JPH04364144A - Production of partially oxide of aromatic compound - Google Patents

Production of partially oxide of aromatic compound

Info

Publication number
JPH04364144A
JPH04364144A JP3105924A JP10592491A JPH04364144A JP H04364144 A JPH04364144 A JP H04364144A JP 3105924 A JP3105924 A JP 3105924A JP 10592491 A JP10592491 A JP 10592491A JP H04364144 A JPH04364144 A JP H04364144A
Authority
JP
Japan
Prior art keywords
group
metal
electrode
oxygen
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3105924A
Other languages
Japanese (ja)
Other versions
JP3090972B2 (en
Inventor
Kiyoshi Otsuka
潔 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP03105924A priority Critical patent/JP3090972B2/en
Publication of JPH04364144A publication Critical patent/JPH04364144A/en
Application granted granted Critical
Publication of JP3090972B2 publication Critical patent/JP3090972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To provide a method for producing phenols with ultrahigh economical efficiency by partial oxidation of aromatic compounds in which low selectivity in conventional direct oxidative reaction with oxygen is improved and electric power, as necessary, is taken out to the outside of the reactional system by using a fuel cell system. CONSTITUTION:The subject method is to produce a partial oxide of an aromatic compound as follows. A proton conductor membrane is used and a catalyst electrode composed of a metal and/or its compound is used as a positive pole. An electrode composed of a carbonaceous conductor presubjected to oxidation treatment with nitric acid, sulfuric acid, air heating, permanganic acid, etc., and a metal or its compound is employed as a negative pole to introduce hydrogen into the positive pole compartment and oxygen and benzene into the negative pole compartment. Both electrodes are then short-circuited with a lead wire to advance fuel cell reaction.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】フェノール等の芳香族化合物の部
分酸化物は樹脂等の原料となり、有機工業分野における
極めて重要な中間原料である。本発明は触媒電極を設け
たイオン伝導体を用いた燃料電池システムにより芳香族
化合物と酸素からフェノール類およびキノン類等の部分
酸化物を製造すると同時に必要に応じて電力エネルギー
を取り出す方法に関する。
[Industrial Field of Application] Partial oxides of aromatic compounds such as phenol are raw materials for resins, etc., and are extremely important intermediate raw materials in the organic industry field. The present invention relates to a method for producing partial oxides such as phenols and quinones from aromatic compounds and oxygen using a fuel cell system using an ionic conductor provided with a catalyst electrode, and at the same time extracting electrical energy as necessary.

【0002】0002

【従来の技術】芳香族化合物から1価または多価のフェ
ノール類やベンゾキノンなどのキノン類を製造する方法
は種々知られている。例えば、フェノール類は、従来主
としてクメン法、安息香酸法、クロルベンゼン法、スル
ホン酸法等の方法により製造されている(例えば、有機
合成協会誌第35巻2号138頁参照)。これらの方法
は何れも数段階にわたる複雑な反応操作を必要としてい
る。加えて高価な副原料を消費する等の欠点を持つ。芳
香族化合物を直接酸素酸化し、一段の反応操作によって
フェノールを製造し、その際に高価な副原料を消費せず
、また併産物も伴わない製造プロセスを開発することは
工業的見地から望ましく、種々提案がなされているが、
何れの方法も低収率であり、かつ反応条件が過酷である
かまたは反応方法が煩雑である等の理由により、工業的
に実施するには到っていない。例えば、特開昭62−5
4291号には金属リン酸塩を触媒としてベンゼンを気
相で酸素酸化してフェノールを得る方法が記載されてい
るが、500−600℃という高温であり、収率も低い
BACKGROUND OF THE INVENTION Various methods are known for producing monovalent or polyvalent phenols and quinones such as benzoquinone from aromatic compounds. For example, phenols have conventionally been mainly produced by methods such as the cumene method, benzoic acid method, chlorobenzene method, and sulfonic acid method (see, for example, Journal of Japan Organic Synthesis Association, Vol. 35, No. 2, p. 138). All of these methods require complex reaction operations spanning several steps. In addition, it has disadvantages such as consuming expensive auxiliary raw materials. It is desirable from an industrial point of view to develop a process for producing phenol by direct oxygen oxidation of aromatic compounds and a single reaction operation, without consuming expensive auxiliary materials or producing co-products. Although various proposals have been made,
Both methods have low yields, harsh reaction conditions, or complicated reaction methods, and therefore cannot be implemented industrially. For example, JP-A-62-5
No. 4291 describes a method for obtaining phenol by oxidizing benzene with oxygen in the gas phase using a metal phosphate as a catalyst, but the process involves a high temperature of 500-600°C and a low yield.

【0003】また特開昭62−293738号にはパラ
ジウム系触媒および1,10−フェナントロリンを添加
剤とし、酢酸溶媒中液相で一酸化炭素存在下にベンゼン
を酸素酸化してフェノールを得る方法が記載されている
が、収率6%と低い。また、日本化学会56春季年会2
IID12でシリカゲルに担持したパラジウムと硫酸銅
を触媒としてベンゼンと酸素を反応させてフェノールを
得ているが、その収率はベンゼンに対して0.02%と
極めて低く、さらにこの方法では酸素による酸化反応と
触媒の再生のための水素による還元処理を交互に行わね
ばならない煩雑さ、または水素と酸素の混合による爆発
の危険性等の安全上の問題を有し、工業的製造法として
は難点がある。
Furthermore, JP-A No. 62-293738 discloses a method for obtaining phenol by oxidizing benzene with oxygen in the presence of carbon monoxide in a liquid phase in an acetic acid solvent using a palladium-based catalyst and 1,10-phenanthroline as additives. However, the yield is as low as 6%. Also, the Chemical Society of Japan 56th Spring Annual Meeting 2
In IID12, phenol is obtained by reacting benzene and oxygen using palladium supported on silica gel and copper sulfate as catalysts, but the yield is extremely low at 0.02% based on benzene, and furthermore, this method requires oxidation by oxygen. It is difficult to use as an industrial production method because of the complexity of having to perform the reaction and reduction treatment with hydrogen to regenerate the catalyst alternately, and the risk of explosion due to the mixture of hydrogen and oxygen. be.

【0004】一方、燃料電池システムを用いて、種々の
有益な化合物を製造すると同時に電流を取り出す試みは
なされているが、フェノール類やキノン類等の芳香族化
合物の部分酸化物を製造する方法は、特願平1ー261
493号における本発明者の発明以外に今までには知ら
れていない。
On the other hand, attempts have been made to use fuel cell systems to produce various useful compounds and at the same time extract electric current, but there are no methods for producing partial oxides of aromatic compounds such as phenols and quinones. , patent application Hei 1-261
No. 493, other than the inventor's invention, is hitherto known.

【0005】[0005]

【発明が解決しようとする課題】本発明は燃料電池シス
テムを用いて芳香族化合物と酸素から一段の反応操作で
対応するフェノール類やキノン類等の部分酸化物を選択
的に製造することにより、従来の製造法における製造工
程の煩雑さ、多量の副生物の生成、エネルギーの大量消
費、爆発の危険性等の問題点を解決し、加えて極めて温
和な条件で実施できること、さらに必要ならば電力も同
時に生産出来る等の経済性を高めようとするものである
[Problems to be Solved by the Invention] The present invention uses a fuel cell system to selectively produce corresponding partial oxides such as phenols and quinones from aromatic compounds and oxygen in a single reaction operation. It solves the problems of conventional manufacturing methods, such as the complexity of the manufacturing process, the generation of large amounts of by-products, the large consumption of energy, and the risk of explosion.In addition, it can be carried out under extremely mild conditions, and if necessary, it can be done without electricity. The aim is to improve economic efficiency by allowing the production of other materials at the same time.

【0006】本発明の目的は、触媒電極を設けたイオン
伝導体の、一方の電極に水素等の水素供与体を、他方の
電極に芳香族化合物および酸素を接触させて燃料電池シ
ステムにより前記芳香族化合物の対応部分酸化物を得る
と同時に必要に応じて電力エネルギーを取り出すことを
特徴として、芳香族化合物の部分酸化物を製造すること
であり、本発明者の前記出願特許からさらに鋭意検討し
た結果、酸素および芳香族式化合物と接触させる触媒電
極を調製する際に、導電性物質として炭素質物質を使用
し、かつこの炭素質導電性物質を予め酸化処理をするこ
とで極めて高効率で芳香族化合物の部分酸化物を製造可
能たらしめ、本発明方法を完成するに到った。
[0006] The object of the present invention is to use a fuel cell system to generate the above-mentioned aromatic compounds by contacting a hydrogen donor such as hydrogen with one electrode and an aromatic compound and oxygen with the other electrode of an ionic conductor provided with a catalytic electrode. The purpose of this invention is to produce partial oxides of aromatic compounds by simultaneously obtaining the corresponding partial oxides of aromatic compounds and extracting electrical energy as needed. As a result, when preparing a catalytic electrode that is brought into contact with oxygen and an aromatic compound, a carbonaceous material is used as the conductive material, and by oxidizing the carbonaceous conductive material in advance, aromatic compounds can be produced with extremely high efficiency. The present invention has been completed by making it possible to produce partial oxides of group compounds.

【0007】[0007]

【課題を解決するための手段】本発明方法で用いられる
芳香族化合物は、置換または未置換の芳香族炭化水素で
ある。例えば、ベンゼン、トルエン、キシレン、ナフタ
レン、アントラセンおよびそれらの誘導体であり、それ
らが有していても良い置換基としては、アルキル基、ア
リール基、アリーロキシ基、スルホン基、アルコキシ基
、スルホン基、ハロゲン原子等が挙げられる。
The aromatic compound used in the method of the present invention is a substituted or unsubstituted aromatic hydrocarbon. For example, benzene, toluene, xylene, naphthalene, anthracene, and their derivatives, and the substituents that they may have include alkyl groups, aryl groups, aryloxy groups, sulfone groups, alkoxy groups, sulfone groups, and halogen groups. Examples include atoms.

【0008】本発明方法において用いられる酸素は必ず
しも純粋なものである必要はなく、空気または他の不活
性なガスとの混合物でもよい。加えて本発明方法では、
必要に応じて反応系から反応の自由エネルギーに相当す
る電気エネルギーを取り出すことも可能である。本発明
方法を実施するために用いられる燃料電池型反応器の概
念図を図1に示す。
The oxygen used in the process of the invention does not necessarily have to be pure, but may be a mixture with air or other inert gases. In addition, in the method of the present invention,
If necessary, it is also possible to extract electrical energy corresponding to the free energy of the reaction from the reaction system. FIG. 1 shows a conceptual diagram of a fuel cell type reactor used to carry out the method of the present invention.

【0009】触媒電極からなるアノード1またはカソー
ド2を有するアノード室3とカソード室4はイオン伝導
体5で隔てられており、アノードとカソードはリード線
6で短絡されている。触媒電極は好ましくは多孔質、も
しくはシート状であるが必ずしもこれに制限されない。 7はスターラーである。必要によってはアノードとカソ
ードの間に電圧をかけることも可能である。
An anode chamber 3 and a cathode chamber 4 having an anode 1 or a cathode 2 formed of a catalyst electrode are separated by an ion conductor 5, and the anode and cathode are short-circuited by a lead wire 6. The catalyst electrode is preferably porous or sheet-like, but is not necessarily limited thereto. 7 is a stirrer. If necessary, it is also possible to apply a voltage between the anode and the cathode.

【0010】本発明方法で用いられる触媒電極としては
、種々の材質を使用できるが、本発明方法においては取
り分け種々の金属またはその化合物の少なくとも1種以
上を用いることが推奨される。好ましくは、金属または
金属化合物の少なくとも1種以上を電気伝導物質に混合
もしくは担持して使用する。また、本発明方法を更に実
施し易くする為に、電極はこれら構成成分に加えてバイ
ンダーを用いて成形したものを用いることが好ましい、
しかしながら、本発明方法はこれらの方法のみに限定さ
れるものではない。本発明において用いる導電性高分子
材料としては一般的にはその安価なこと、入手し易さお
よび良好な電気伝導性等からグラファイト等の炭素質物
質を使用することが好ましい。また、カソードに用いる
導電性炭素質物質としては電気伝導性を有する炭素質物
質であれば、何れであっても差し支えなく、さらに酸化
処理によって電気伝導性が発現するものでも良い。 具体的には、グラファイト、活性炭およびカーボンウィ
スカー等が入手し易いものとして挙げられる。
Various materials can be used for the catalytic electrode used in the method of the present invention, but in the method of the present invention, it is especially recommended to use at least one of various metals or compounds thereof. Preferably, at least one metal or metal compound is mixed with or supported on an electrically conductive material. In addition, in order to further facilitate the implementation of the method of the present invention, it is preferable to use an electrode molded using a binder in addition to these constituent components.
However, the method of the present invention is not limited to only these methods. As the conductive polymer material used in the present invention, it is generally preferable to use a carbonaceous material such as graphite because of its low cost, easy availability, and good electrical conductivity. Furthermore, the conductive carbonaceous material used for the cathode may be any carbonaceous material as long as it has electrical conductivity, and may also be one that exhibits electrical conductivity through oxidation treatment. Specifically, graphite, activated carbon, carbon whiskers, and the like are listed as easily available.

【0011】また電極を成形する際に用いるバインダー
としては種々のバインダーを使用することが可能である
が、その成形し易さ等からテフロン樹脂粉末を用いホッ
トプレス成形することが好ましい。しかしながら、本発
明がこれらの材料及び方法のみに限定されないことは無
論である。
[0011]Although various binders can be used for forming the electrode, hot press molding using Teflon resin powder is preferable because of its ease of molding. However, it goes without saying that the present invention is not limited to these materials and methods.

【0012】次に、炭素質物質の酸化処理について述べ
る。酸化処理は通常の酸素含有気体を用いての加熱処理
、酸化性試薬を用いた試薬酸化処理等様々な方法によっ
て行うことが可能である。例えば、試薬酸化処理として
は硝酸水加熱処理、硫酸水加熱処理、過マンガン酸水溶
液処理、重クロム酸水溶液処理及び過酸化水素水処理等
が挙げられる。しかしながら本発明方法はこれらの処理
のみに限定されるものではない。
Next, the oxidation treatment of carbonaceous materials will be described. The oxidation treatment can be performed by various methods such as heat treatment using a normal oxygen-containing gas and reagent oxidation treatment using an oxidizing reagent. Examples of the reagent oxidation treatment include nitric acid water heat treatment, sulfuric acid water heat treatment, permanganic acid aqueous solution treatment, dichromic acid aqueous solution treatment, and hydrogen peroxide water treatment. However, the method of the present invention is not limited to only these treatments.

【0013】本発明方法の意味する周期律表とは国際純
正および応用化学連合無機化学命名法改定版(1989
年)による周期律表のことであり、また本発明方法で用
いられる触媒電極として、金属もしくは金属化合物の少
なくとも1種以上を用いて実施するがこれらの金属また
は金属化合物を構成する金属はこの周期律表において、
3族、4族、5族、6族、7族、8族、9族、10族、
11族および12族の金属である。
What is the periodic table meant by the method of the present invention? International Union of Pure and Applied Chemistry Nomenclature of Inorganic Chemistry Revised Edition (1989
The method of the present invention is carried out using at least one metal or metal compound as a catalyst electrode, and the metals constituting these metals or metal compounds are based on this periodic table. In the table of laws,
Group 3, Group 4, Group 5, Group 6, Group 7, Group 8, Group 9, Group 10,
Group 11 and Group 12 metals.

【0014】具体的には、3族金属としては元素記号S
c,La,Y,Ac等で表される金属であり、4族金属
としては元素記号Ti,Zr,Hfで表される金属であ
り、5族金属としては、元素記号V,Nb,Taで表さ
れる金属であり、6族金属としては、元素記号Cr,M
o,Wで表される金属であり、7族金属としては、元素
記号Mn,Reで表される金属であり、8族金属として
は元素記号Fe,Ru,Osで表される金属であり、9
族金属としては元素記号Co,Rh,Irで表される金
属であり、第10族金属としては元素記号Ni,Pd,
Ptで表される金属であり、11族金属としては元素記
号Cu,Ag,Auで表される金属であり、12族金属
としては元素記号Zn,Cd,Hgで表される金属であ
る。また、本発明方法においてこれらの金属を化合物と
してアノードに使用する際には、これらの金属のハロゲ
ン化物、硝酸塩、硫酸塩、酸化物、水酸化物、リン酸塩
および/またはアンモニウム塩として使用することが推
奨される。本発明方法ではこれらの金属または金属化合
物の少なくとも1種以上を用いて電極を調製する。本発
明方法で用いられるイオン伝導体としてはリン酸、硫酸
、塩酸等のプロトン酸、ヘテロポリ酸、H−モンモリロ
ナイト、リン酸ジルコニウム等のプロトン伝導体として
知られている固体電解質、SrCeO3を母体としたペ
ロブスカイト型固溶体等が使用できる。また、パーフル
オロカーボンのような含フッ素高分子をベースとし、こ
れにスルホン基あるいはカルボン酸基などのカチオン交
換基の1種以上を導入したもの、例えば、Nafion
(デュポン社の登録商標)も使用できる。リン酸等の液
体はシリカウールに含浸させて使用したり、イオン透過
性のフィルターまたは膜ではさんで使用することもでき
る。
Specifically, the group 3 metal has the element symbol S
It is a metal represented by c, La, Y, Ac, etc.; group 4 metals are metals represented by element symbols Ti, Zr, Hf, and group 5 metals are metals represented by element symbols V, Nb, Ta. Group 6 metals include element symbols Cr, M
metals represented by o, W; group 7 metals are metals represented by element symbols Mn and Re; group 8 metals are metals represented by element symbols Fe, Ru, Os; 9
Group metals include metals with element symbols Co, Rh, and Ir, and Group 10 metals include element symbols Ni, Pd,
It is a metal represented by Pt, and group 11 metals are metals represented by element symbols Cu, Ag, and Au, and group 12 metals are metals represented by element symbols Zn, Cd, and Hg. Furthermore, when these metals are used as compounds in the anode in the method of the present invention, they may be used as halides, nitrates, sulfates, oxides, hydroxides, phosphates and/or ammonium salts of these metals. It is recommended that In the method of the present invention, an electrode is prepared using at least one of these metals or metal compounds. The ionic conductors used in the method of the present invention include protonic acids such as phosphoric acid, sulfuric acid, and hydrochloric acid, heteropolyacids, solid electrolytes known as proton conductors such as H-montmorillonite, and zirconium phosphate, and SrCeO3 as a matrix. A perovskite solid solution or the like can be used. In addition, products based on fluorine-containing polymers such as perfluorocarbons and into which one or more types of cation exchange groups such as sulfone groups or carboxylic acid groups are introduced, such as Nafion.
(registered trademark of DuPont) can also be used. A liquid such as phosphoric acid can be used by impregnating silica wool, or it can be used by sandwiching it between an ion-permeable filter or membrane.

【0015】本発明方法に使用する水素供与体とは、一
般的にアノード電極によって酸化されプロトン(水素陽
イオン)を発生させる事を可能とする物質をいう。具体
的には水素分子、アルコール類、ハイロキノン類、さら
には飽和炭化水素等が挙げられる。
The hydrogen donor used in the method of the present invention generally refers to a substance that can be oxidized by an anode electrode to generate protons (hydrogen cations). Specific examples include hydrogen molecules, alcohols, hydroquinones, and saturated hydrocarbons.

【0016】アノード室に原料として供給する水素供与
体は通常気体または液体として供給するが、必要に応じ
て不活性な媒体または水に溶解させて液相状態で電極に
接触させても差し支えない。また、窒素、ヘリウム、ア
ルゴン等の不活性ガスとの混合物として使用してもよい
。カソード室に供給する芳香族化合物についても気体ま
たは液体状態で供給するが、さらに酸素または酸素含有
物は気体状態としても、さらには適当な溶媒もしくはガ
スで希釈して使用することもできる。また、水等の極性
媒体等に溶解もしくは懸濁して使用することもできる。 カソード室は反応を円滑に進行させる為に、言い換えれ
ば触媒電極との接触を効果的に行わせる為、激しく攪拌
することが望ましい。反応温度は通常−20℃から20
0℃で行われるが、−5℃から150℃で行うことがよ
り好ましい。また、本発明方法に従えば、反応は一般に
常圧で行われるが、必要に応じて加圧もしくは減圧下で
も実施することができる。反応生成物であるフェノール
類やキノン類等の部分酸化物は、通常反応生成液から蒸
留等の方法で分離、精製して高品質の目的物を得ること
ができる。
The hydrogen donor supplied as a raw material to the anode chamber is usually supplied as a gas or liquid, but if necessary, it may be dissolved in an inert medium or water and brought into contact with the electrode in a liquid phase. It may also be used as a mixture with an inert gas such as nitrogen, helium, or argon. The aromatic compound supplied to the cathode chamber is also supplied in a gaseous or liquid state, but oxygen or an oxygen-containing substance can also be used in a gaseous state or further diluted with a suitable solvent or gas. Moreover, it can also be used by dissolving or suspending it in a polar medium such as water. It is desirable that the cathode chamber be vigorously stirred in order to allow the reaction to proceed smoothly, in other words to ensure effective contact with the catalyst electrode. The reaction temperature is usually -20°C to 20°C.
Although it is carried out at 0°C, it is more preferably carried out at -5°C to 150°C. Furthermore, according to the method of the present invention, the reaction is generally carried out at normal pressure, but it can also be carried out under increased pressure or reduced pressure if necessary. Partial oxides such as phenols and quinones, which are reaction products, can be separated and purified from the reaction product liquid by a method such as distillation to obtain a high-quality target product.

【0017】[0017]

【実施例】以下、本発明方法を実施例に基づき更に詳細
に説明する。しかしながら、これらは例示的なものであ
り、本発明方法は実施例に限定されるものではない。な
お、本実施例に表記した記号のうち、mFはミリファラ
ディー、μmolはマイクロモル、PhOHはフェノー
ルを表している。本実施例および比較例において使用し
たアノードは金黒粉末20mg,グラファイト粉末70
mgおよびテフロン粉末5mgを良く混合したものをホ
ットプレス法によりシート状としたものを使用した。水
素供与体は総て、アルゴン:水素=50:50容量比ガ
スを用い、総ての実施例および比較例においてこれを2
0ml/分の流速で導入した。反応温度および反応時間
はすべての実施例および比較例において30℃、3時間
で行った。
EXAMPLES The method of the present invention will be explained in more detail below based on examples. However, these are illustrative and the method of the present invention is not limited to these examples. In addition, among the symbols written in this example, mF represents millifaradic, μmol represents micromoles, and PhOH represents phenol. The anode used in this example and comparative example was 20 mg of gold black powder and 70 mg of graphite powder.
A mixture of 5 mg of Teflon powder and 5 mg of Teflon powder was well mixed and formed into a sheet by hot pressing. For all hydrogen donors, argon:hydrogen=50:50 volume ratio gas was used, and this was changed to 2 in all Examples and Comparative Examples.
A flow rate of 0 ml/min was introduced. The reaction temperature and reaction time were 30° C. and 3 hours in all Examples and Comparative Examples.

【0018】実施例1 酸化処理として以下の方法で行った。 (a)加熱処理 炭素質物質を空気下、300℃で3時間加熱した。 (b)硝酸処理 8規定硝酸水溶液中に炭素質物質を浸し、これを2時間
加熱沸騰させた後、充分純水で洗浄し乾燥させた。 (c)過マンガン酸処理 4規定硫酸水溶液に、過マンガン酸カリウムの濃度が0
.02モル/Lとなるように過マンガン酸カリウムを加
え均一溶液としたものに、炭素質物質を浸し、室温で6
時間放置した後、充分純水で洗浄し乾燥させた。 (d)硫酸処理 4規定硫酸水溶液中に炭素質物質を浸し、これを2時間
加熱沸騰させた後、充分純水で洗浄し乾燥させた。
Example 1 Oxidation treatment was carried out in the following manner. (a) Heat treatment The carbonaceous material was heated at 300° C. for 3 hours under air. (b) Nitric acid treatment A carbonaceous material was immersed in an 8N nitric acid aqueous solution, heated and boiled for 2 hours, and then thoroughly washed with pure water and dried. (c) Permanganic acid treatment The concentration of potassium permanganate is 0 in the 4N sulfuric acid aqueous solution.
.. Potassium permanganate was added to make a homogeneous solution at a concentration of 0.02 mol/L, and a carbonaceous material was immersed in it at room temperature for 6 mol/L.
After leaving it for a while, it was thoroughly washed with pure water and dried. (d) Sulfuric acid treatment A carbonaceous material was immersed in a 4N sulfuric acid aqueous solution, heated and boiled for 2 hours, and then thoroughly washed with pure water and dried.

【0019】実施例2 ディスク状のシリカウール(厚さ1.0mm,直径21
mm)に85%リン酸水溶液を含ませたものをイオン伝
導体膜とし、前記したアノードおよびカソードとして予
め上記硝酸処理をしたグラファイト粉末50mg,テフ
ロン粉末5mgとさらにグラファイト(カーボン原子と
して):塩化第2鉄のモル比が99.5:0.5となる
ようにし、この混合物を良く混合したものをアノード同
様ホットプレス法で成形したものをカソードとして、両
極をイオン伝導膜で隔てて両側にそれぞれ設置した図1
に示す反応器を用いて、カソード室にベンゼン50ml
を仕込んだ後、アノード室に上記組成および流入速度の
アルゴン、水素混合ガスを導入した。カソード室には酸
素を5ml/分の流入速度で供給し、更にアノードとカ
ソードを導線結線した閉回路としてベンゼンの部分酸化
反応を行った。結果はフェノールが3.82μMOL生
成し、この間に電流が220.5μqF流れた。
Example 2 Disc-shaped silica wool (thickness 1.0 mm, diameter 21
mm) impregnated with 85% phosphoric acid aqueous solution was used as an ion conductor membrane, and as the anode and cathode, 50 mg of graphite powder, which had been previously treated with nitric acid, 5 mg of Teflon powder, and further graphite (as carbon atoms): dichloride. The molar ratio of the two irons was adjusted to 99.5:0.5, and this mixture was mixed well and molded using the hot press method in the same way as the anode.The cathode was used as the cathode. Installed diagram 1
Using the reactor shown in , add 50 ml of benzene to the cathode chamber.
After charging, a mixed gas of argon and hydrogen having the above composition and flow rate was introduced into the anode chamber. Oxygen was supplied to the cathode chamber at an inflow rate of 5 ml/min, and a partial oxidation reaction of benzene was performed using a closed circuit in which the anode and cathode were connected with conductive wires. As a result, 3.82 μMOL of phenol was produced, and a current of 220.5 μqF flowed during this time.

【0020】比較例1 電極間を開回路(両電極間を結線しない)状態で、その
他の条件は総て実施例2と同一でベンゼンの部分酸化反
応を行った。結果は、反応は進行せず、フェノールは検
出されなかった。
Comparative Example 1 A partial oxidation reaction of benzene was carried out under all other conditions as in Example 2, with the electrodes in an open circuit state (no connection between the two electrodes). As a result, the reaction did not proceed and no phenol was detected.

【0021】比較例2 水素ガスおよび水蒸気ガスを共にカソード室に供給する
こととし、その他は総て実施例1と同一の条件でベンゼ
ンの部分酸化反応を行った。結果はフェノールの生成は
殆ど認められなかった。
Comparative Example 2 A partial oxidation reaction of benzene was carried out under the same conditions as in Example 1 except that both hydrogen gas and steam gas were supplied to the cathode chamber. As a result, almost no phenol formation was observed.

【0022】比較例3 カソードに用いたグラファイトの硝酸処理を行わなかっ
た以外は総て実施例2と同一の条件でベンゼンの部分酸
化反応を行った。これにより、フェノールは、2.01
μMOL生成し、この間に電流は71.6μF流れたに
とどまった。この結果本発明方法における酸化処理が有
効であることが分かる。
Comparative Example 3 A partial oxidation reaction of benzene was carried out under the same conditions as in Example 2, except that the graphite used for the cathode was not treated with nitric acid. As a result, phenol is 2.01
μMOL was generated, and during this time only 71.6 μF of current flowed. This result shows that the oxidation treatment in the method of the present invention is effective.

【0023】実施例3 硝酸処理をしたグラファイト:塩化サマリウム=99.
5:0.5モル比として実施例2と同様にカソードを調
製しこれを用いた以外は総て実施例2と同一の条件でベ
ンゼンの部分酸化反応を行った。結果は表1に示したよ
うにフェノールが収率良く生成した。
Example 3 Graphite treated with nitric acid: samarium chloride = 99.
A partial oxidation reaction of benzene was carried out under the same conditions as in Example 2, except that a cathode was prepared and used in the same manner as in Example 2, with a molar ratio of 5:0.5. As shown in Table 1, phenol was produced in good yield.

【0024】実施例4 カソードに用いたグラファイトを上記加熱処理をしたも
のとした以外は総て実施例3と同一の条件でベンゼンの
部分酸化反応を行った。結果は表1に掲げた。 実施例5 カソードに用いたグラファイトを上記硫酸処理をしたも
のとした以外は総て実施例3と同一の条件でベンゼンの
部分酸化反応を行った。結果は表1に掲げた。 実施例6 カソードに用いたグラファイトを上記した過マンガン酸
処理をした以外は総て実施例3と同一の条件でベンゼン
の部分酸化反応を行った。結果は表1に示した。
Example 4 A partial oxidation reaction of benzene was carried out under the same conditions as in Example 3, except that the graphite used for the cathode was subjected to the heat treatment described above. The results are listed in Table 1. Example 5 A partial oxidation reaction of benzene was carried out under the same conditions as in Example 3, except that the graphite used for the cathode was treated with sulfuric acid. The results are listed in Table 1. Example 6 A partial oxidation reaction of benzene was carried out under the same conditions as in Example 3 except that the graphite used for the cathode was treated with permanganate as described above. The results are shown in Table 1.

【0025】比較例4 カソードに用いたグラファイトを酸化処理を行わなかっ
た以外は総て実施例3と同一の条件でウェンゼンの部分
酸化反応を行った。結果は表1に示したように、酸化処
理をしないグラファイトを用いた場合には明らかにフェ
ノールの生成量および電流発生量の低下が確認された。
Comparative Example 4 A partial oxidation reaction of wenzene was carried out under the same conditions as in Example 3, except that the graphite used for the cathode was not oxidized. As shown in Table 1, it was confirmed that when graphite without oxidation treatment was used, the amount of phenol produced and the amount of current generated were clearly reduced.

【0026】実施例7 グラファイトの代わりに、上記硝酸処理を行った活性炭
に代え、活性炭(炭素ベース):塩化第2鉄=99.5
:0.5モル比となるようにして上記カソード調製法と
同様にしてシート状電極としたものをカソードとして使
用した以外は総て実施例2と同一の条件でベンゼンの部
分酸化反応を行った。この結果、フェノールが17.9
5μMOL生成し、同時に電流が872μF発生した。
Example 7 Activated carbon (carbon base): ferric chloride = 99.5 instead of graphite and activated carbon treated with nitric acid.
A partial oxidation reaction of benzene was carried out under all the same conditions as in Example 2, except that a sheet electrode was used as the cathode in the same manner as in the above cathode preparation method so that the molar ratio was 0.5. . As a result, phenol was 17.9
5 μMOL was generated and at the same time a current of 872 μF was generated.

【0027】[0027]

【表1】 ─────────────────────────
──────────               
 電流量(μF)      PhOH生成量(μMO
L)        ───────────────
────────────────────  実施例
3      316.8             
       5.48              
    実施例4      100.7      
              3.57       
           実施例5      171.
3                    3.71
                  実施例6   
   240.7                 
   5.26                  
比較例4        72.8         
           1.10          
      ───────────────────
────────────────
[Table 1] ──────────────────────────
──────────
Current amount (μF) PhOH generation amount (μMO
L) ────────────────
──────────────────── Example 3 316.8
5.48
Example 4 100.7
3.57
Example 5 171.
3 3.71
Example 6
240.7
5.26
Comparative example 4 72.8
1.10
────────────────────
──────────────────

【0028】[0028]

【発明の効果】本発明方法は、クメン法や安息香酸法な
どの従来の煩雑な方法に比較し、芳香族化合物と酸素か
ら直接一段の方法により、出発原料の芳香族化合物に対
応したフェノール類等の部分酸化物を製造できる。さら
にその他の副原料も必要とせず、また多量の副反応生成
物も生成しない。さらに、従来行われてきた芳香族化合
物と酸素による直接酸化法の試みに比べ、極めて温和な
条件で反応を遂行でき、加えて酸素と水素が直接混合す
ることによる爆発の危険性もない。また、必要により生
成物と共に電力エネルギーを取り出すこともできる。ま
た、水等のイオン性媒体を使用することもなく、さらに
は電解質等を使用することもなく実施することも可能で
あり、単純かつ、より小さな反応器で効率的な接触反応
を遂行できる、等多くの利点を有している。
Effects of the Invention: Compared to conventional complicated methods such as the cumene method and the benzoic acid method, the method of the present invention allows the production of phenols corresponding to the aromatic compounds as starting materials by a one-step method directly from aromatic compounds and oxygen. It is possible to produce partial oxides such as Furthermore, no other auxiliary raw materials are required, and large amounts of side reaction products are not produced. Furthermore, compared to previous attempts at direct oxidation using aromatic compounds and oxygen, the reaction can be carried out under extremely mild conditions, and there is no risk of explosion due to direct mixing of oxygen and hydrogen. Furthermore, electric energy can be extracted together with the product if necessary. In addition, it is possible to carry out the reaction without using an ionic medium such as water, or even without using an electrolyte, and an efficient catalytic reaction can be carried out in a simple and smaller reactor. It has many advantages.

【図面の簡単な説明】[Brief explanation of drawings]

図1は燃料電池型反応器の概念図である。 FIG. 1 is a conceptual diagram of a fuel cell type reactor.

【図1】    燃料電池型反応器概念図[Figure 1] Conceptual diagram of fuel cell type reactor

【符号の説明】[Explanation of symbols]

1  触媒電極(アノード) 2  触媒電極(カソード) 3  アノード室 4  カソード室 5  イオン伝導体 6  リード線 7  スターラー 1 Catalyst electrode (anode) 2 Catalyst electrode (cathode) 3 Anode chamber 4 Cathode chamber 5 Ion conductor 6 Lead wire 7 Stirrer

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】  触媒電極を設けたイオン伝導体の一方
の電極に水素供与体を、他方の電極に芳香族化合物およ
び酸素を接触させて燃料電池システムにより前記芳香族
化合物の対応部分酸化物を得る際に、芳香族化合物およ
び酸素と接触させる側の電極が、金属および/または金
属化合物から選ばれた少なくとも1種の金属成分と予め
酸化処理された導電性炭素質物質からなる電極であるこ
とを特徴とする芳香族化合物の部分酸化物の製造方法。
1. A hydrogen donor is brought into contact with one electrode of an ionic conductor provided with a catalyst electrode, and an aromatic compound and oxygen are brought into contact with the other electrode to produce a corresponding partial oxide of the aromatic compound using a fuel cell system. When obtaining, the electrode that is brought into contact with the aromatic compound and oxygen is an electrode made of a conductive carbonaceous material that has been previously oxidized and at least one metal component selected from metals and/or metal compounds. A method for producing a partial oxide of an aromatic compound, characterized by:
【請求項2】  水素供与体と接触する触媒電極が金属
および/または金属化合物から選ばれた少なくとも1種
以上の金属成分と導電性高分子材料からなることを特徴
とする請求項1記載の方法。
2. The method according to claim 1, wherein the catalytic electrode that contacts the hydrogen donor comprises at least one metal component selected from metals and/or metal compounds and a conductive polymer material. .
【請求項3】  水素供与体と接触せしめる側の触媒電
極が金属および/または金属化合物から選ばれた少なく
とも1種以上の金属成分と予め酸化処理された炭素質材
料からなることを特徴とする請求項1記載の方法。
3. A claim characterized in that the catalyst electrode on the side brought into contact with the hydrogen donor is made of at least one metal component selected from metals and/or metal compounds and a carbonaceous material that has been previously oxidized. The method described in Section 1.
【請求項4】  触媒電極を構成する金属または金属化
合物の構成金属が周期律表において、3族、4族、5族
、6族、7族、8族、9族、10族、11族および/ま
たは12族金属の少なくとも1種以上の金属またはその
化合物である請求項1記載の方法。
4. The constituent metals of the metal or metal compound constituting the catalytic electrode belong to Group 3, Group 4, Group 5, Group 6, Group 7, Group 8, Group 9, Group 10, Group 11, and 2. The method according to claim 1, wherein the metal is at least one group 12 metal or a compound thereof.
【請求項5】  水素供与体が水素分子である請求項1
記載の方法。
[Claim 5]Claim 1, wherein the hydrogen donor is a hydrogen molecule.
Method described.
【請求項6】  酸化処理が酸素含有気体存在下に炭素
質材料を加熱処理をすることである請求項1記載の方法
6. The method according to claim 1, wherein the oxidation treatment is heat treatment of the carbonaceous material in the presence of an oxygen-containing gas.
【請求項7】  酸化処理が過マンガン酸塩溶液、硝酸
溶液、重クロム酸塩溶液及び硫酸溶液から選ばれた少な
くとも1種以上の溶液中で炭素質材料を加熱もしくは室
温で接触または放置することである請求項1記載の方法
[Claim 7] The oxidation treatment is performed by heating the carbonaceous material in at least one solution selected from a permanganate solution, a nitric acid solution, a dichromate solution, and a sulfuric acid solution, or by contacting or leaving it at room temperature. The method according to claim 1.
【請求項8】  酸素含有気体が空気である請求項6記
載の方法。
8. The method according to claim 6, wherein the oxygen-containing gas is air.
【請求項9】  過マンガン酸溶液、硝酸溶液、重クロ
ム酸塩溶液及び硫酸溶液が各々の水溶液である請求項7
記載の方法。
9. Claim 7, wherein the permanganate solution, nitric acid solution, dichromate solution and sulfuric acid solution are each aqueous solutions.
Method described.
JP03105924A 1991-05-10 1991-05-10 Method for producing partial oxide of aromatic compound Expired - Fee Related JP3090972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03105924A JP3090972B2 (en) 1991-05-10 1991-05-10 Method for producing partial oxide of aromatic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03105924A JP3090972B2 (en) 1991-05-10 1991-05-10 Method for producing partial oxide of aromatic compound

Publications (2)

Publication Number Publication Date
JPH04364144A true JPH04364144A (en) 1992-12-16
JP3090972B2 JP3090972B2 (en) 2000-09-25

Family

ID=14420412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03105924A Expired - Fee Related JP3090972B2 (en) 1991-05-10 1991-05-10 Method for producing partial oxide of aromatic compound

Country Status (1)

Country Link
JP (1) JP3090972B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002055465A1 (en) * 2001-01-05 2002-07-18 National Institute Of Advanced Industrial Science And Technology Reaction method utilizing diaphram type catalyst and apparatus therefor
JP2002205968A (en) * 2001-01-05 2002-07-23 National Institute Of Advanced Industrial & Technology Reaction device having diaphragm type catalyst
JP2002284727A (en) * 2001-03-26 2002-10-03 National Institute Of Advanced Industrial & Technology Method for producing aromatic alcohol

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002055465A1 (en) * 2001-01-05 2002-07-18 National Institute Of Advanced Industrial Science And Technology Reaction method utilizing diaphram type catalyst and apparatus therefor
JP2002205968A (en) * 2001-01-05 2002-07-23 National Institute Of Advanced Industrial & Technology Reaction device having diaphragm type catalyst
US6911563B2 (en) 2001-01-05 2005-06-28 National Institute Of Advanced Industrial Science Reaction method utilizing diaphram type catalyst and apparatus therefor
JP2002284727A (en) * 2001-03-26 2002-10-03 National Institute Of Advanced Industrial & Technology Method for producing aromatic alcohol

Also Published As

Publication number Publication date
JP3090972B2 (en) 2000-09-25

Similar Documents

Publication Publication Date Title
KR100519692B1 (en) Fuel Cell Type Reaction Device and Method of Producing Compounds Using it
JP5311478B2 (en) Electron / ion mixed conductive membrane and method for producing hydrogen peroxide using the same
JP2009068080A (en) Fuel cell type reaction apparatus and method of manufacturing compound using the same
JPH05295578A (en) Production of partially oxidized aromatic compound
JP3090972B2 (en) Method for producing partial oxide of aromatic compound
JPH0673583A (en) Production of partial-oxidation product of methanol
JP2004502284A (en) Electrochemical battery
JP4610217B2 (en) Fuel cell type reactor and method for producing hydrogen peroxide using the same
JPH03122296A (en) Production of partially oxidized aromatic compound
JP3110484B2 (en) Method for producing partial oxide of alicyclic compound
Yamanaka et al. The Partial Oxidations of Cyclohexane and Benzene on the FeCl3‐Embedded Cathode during the O 2‐H 2 Fuel Cell Reactions
JP2001236968A (en) Fuel cell reactor and method of using the same
JPH0672919A (en) Production of partial oxide of toluene
JP3398413B2 (en) Method for producing partial oxide of aromatic compound
JP3110485B2 (en) Method for producing partial oxide of alicyclic compound
JPH07216570A (en) Production of chlorine
JP2010215938A (en) Fuel cell type reaction apparatus and method of producing compound using the same
JP2919633B2 (en) Method for producing partial oxide of propylene
JP2947968B2 (en) Method for producing acetaldehyde
JP2640372B2 (en) Method for producing partial oxide of aromatic compound
JPH0665123A (en) Production of partially oxidation products of methanol
JP2010007152A (en) Method for producing methanol and production apparatus therefor
JP3067834B2 (en) Catalyst device for redox reaction and method of using the same
JP2011255302A (en) Film catalyst unit, and method for manufacturing hydrogen peroxide using the same
JP2701153B2 (en) Method for producing carbonyl compound

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees