射
する入射角を変えることが出来、入射角を変えるために
光学系の配置を変える必要がないので、構成が簡単、取
扱が容易になり、かつ測定時間を短縮することが出来る
<Effects of the Invention> As specifically explained based on the embodiments above, in this invention, light from a light source is polarized by a polarizer, and this polarized light is converged by a lens system to be almost perpendicular to the film to be measured. irradiate the film to be measured, separate the light reflected from the film to be measured from the incident light using an optical system, and measure the light intensity with a photodetector via an analyzer to determine the film thickness and refractive index of the film to be measured. I made it. Therefore, by changing the radius of the position to be measured with the photodetector, the angle of incidence on the film to be measured can be changed, and there is no need to change the arrangement of the optical system to change the angle of incidence, so the configuration is simple and easy to handle. The measurement time can be shortened.

また、被測定膜にほぼ垂直に光を入射するようにしたの
で、入射光と反割先の光軸が一致し、光軸あわせのため
の機構および作業がなくなり、小型化が可能になり、か
つ取扱が簡単に出来る。
In addition, since the light is made to enter the film to be measured almost perpendicularly, the incident light and the optical axis of the splitting target coincide, eliminating the need for a mechanism and work for aligning the optical axis, making it possible to downsize. And it is easy to handle.

さらに、入射角の異なる光やS波とp波の比率が異なる
光が同時に1qられるので、測光形、消光形およびその
他の測定方法でも基本構成を変えることなく対応できる
Furthermore, since lights with different incident angles and lights with different S-wave and P-wave ratios can be detected at the same time, photometry, extinction, and other measurement methods can be used without changing the basic configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るエリプソメータの一実施例を示す
槙成図、第20は測定点の対応をしめす図、第3図はだ
円偏光の様子を示す図、第4図は従来のエリプソメータ
の構成を示す図、第5図は測定結果を示す特性曲線図で
ある。 1・・・基板、2・・・被測定薄膜、3・・・レーザ光
源、20.24・・・レンズ、21・・・偏光子、22
・・・1/4波長板、23・・・ハーフミラ−125・
・・検光子、2G・・・瞳、27・・・光検出器。 第1図 乙 DE6REES
Figure 1 is a diagram showing one embodiment of the ellipsometer according to the present invention, Figure 20 is a diagram showing the correspondence of measurement points, Figure 3 is a diagram showing the state of elliptical polarization, and Figure 4 is a diagram of a conventional ellipsometer. FIG. 5 is a characteristic curve diagram showing the measurement results. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Thin film to be measured, 3... Laser light source, 20.24... Lens, 21... Polarizer, 22
...1/4 wavelength plate, 23...Half mirror-125.
...analyzer, 2G...pupil, 27...photodetector. Figure 1 DE6REES

Claims (1)

【特許請求の範囲】 被測定膜に偏光された光を照射し、この被測定膜によっ
て反射される反射光の偏光の変化量から前記被測定膜の
膜厚および屈折率を求めるエリプソメータにおいて、 光源と、この光源の出力光が入射される偏光子と、この
偏光子の出力光を収束して被測定膜に照射するレンズ系
と、前記被測定膜によって反射された反射光と前記被測
定膜に照射する照射光とを分離する光学系と、この光学
系によって分離された前記反射光が入力される検光子と
、この検光子の出力光が入力される光検出器とを有し、
前記照射光の光軸を前記被測定膜にほぼ垂直にするとと
もに前記光検出器により前記検光子の出力光の所定の部
分の光強度を測定することを特徴とするエリプソメータ
[Scope of Claims] An ellipsometer that irradiates a film to be measured with polarized light and determines the film thickness and refractive index of the film to be measured from the amount of change in polarization of reflected light reflected by the film to be measured, comprising: a light source; a polarizer into which the output light of this light source is incident, a lens system that converges the output light of this polarizer and irradiates it onto the film to be measured, and a light reflected by the film to be measured and the film to be measured. an optical system that separates the irradiation light that is irradiated onto the object, an analyzer into which the reflected light separated by the optical system is input, and a photodetector into which the output light of the analyzer is input,
An ellipsometer characterized in that the optical axis of the irradiated light is made substantially perpendicular to the film to be measured, and the light intensity of a predetermined portion of the output light of the analyzer is measured by the photodetector.
JP1897987A 1987-01-29 1987-01-29 Ellipsometer Pending JPS63186130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1897987A JPS63186130A (en) 1987-01-29 1987-01-29 Ellipsometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1897987A JPS63186130A (en) 1987-01-29 1987-01-29 Ellipsometer

Publications (1)

Publication Number Publication Date
JPS63186130A true JPS63186130A (en) 1988-08-01

Family

ID=11986738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1897987A Pending JPS63186130A (en) 1987-01-29 1987-01-29 Ellipsometer

Country Status (1)

Country Link
JP (1) JPS63186130A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0396409A2 (en) * 1989-05-04 1990-11-07 THERMA-WAVE, INC. (a Delaware corporation) High resolution ellipsometric apparatus
JPH0317505A (en) * 1989-05-04 1991-01-25 Therma Wave Inc Method and device for measuring thickness of thin-film
WO1997021098A1 (en) * 1995-12-05 1997-06-12 Hoechst Industry Limited Optical fuel vapor detector utilizing thin polymer film and fuel leak monitor system
CN109883553A (en) * 2019-03-14 2019-06-14 上海精测半导体技术有限公司 A kind of polarimeter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0396409A2 (en) * 1989-05-04 1990-11-07 THERMA-WAVE, INC. (a Delaware corporation) High resolution ellipsometric apparatus
JPH0317505A (en) * 1989-05-04 1991-01-25 Therma Wave Inc Method and device for measuring thickness of thin-film
JPH03205536A (en) * 1989-05-04 1991-09-09 Therma Wave Inc Ellipsometer with high resolving power and method of its use
EP0396409B1 (en) * 1989-05-04 1998-03-11 THERMA-WAVE, INC. (a Delaware corporation) High resolution ellipsometric apparatus
WO1997021098A1 (en) * 1995-12-05 1997-06-12 Hoechst Industry Limited Optical fuel vapor detector utilizing thin polymer film and fuel leak monitor system
CN109883553A (en) * 2019-03-14 2019-06-14 上海精测半导体技术有限公司 A kind of polarimeter

Similar Documents

Publication Publication Date Title
US5042951A (en) High resolution ellipsometric apparatus
US5596411A (en) Integrated spectroscopic ellipsometer
US5963327A (en) Total internal reflection electromagnetic radiation beam entry to, and exit from, ellipsometer, polarimeter, reflectometer and the like systems
US4999014A (en) Method and apparatus for measuring thickness of thin films
US6836328B2 (en) Detector configurations for optical metrology
US5335066A (en) Measuring method for ellipsometric parameter and ellipsometer
EP0396409B1 (en) High resolution ellipsometric apparatus
US7286226B2 (en) Method and apparatus for measuring birefringence
US7355708B2 (en) Normal incidence rotating compensator ellipsometer
US6181421B1 (en) Ellipsometer and polarimeter with zero-order plate compensator
JPS63186130A (en) Ellipsometer
JP3181655B2 (en) Optical system and sample support in ellipsometer
JP3141499B2 (en) Ellipsometer parameter measurement method and ellipsometer
JPH04127004A (en) Ellipsometer and its using method
JP3269107B2 (en) Ellipsometer parameter measurement method and ellipsometer
JP2712987B2 (en) Adjustment method of polarization measuring device
JPH04138339A (en) Thin-film measuring apparatus
JP3343795B2 (en) Ellipsometer
JPS60249007A (en) Instrument for measuring film thickness
JPS63186104A (en) Ellipsometer
JP3209729B2 (en) Polarization measurement method
CN116804588A (en) Grating diffraction efficiency measuring device
Neuschaefer-Rube et al. Target analysis by focusing ellipsometry
JPH05203565A (en) Polarization analysis device
JPH0486514A (en) Optical displacement meter