JP2021138994A - Electrode catalyst for reducing co2, method of producing electrode catalyst for reducing co2, co2 reducing electrode, and co2 reducing system - Google Patents

Electrode catalyst for reducing co2, method of producing electrode catalyst for reducing co2, co2 reducing electrode, and co2 reducing system Download PDF

Info

Publication number
JP2021138994A
JP2021138994A JP2020036739A JP2020036739A JP2021138994A JP 2021138994 A JP2021138994 A JP 2021138994A JP 2020036739 A JP2020036739 A JP 2020036739A JP 2020036739 A JP2020036739 A JP 2020036739A JP 2021138994 A JP2021138994 A JP 2021138994A
Authority
JP
Japan
Prior art keywords
cobalt
electrode
reduction
nitrogen
molar ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020036739A
Other languages
Japanese (ja)
Other versions
JP7462261B2 (en
Inventor
香織 高野
Kaori Takano
香織 高野
孝司 松岡
Koji Matsuoka
孝司 松岡
康司 佐藤
Yasushi Sato
康司 佐藤
一郎 山中
Ichiro Yamanaka
一郎 山中
翔之 井口
Shoji Iguchi
翔之 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Eneos Corp
Original Assignee
Tokyo Institute of Technology NUC
Eneos Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC, Eneos Corp filed Critical Tokyo Institute of Technology NUC
Priority to JP2020036739A priority Critical patent/JP7462261B2/en
Publication of JP2021138994A publication Critical patent/JP2021138994A/en
Application granted granted Critical
Publication of JP7462261B2 publication Critical patent/JP7462261B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

To provide a low-cost and novel electrode catalyst for reducing CO2, having excellent energy efficiency in producing CO and high atom efficiency.SOLUTION: The electrode catalyst for reducing CO2, comprises an electroconductive porous carbon support, a specific nitrogen-containing aromatic heterocyclic compound supported by the carbon support, and a cobalt ion coordinated with four nitrogen atoms present on the nitrogen-containing aromatic heterocycle of the nitrogen-containing aromatic heterocyclic compound, with the molar ratio of the complex comprising a Co-N4C bond being 0.3 or greater relative to the total mount of supported cobalt, or the molar ratio of the complex comprising a Co-N4C bond being 0.2 or greater and the molar ratio of metallic cobalt being 0.5 or lower, relative to the total amount of supported cobalt.SELECTED DRAWING: None

Description

本発明は、CO還元用電極触媒、CO還元用電極触媒の製造方法、CO還元電極、およびCO還元システムに関する。 The present invention, CO 2 reduction electrode catalyst, a method of manufacturing a CO 2 reduction electrode catalyst, CO 2 reduction electrode, and CO to a two-reducing system.

地球気候変動の主要因とされる二酸化炭素(CO)の排出量を削減する方法の一つとして、再生可能エネルギー由来の電力を用いてCOと水を、一酸化炭素(CO)などの還元生成物と酸素へ電気分解し、循環利用する方法が知られている。 As one of the methods to reduce the emission of carbon dioxide (CO 2 ), which is the main cause of global climate change, CO 2 and water are converted into CO 2 and water using electricity derived from renewable energy, such as carbon monoxide (CO). A method of electrolyzing reduction products and oxygen and recycling them is known.

COを電気分解によって還元する電気化学反応装置の還元電極として、金を含み、デンドライト構造を有する多孔質金属層を備えるCO還元触媒を用いる技術が提案されている(特許文献1参照)。 As a reducing electrode of an electrochemical reaction device that reduces CO 2 by electrolysis, a technique using a CO 2 reducing catalyst containing a porous metal layer containing gold and having a dendrite structure has been proposed (see Patent Document 1).

特開2017−57492号公報JP-A-2017-57492

特許文献1に記載の還元触媒は、CO生成のエネルギー効率に優れているが、原子当たりの効率が低く、また金などの貴金属を用いていることから高価である。本発明者らは、CO還元用電極触媒について鋭意検討を重ねた結果、CO生成のエネルギー効率に優れており、原子当たりの効率が高く、かつ安価なCO還元用電極触媒を提供できる技術に想到した。 The reduction catalyst described in Patent Document 1 is excellent in energy efficiency of CO production, but has low efficiency per atom and is expensive because it uses a precious metal such as gold. As a result of diligent studies on the electrode catalyst for CO 2 reduction, the present inventors have a technique capable of providing an electrode catalyst for CO 2 reduction which is excellent in energy efficiency of CO generation, has high efficiency per atom, and is inexpensive. I came up with.

本発明はこうした状況に鑑みてなされたものであり、その目的の1つはCO生成のエネルギー効率に優れており、原子当たりの効率が高く、かつ安価な新たなCO還元用電極触媒を提供することにある。 The present invention has been made in view of these circumstances, and one of the purposes thereof is to provide a new electrode catalyst for CO 2 reduction, which is excellent in energy efficiency of CO generation, has high efficiency per atom, and is inexpensive. To do.

本発明のある態様はCO還元用電極触媒である。このCO還元用電極触媒は、導電性を示す多孔質のカーボン担体と、
下記一般式(1):

Figure 2021138994
(式中、XはCまたはNであり、R〜Rは、それぞれ独立にHまたはアルキル基であり、R〜Rのうち少なくとも1つがアルキル基である。但し、XがNである場合、Rは存在せず、R〜RおよびRのうち少なくとも1つがアルキル基である。)
で表される化合物、および
一般式(1)で表される繰り返し単位を有し、一般式(1)中、R〜Rのうち1つのアルキル基が主鎖であり、複素芳香環が側鎖であるポリマー、および
一般式(2):
Figure 2021138994
(式中、R〜R13は、それぞれ独立にHまたはアルキル基であり、R〜R13のうち少なくとも1つがアルキル基である。)
で表される化合物からなる群より選択され、カーボン担体に担持されている窒素含有複素芳香環化合物と、
窒素含有複素芳香環化合物の複素芳香環上の窒素原子4つと配位しているコバルトイオンと、
を含み、
全コバルト担持量に対するCo−NC結合をもつ錯体部のモル比が0.3以上であるか、または
全コバルト担持量に対して、Co−NC結合をもつ錯体部のモル比が0.2以上であり、かつ金属コバルトのモル比が0.5以下である。 One embodiment of the present invention is an electrode catalyst for CO 2 reduction. This electrode catalyst for CO 2 reduction is composed of a porous carbon carrier showing conductivity and
The following general formula (1):
Figure 2021138994
(In the formula, X is C or N, R 1 to R 5 are independently H or alkyl groups, and at least one of R 1 to R 5 is an alkyl group, where X is N. in some cases, R 4 is absent, at least one of alkyl groups of R 1 to R 3 and R 5.)
It has a compound represented by, and a repeating unit represented by the general formula (1), and in the general formula (1), one alkyl group from R 1 to R 5 is the main chain, and a complex aromatic ring is formed. Polymers that are side chains, and general formula (2):
Figure 2021138994
(In the formula, R 6 to R 13 are independently H or alkyl groups, and at least one of R 6 to R 13 is an alkyl group.)
A nitrogen-containing heteroaromatic ring compound selected from the group consisting of the compounds represented by, and supported on a carbon carrier, and
Cobalt ions coordinated with four nitrogen atoms on the heteroaromatic ring of the nitrogen-containing heteroaromatic ring compound,
Including
Or the molar ratio of the complex portion with Co-N 4 C bonds to the total cobalt supported amount is 0.3 or more, or the total cobalt loading amount, the molar ratio of the complex portion with Co-N 4 C bond It is 0.2 or more, and the molar ratio of metallic cobalt is 0.5 or less.

本発明の他の態様は上記CO還元用電極触媒の製造方法である。この製造方法は、下記一般式(1):

Figure 2021138994
(式中、XはCまたはNであり、R〜Rは、それぞれ独立にHまたはアルキル基であり、R〜Rのうち少なくとも1つがアルキル基である。但し、XがNである場合、Rは存在せず、R〜RおよびRのうち少なくとも1つがアルキル基である。)
で表される化合物、および
一般式(1)で表される繰り返し単位を有し、一般式(1)中、R〜Rのうち1つのアルキル基が主鎖であり、複素芳香環が側鎖であるポリマー、および
下記一般式(2):
Figure 2021138994
(式中、R〜R13は、それぞれ独立にHまたはアルキル基であり、R〜R13のうち少なくとも1つがアルキル基である。)
で表される化合物からなる群より選択される窒素含有複素芳香環化合物をコバルトイオンに配位させ、コバルトイオンに配位させた窒素含有複素芳香環化合物を、導電性を示す多孔質のカーボン担体に吸着させ、焼成する。 Another aspect of the present invention is the method for producing the electrode catalyst for CO 2 reduction. This manufacturing method is described in the following general formula (1):
Figure 2021138994
(In the formula, X is C or N, R 1 to R 5 are independently H or alkyl groups, and at least one of R 1 to R 5 is an alkyl group, where X is N. in some cases, R 4 is absent, at least one of alkyl groups of R 1 to R 3 and R 5.)
It has a compound represented by, and a repeating unit represented by the general formula (1), and in the general formula (1), one alkyl group from R 1 to R 5 is the main chain, and a complex aromatic ring is formed. The polymer that is the side chain, and the following general formula (2):
Figure 2021138994
(In the formula, R 6 to R 13 are independently H or alkyl groups, and at least one of R 6 to R 13 is an alkyl group.)
A nitrogen-containing heteroaromatic ring compound selected from the group consisting of the compounds represented by is coordinated with cobalt ions, and the nitrogen-containing heteroaromatic ring compound coordinated with cobalt ions is a porous carbon carrier exhibiting conductivity. And bake.

本発明のさらに他の態様はCO還元電極である。このCO還元電極は上記CO還元用電極触媒を含む。 Yet another aspect of the present invention is a CO 2 reducing electrode. This CO 2 reduction electrode includes the above-mentioned electrode catalyst for CO 2 reduction.

本発明のさらに他の態様はCO還元システムである。このCO還元システムは、上記CO還元電極と、酸化電極と、CO還元電極と酸化電極との間に接続された電源と、を含む。 Yet another aspect of the present invention is a CO 2 reduction system. This CO 2 reduction system includes the CO 2 reduction electrode, an oxidation electrode, and a power source connected between the CO 2 reduction electrode and the oxidation electrode.

本発明によれば、CO生成のファラデー効率に優れており、かつ安価な新たなCO還元用電極触媒を提供することができる。 According to the present invention, it is possible to provide a new electrode catalyst for CO 2 reduction, which is excellent in Faraday efficiency of CO production and is inexpensive.

実施の形態に係るCO還元システムを示す模式図である。It is a schematic diagram which shows the CO 2 reduction system which concerns on embodiment. Co−NC結合をもつ錯体部のモル比とCO生成のファラデー効率との関係を示すグラフである。It is a graph showing the relationship between the faraday efficiency of the molar ratio and CO complex formation portion with Co-N 4 C bond. 酸化コバルトのモル比とH生成のファラデー効率との関係を示すグラフである。It is a graph which shows the relationship between the molar ratio of cobalt oxide and the Faraday efficiency of H 2 formation. 金属コバルトのモル比とH生成のファラデー効率との関係を示すグラフである。It is a graph which shows the relationship between the molar ratio of metallic cobalt and the Faraday efficiency of H 2 formation.

以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。各図に示す各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。また、各図面において実施の形態を説明する上で重要ではない部材の一部は省略して表示する。 Hereinafter, the present invention will be described with reference to the drawings based on preferred embodiments. The embodiments are not limited to the invention, but are exemplary, and all the features and combinations thereof described in the embodiments are not necessarily essential to the invention. The scale and shape of each part shown in each figure are set for convenience of explanation, and are not interpreted in a limited manner unless otherwise specified. In addition, some of the members that are not important for explaining the embodiment in each drawing are omitted and displayed.

(CO還元用電極触媒)
実施の形態に係るCO還元用電極触媒は、導電性を示す多孔質のカーボン担体と、上記一般式(1)で表される化合物、および上記一般式(1)で表される繰り返し単位を有し、一般式(1)中、R〜Rのうち1つのアルキル基が主鎖であり、複素芳香環が側鎖であるポリマー、および上記一般式(2)で表される化合物からなる群より選択され、カーボン担体に担持されている窒素含有複素芳香環化合物と、窒素含有複素芳香環化合物の複素芳香環上の窒素原子4つと配位しているコバルトイオンと、を含み、全コバルト担持量に対するCo−NC結合をもつ錯体部のモル比が0.3以上であるか、または全コバルト担持量に対して、Co−NC結合をもつ錯体部のモル比が0.2以上であり、かつ金属コバルトのモル比が0.5以下である。
(Electrode catalyst for CO 2 reduction)
The CO 2 reduction electrode catalyst according to the embodiment contains a porous carbon carrier exhibiting conductivity, a compound represented by the above general formula (1), and a repeating unit represented by the above general formula (1). From a polymer having an alkyl group having one of R 1 to R 5 as a main chain and a complex aromatic ring as a side chain in the general formula (1), and a compound represented by the above general formula (2). A nitrogen-containing heteroaromatic ring compound selected from the above group, which is supported on a carbon carrier, and a cobalt ion coordinated with four nitrogen atoms on the heteroaromatic ring of the nitrogen-containing heteroaromatic ring compound. or the molar ratio of the complex portion with Co-N 4 C bonds to cobalt loading amount is 0.3 or more, or the total cobalt loading amount, the molar ratio of the complex portion with Co-N 4 C bond 0 .2 or more and the molar ratio of metallic cobalt is 0.5 or less.

実施の形態に係るCO還元用電極触媒においては、全コバルト担持量に対するCo−NC結合をもつ錯体部のモル比が0.3以上であるか、または全コバルト担持量に対して、Co−NC結合をもつ錯体部のモル比が0.2以上であり、かつ金属コバルトのモル比が0.5以下である。COの電解還元において、還元電極側では、目的物質であるCOの他に、副生成物としてHが生成する可能性がある。実施の形態に係るCO還元用電極触媒のCo−NC結合をもつ錯体部は、COをCOへ還元する反応の活性点として作用する。Co−NC結合をもつ錯体部のモル比を0.3以上とするか、またはCo−NC結合をもつ錯体部のモル比を0.2以上とし、かつ金属コバルトのモル比を0.5以下とすることで、電解還元生成物中のCO割合を増加させることができ、CO生成のエネルギー効率を実用に足るレベルとすることができる。さらに、実施の形態に係るCO還元用電極触媒は、原子当たりの効率が高く、さらに、金などの貴金属を使用する従来の触媒と比較して安価に製造できる。 In CO 2 reduction electrode catalyst according to the embodiment, if the molar ratio of the complex portion with Co-N 4 C bonds to the total cobalt supported amount is 0.3 or more, or the total of cobalt supported amount, the molar ratio of complex parts with Co-N 4 C bonds is not less than 0.2, and the molar ratio of the metal cobalt is 0.5 or less. In the electrolytic reduction of CO 2 , H 2 may be produced as a by-product in addition to CO, which is the target substance, on the reduction electrode side. The complex portion having a Co-N 4 C bond of the electrode catalyst for CO 2 reduction according to the embodiment acts as an active site for a reaction for reducing CO 2 to CO. The molar ratio of the complex portion having a Co-N 4 C bond is 0.3 or more, or the molar ratio of the complex portion having a Co-N 4 C bond is 0.2 or more, and the molar ratio of metallic cobalt is set to 0.2 or more. By setting it to 0.5 or less, the ratio of CO in the electrolytic reduction product can be increased, and the energy efficiency of CO production can be set to a level sufficient for practical use. Further, the CO 2 reduction electrode catalyst according to the embodiment has high efficiency per atom, and can be manufactured at a lower cost than a conventional catalyst using a noble metal such as gold.

ここで、CO生成のエネルギー効率をさらに増加させるという観点から、全コバルト担持量に対するCo−NC結合をもつ錯体部のモル比は、好ましくは0.3以上であり、より好ましくは0.4以上である。また、全コバルト担持量に対して、Co−NC結合をもつ錯体部のモル比が0.3以上であり、かつ金属コバルトのモル比が0.4以下であるのが好ましく、Co−NC結合をもつ錯体部のモル比が0.4以上であり、かつ金属コバルトのモル比が0.2以下であるのがより好ましい。 Here, from the viewpoint of further increasing the energy efficiency of the CO formation, the molar ratio of the complex portion with Co-N 4 C bonds to the total of cobalt supported amount is preferably 0.3 or more, more preferably 0. 4 or more. Further, it is preferable that the molar ratio of the complex portion having a Co-N 4 C bond is 0.3 or more and the molar ratio of metallic cobalt is 0.4 or less with respect to the total amount of cobalt carried. N 4 molar ratio of the complex part having a C bond is 0.4 or more, and the molar ratio of the metal cobalt is more preferably 0.2 or less.

また、CO生成のエネルギー効率をさらに増加させるという観点から、CO還元用電極触媒に含まれる酸化コバルトの全コバルト担持量に対するモル比が0.8以下であるのが好ましい。なお、酸化コバルトは、COの電解還元において不活性な物質である。 Further, from the viewpoint of further increasing the energy efficiency of CO generation, the molar ratio of cobalt oxide contained in the electrode catalyst for CO 2 reduction to the total amount of cobalt supported is preferably 0.8 or less. Cobalt oxide is a substance that is inactive in the electrolytic reduction of CO 2.

CO還元用電極触媒を構成するカーボン担体は、導電性を示し、かつ窒素含有複素芳香環化合物を担持できる多孔質のものであれば特に限定されない。カーボン担体の例としては、ケッチェンブラック、アセチレンブラック、カーボンブラック、カーボンナノチューブ、グラフェン、フラーレンなどを挙げることができる。 The carbon carrier constituting the electrode catalyst for CO 2 reduction is not particularly limited as long as it is a porous one that exhibits conductivity and can support a nitrogen-containing heteroaromatic ring compound. Examples of carbon carriers include Ketjen black, acetylene black, carbon black, carbon nanotubes, graphene, fullerenes and the like.

CO還元用電極触媒を構成する上記一般式(1)で表される化合物は、ピリジン環(X=H)またはピリミジン環(X=N)が自由に分子運動できる構造である。式(1)中、R〜Rは、それぞれ独立にHまたはアルキル基であり、R〜Rのうち少なくとも1つがアルキル基である。但しXがNである場合、Rは存在せず、R〜RおよびRのうち少なくとも1つがアルキル基である。R〜Rのアルキル基は、式(1)中の複素芳香環(ピリジン環またはピリミジン環)が自由に分子運動できるものであれば、直鎖状でも分岐鎖状でもよく、その長さは制限されない。 The compound represented by the above general formula (1) constituting the electrode catalyst for CO 2 reduction has a structure in which the pyridine ring (X = H) or the pyrimidine ring (X = N) can freely move in the molecule. In formula (1), R 1 to R 5 are independently H or alkyl groups, and at least one of R 1 to R 5 is an alkyl group. However, when X is N, R 4 does not exist, and at least one of R 1 to R 3 and R 5 is an alkyl group. The alkyl groups of R 1 to R 5 may be linear or branched, as long as the heteroaromatic ring (pyridine ring or pyrimidine ring) in the formula (1) can move freely. Is not restricted.

CO還元用電極触媒を構成する、上記一般式(1)で表される繰り返し単位を有するポリマーは、一般式(1)中、R〜Rのうち1つのアルキル基が主鎖であり、複素芳香環が側鎖であるポリマーである。なお、上述したように、式(1)においてXがNである場合、Rは存在しない。この場合、当然ながら、ポリマーの主鎖は、R〜RおよびRのうち1つのアルキル基である。ポリマーの主鎖の構造は、側鎖の複素芳香環が自由に分子運動できるものであれば特に限定されない。ポリマーの代表例としては、ポリ−4−ビニルピリジンなどを挙げることができる。 The polymer having a repeating unit represented by the above general formula (1) constituting the electrode catalyst for CO 2 reduction has an alkyl group having one of R 1 to R 5 as a main chain in the general formula (1). , A polymer having a complex aromatic ring as a side chain. As described above, when X is N in the equation (1), R 4 does not exist. In this case, of course, the backbone of the polymer is one alkyl group among R 1 to R 3 and R 5. The structure of the main chain of the polymer is not particularly limited as long as the heteroaromatic ring of the side chain can move freely. Typical examples of the polymer include poly-4-vinylpyridine and the like.

CO還元用電極触媒を構成する上記一般式(2)で表される窒素含有複素芳香環化合物において、一般式(2)中のR〜R13は、それぞれ独立にHまたはアルキル基である。RおよびRのアルキル基は、式(2)中のビピリジン環が自由に分子運動できるものであれば、直鎖状でも分岐鎖状でもよく、その長さは制限されない。実施の形態に係るCO還元用電極触媒において、式(2)で表される化合物2分子のビピリジン環内の窒素原子合計4つがコバルトイオンに配位する。 In the nitrogen-containing heteroaromatic ring compound represented by the above general formula (2) constituting the electrode catalyst for CO 2 reduction, R 6 to R 13 in the general formula (2) are independently H or alkyl groups, respectively. .. The alkyl groups of R 1 and R 2 may be linear or branched as long as the bipyridine ring in the formula (2) can move freely, and the length thereof is not limited. In the electrode catalyst for CO 2 reduction according to the embodiment, a total of four nitrogen atoms in the bipyridine ring of the two molecules of the compound represented by the formula (2) are coordinated to the cobalt ion.

実施の形態に係るCO還元用電極触媒においては、配位している窒素原子とコバルトイオンとの間の距離が2.0Å以上3.0Å以下であることが好ましく、2.0Å以上2.5Å以下であることがより好ましく、2.0Å以上2.2Å以下であることがさらにより好ましい。このような距離でコバルトイオンに配位した窒素含有複素芳香環化合物がカーボン担体上に固定されることによって、コバルトのCO還元活性をより高めることができる。 In the electrode catalyst for CO 2 reduction according to the embodiment, the distance between the coordinated nitrogen atom and the cobalt ion is preferably 2.0 Å or more and 3.0 Å or less, and 2.0 Å or more and 2. It is more preferably 5 Å or less, and even more preferably 2.0 Å or more and 2.2 Å or less. By immobilizing the nitrogen-containing heteroaromatic ring compound coordinated to cobalt ions at such a distance on the carbon carrier, the CO 2 reducing activity of cobalt can be further enhanced.

(CO還元用電極触媒の製造方法)
本実施の形態に係るCO還元用電極触媒の製造方法は、ピリジル基を側鎖に有するビニルポリマーおよび上記一般式(1)で表される化合物からなる群より選択される窒素含有複素芳香環化合物をコバルトイオンに配位させ、コバルトイオンに配位させた窒素含有複素芳香環化合物を、導電性を示す多孔質のカーボン担体に吸着させ、焼成する。ここで、窒素含有複素芳香環化合物およびカーボン担体は、上述したCO還元用電極触媒の実施形態におけるものと同じである。
(Manufacturing method of electrode catalyst for CO 2 reduction)
The method for producing an electrode catalyst for CO 2 reduction according to the present embodiment is a nitrogen-containing heteroaromatic ring selected from the group consisting of a vinyl polymer having a pyridyl group in the side chain and a compound represented by the above general formula (1). The compound is coordinated with cobalt ions, and the nitrogen-containing heteroaromatic ring compound coordinated with cobalt ions is adsorbed on a porous carbon carrier exhibiting conductivity and fired. Here, the nitrogen-containing heteroaromatic ring compound and the carbon carrier are the same as those in the above-described electrode catalyst for CO 2 reduction.

窒素含有複素芳香環化合物のコバルトイオンへの配位させる方法は特に限定されないが、例えば、窒素含有複素芳香環化合物とコバルト塩とを溶媒に分散させることによって行うことができる。また、窒素含有複素芳香環化合物およびコバルト塩のそれぞれを溶媒に分散させ、2つの分散液を混合することによって、窒素含有複素芳香環化合物のコバルト錯体溶液を形成してもよい。 The method for coordinating the nitrogen-containing heteroaromatic ring compound to the cobalt ion is not particularly limited, and for example, it can be carried out by dispersing the nitrogen-containing heteroaromatic ring compound and the cobalt salt in a solvent. Further, a cobalt complex solution of the nitrogen-containing heteroaromatic ring compound may be formed by dispersing each of the nitrogen-containing heteroaromatic ring compound and the cobalt salt in a solvent and mixing the two dispersions.

コバルトイオンに配位させた窒素含有複素芳香環化合物のカーボン担体へ吸着方法は特に限定されないが、例えば、得られたコバルト錯体溶液にカーボン担体を添加し、混合することによって行うことができる。吸着後、例えば蒸発乾固によって溶液を除去して、コバルト錯体が担持されたカーボン担体を得ることができる。 The method for adsorbing the nitrogen-containing heteroaromatic ring compound coordinated with cobalt ions to the carbon carrier is not particularly limited, and for example, the carbon carrier can be added to the obtained cobalt complex solution and mixed. After adsorption, the solution can be removed, for example, by evaporation to dryness to obtain a carbon carrier carrying a cobalt complex.

本実施の形態に係る製造方法においては、得られたコバルト錯体が担持されたカーボン担体を焼成する。焼成温度は、600K〜873Kであることが好ましく、600K〜800Kであることがより好ましく、650K〜750Kであることがさらにより好ましい。焼成温度をこのような範囲内とすることによって、コバルトのCO還元活性をさらに高めることができる。焼成は1回でもよいが、コバルト錯体をカーボン担体により適切に固定するという観点から、温度を変更して2回以上行ってもよい。焼成時間は特に限定されず、例えば1時間〜10時間の間で適宜設定することができる。 In the production method according to the present embodiment, the carbon carrier on which the obtained cobalt complex is supported is calcined. The firing temperature is preferably 600K to 873K, more preferably 600K to 800K, and even more preferably 650K to 750K. By setting the calcination temperature within such a range, the CO 2 reduction activity of cobalt can be further enhanced. The calcination may be performed once, but may be performed twice or more by changing the temperature from the viewpoint of appropriately fixing the cobalt complex with the carbon carrier. The firing time is not particularly limited, and can be appropriately set, for example, between 1 hour and 10 hours.

焼成によって形成された触媒は、酸性水溶液を用いて洗浄することが好ましい。触媒の形成の際に、副生成物として酸化コバルトや金属コバルトがカーボン担体上に生成される可能性がある。コバルト量当たりのCO生成速度を向上させるためには、これらの副生成物の中でも特に酸化コバルトを除去し、全コバルト担持量に対する酸化コバルトのモル比を0.8以下とすることが望ましい。したがって、酸性水溶液は、触媒の活性に影響を与えることなく、酸化コバルトを除去できるものであれば特に限定されない。このような酸性水溶液の例としては、希硝酸、希硫酸、希塩酸などを挙げることができる。また、副生成物の金属コバルトは、焼成温度を上述した温度範囲に制御することによって、その生成を抑制することができる。 The catalyst formed by calcination is preferably washed with an acidic aqueous solution. During the formation of the catalyst, cobalt oxide and metallic cobalt may be produced on the carbon carrier as by-products. In order to improve the CO production rate per cobalt amount, it is desirable to remove cobalt oxide among these by-products, and to set the molar ratio of cobalt oxide to the total amount of cobalt supported to 0.8 or less. Therefore, the acidic aqueous solution is not particularly limited as long as it can remove cobalt oxide without affecting the activity of the catalyst. Examples of such an acidic aqueous solution include dilute nitric acid, dilute sulfuric acid, and dilute hydrochloric acid. Further, the formation of the by-product metallic cobalt can be suppressed by controlling the firing temperature within the above-mentioned temperature range.

(CO還元電極)
実施の形態に係るCO還元電極は、上記の実施の形態に係るCO還元用電極触媒を含む。このCO還元極は、上記CO還元用電極触媒を用いていることから、CO還元システムの還元電極として用いた際に、CO生成のエネルギー効率が高く、原子当たりの効率が高い。また、このCO還元電極は安価に製造することができる。
(CO 2 reduction electrode)
The CO 2 reduction electrode according to the embodiment includes the CO 2 reduction electrode catalyst according to the above embodiment. The CO 2 reduction electrode, from the fact that by using the CO 2 reduction electrode catalyst, when used as a reduction electrode for CO 2 reduction systems, high energy efficiency of CO generation, high efficiency per atom. Moreover, this CO 2 reduction electrode can be manufactured at low cost.

CO還元電極の形状は特に限定されず、例えば、板状、メッシュ状、ワイヤ状、粒子状、多孔質状、薄膜状、島状などの様々な形状を挙げることができる。例えば、CO還元電極は、上記CO還元用電極触媒を基材表面に配置することによって形成することができる。CO還元用電極触媒を配置する基材の例としては、カーボンペーパーなどを挙げることができる。また、例えば、CO還元電極は、上記CO還元用電極触媒そのものを成形することによって形成することができる。 The shape of the CO 2 reduction electrode is not particularly limited, and examples thereof include various shapes such as a plate shape, a mesh shape, a wire shape, a particle shape, a porous shape, a thin film shape, and an island shape. For example, the CO 2 reduction electrode can be formed by arranging the CO 2 reduction electrode catalyst on the surface of the substrate. As an example of the base material on which the electrode catalyst for CO 2 reduction is arranged, carbon paper or the like can be mentioned. Further, for example, the CO 2 reduction electrode can be formed by molding the CO 2 reduction electrode catalyst itself.

(CO還元システム)
図1は、実施の形態に係るCO還元システムを示す模式図である。CO還元システム10は、還元電極12と、酸化電極14と、還元電極12と酸化電極14との間を接続する電源16と、還元電極12を収容し、CO還元反応を行う還元反応部18と、酸化電極14を収容し、HO酸化反応を行う酸化反応部20と、還元電極12と酸化電極14との間に配置されたイオン交換膜22と、を含む。後述するように、CO還元システム10は、上記の実施形態に係るCO還元用電極触媒が還元電極12に用いられていることから、CO生成のエネルギー効率が高く、原子当たりの効率が高く、安価に製造することができる。
(CO 2 reduction system)
FIG. 1 is a schematic diagram showing a CO 2 reduction system according to an embodiment. The CO 2 reduction system 10 accommodates a reduction electrode 12, an oxidation electrode 14, a power source 16 that connects the reduction electrode 12 and the oxidation electrode 14, and the reduction electrode 12, and performs a CO 2 reduction reaction. including 18 houses the oxide electrode 14, and the oxidation reaction unit 20 that performs of H 2 O oxidation, with an ion exchange membrane 22 disposed between the reduction electrode 12 and the oxide electrode 14, the. As will be described later, in the CO 2 reduction system 10, since the electrode catalyst for CO 2 reduction according to the above embodiment is used for the reduction electrode 12, the energy efficiency of CO generation is high and the efficiency per atom is high. , Can be manufactured at low cost.

還元電極12は、COを還元して炭素化合物を生成する電極である。酸化電極14は、水を酸化して、酸素や水素イオンを生成する電極である。還元電極12で還元反応を生じさせるために、還元電極12は電源16の負極端子に接続されている。酸化電極14で酸化反応を生じさせるために、酸化電極14は電源16の正極端子に接続されている。 The reduction electrode 12 is an electrode that reduces CO 2 to produce a carbon compound. The oxidation electrode 14 is an electrode that oxidizes water to generate oxygen and hydrogen ions. In order to cause a reduction reaction at the reduction electrode 12, the reduction electrode 12 is connected to the negative electrode terminal of the power supply 16. The oxide electrode 14 is connected to the positive electrode terminal of the power supply 16 in order to cause an oxidation reaction at the oxide electrode 14.

還元電極12には、上記の実施形態に係るCO還元電極が用いられている。酸化電極14は、水を酸化して酸素や水素イオンを生成することが可能な材料であれば特に限定されず、公知の材料から構成することができる。そのような材料の例としては、イリジウム、白金、パラジウム、ニッケルなどの金属、それらの金属を含む合金や金属間化合物、酸化イリジウム、酸化マンガン、酸化ニッケル、酸化コバルト、酸化鉄、酸化スズ、酸化インジウム、酸化ルテニウムなどの二元系金属酸化物、Ni−Co−O、Ni−Fe−O、La−Co−O、Ni−La−O、Sr−Fe−Oなどの三元系金属酸化物、Pb−Ru−Ir−O、La−Sr−Co−Oなどの四元系金属酸化物、Ru錯体やFe錯体などの金属錯体を挙げることができる。酸化電極14には、板状、メッシュ状、ワイヤ状、粒子状、多孔質状、薄膜状、島状等の各種形状を適用することができる。酸化電極14は、これらの材料を基材上に積層した複合電極であってもよい。 As the reducing electrode 12, the CO 2 reducing electrode according to the above embodiment is used. The oxidation electrode 14 is not particularly limited as long as it is a material capable of oxidizing water to generate oxygen and hydrogen ions, and can be made of a known material. Examples of such materials include metals such as iridium, platinum, palladium and nickel, alloys and intermetal compounds containing those metals, iridium oxide, manganese oxide, nickel oxide, cobalt oxide, iron oxide, tin oxide and oxidation. Dual metal oxides such as indium and ruthenium oxide, and ternary metal oxides such as Ni-Co-O, Ni-Fe-O, La-Co-O, Ni-La-O and Sr-Fe-O. , Pb-Ru-Ir-O, La-Sr-Co-O and other quaternary metal oxides, and metal complexes such as Ru complex and Fe complex. Various shapes such as a plate shape, a mesh shape, a wire shape, a particle shape, a porous shape, a thin film shape, and an island shape can be applied to the oxide electrode 14. The oxide electrode 14 may be a composite electrode in which these materials are laminated on a base material.

還元反応部18には、還元電極12によって還元するCOが供給される。還元するCOは気体であっても、COを含む溶液の形態であってもよい。溶液の形態である場合、COの吸収率が高い溶液を用いるのが好ましい。そのような溶液の例としては、LiHCO、NaHCO、KHCO、CsHCO、LiCO、NaCO、KCO、CsCOなどの水溶液を挙げることができる。また、メタノール、エタノール、アセトンなどのアルコール類の溶媒を用いてCOを含む溶液としてもよい。COを含む溶液は、COの還元電位を上昇させ、イオン伝導性が高く、COを吸収するCO吸収剤を含む溶液であることが望ましい。そのような溶液の例として、イミダゾリウムイオンやピリジニウムイオンなどの陽イオンと、BF やPF などの陰イオンとの塩から構成され、幅広い温度範囲で液体状態であるイオン液体またはその水溶液を挙げることができる。その他の溶液としては、エタノールアミン、イミダゾール、ピリジンなどのアミン溶液またはその水溶液を挙げることができる。なお、アミンは、一級アミン、二級アミン、三級アミンのいずれであってもよい。 CO 2 reduced by the reduction electrode 12 is supplied to the reduction reaction unit 18. The CO 2 to be reduced may be a gas or may be in the form of a solution containing CO 2. In the form of a solution, it is preferable to use a solution having a high CO 2 absorption rate. Examples of such solutions include aqueous solutions such as LiHCO 3 , NaHCO 3 , KHCO 3 , CsHCO 3 , Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , and Cs 2 CO 3 . Further, a solution containing CO 2 may be prepared by using a solvent of alcohols such as methanol, ethanol and acetone. The solution containing the CO 2 raises the reduction potential of the CO 2, high ion conductivity, it is desirable that a solution containing a CO 2 absorbent that absorbs CO 2. Examples of such solutions, and cations such as imidazolium ions, pyridinium ions, BF 4 - or PF 6 - is composed of a salt with an anion such as, ionic liquids or a liquid state in a wide temperature range An aqueous solution can be mentioned. Examples of other solutions include amine solutions such as ethanolamine, imidazole, and pyridine, or aqueous solutions thereof. The amine may be any of a primary amine, a secondary amine, and a tertiary amine.

酸化反応部20には、酸化電極14によって酸化するHOが供給される。酸化するHOとして、純水を用いることができる。純水の代わりに、任意の電解質を含む水溶液を用いてもよく、HOの酸化反応を促進する水溶液を用いることが好ましい。そのような水溶液の例としては、硫酸、硝酸、過塩素酸、塩酸が挙げられる。 H 2 O that is oxidized by the oxidation electrode 14 is supplied to the oxidation reaction unit 20. Pure water can be used as the H 2 O to be oxidized. Instead of pure water, may be used an aqueous solution containing any electrolyte, it is preferable to use an aqueous solution to promote the oxidation reaction of H 2 O. Examples of such aqueous solutions include sulfuric acid, nitric acid, perchloric acid and hydrochloric acid.

イオン交換膜22は、還元電極12と酸化電極14との間でイオンを移動させることができる材料から構成されていればよく、材料の種類は特に限定されない。イオン交換膜の例としては、ナフィオン(登録商標)、フレミオン(登録商標)などのカチオン交換膜、ネオセプタ(登録商標)、セレミオン(登録商標)などのアニオン交換膜を挙げることができる。 The ion exchange membrane 22 may be made of a material capable of transferring ions between the reducing electrode 12 and the oxidizing electrode 14, and the type of the material is not particularly limited. Examples of ion exchange membranes include cation exchange membranes such as Nafion (registered trademark) and Flemion (registered trademark), and anion exchange membranes such as Neocepta (registered trademark) and Selemion (registered trademark).

次に、CO還元システム10の動作につい説明する。電源16から酸化電極14に電位を印加すると、酸化電極14付近でHOの酸化反応が生じて、酸素(O)と水素イオン(H)とが生成される。酸化電極14側で生成されたHはイオン交換膜22を介して還元電極12に到達する。電源26から還元電極12に供給される電子(e)と還元電極12に移動したHとによって、COの還元反応が生じる。COの還元反応によって、COが生成される。CO還元システム10において、CO生成のエネルギー効率が、CO生成速度1mmol/h/cmにおいて63%以上であるのが好ましい。ここで、CO生成のエネルギー効率は、CO生成とO発生の理論電位である1.33Vを、還元電極と酸化電極との間に印加した電圧で割ることによって求められる。 Next, the operation of the CO 2 reduction system 10 will be described. When an electric potential is applied from the power source 16 to the oxide electrode 14, an oxidation reaction of H 2 O occurs in the vicinity of the oxide electrode 14, and oxygen (O 2 ) and hydrogen ions (H + ) are generated. The H + generated on the oxidation electrode 14 side reaches the reduction electrode 12 via the ion exchange membrane 22. The CO 2 reduction reaction occurs due to the electrons (e − ) supplied from the power source 26 to the reduction electrode 12 and the H + transferred to the reduction electrode 12. CO is produced by the reduction reaction of CO 2. In the CO 2 reduction system 10, the energy efficiency of CO production is preferably 63% or more at a CO production rate of 1 mmol / h / cm 2. Here, the energy efficiency of CO generation is obtained by dividing 1.33 V, which is the theoretical potential of CO generation and O 2 generation, by the voltage applied between the reduction electrode and the oxidation electrode.

なお、図1に示すCO還元システムの構成は一例に過ぎず、上記実施形態に係るCO還元電極を用いてCOの還元反応を行うことが可能なシステムであれば様々な変形が可能である。例えば、図1に示すCO還元システムは、還元電極12と酸化電極14との間に、イオン交換膜22が還元電極12と酸化電極14とに接するように配置されているが、還元電極12および酸化電極14がイオン交換膜から離れていてもよい。また、例えば、還元電極12および酸化電極14が電解液と接するように、電解液を流通させる電解液流路を備えていてもよい。これら以外にも種々の変形が可能である。 The configuration of the CO 2 reduction system shown in FIG. 1 is only an example, and various modifications are possible as long as the system can carry out a CO 2 reduction reaction using the CO 2 reduction electrode according to the above embodiment. Is. For example, in the CO 2 reduction system shown in FIG. 1, the ion exchange film 22 is arranged between the reduction electrode 12 and the oxidation electrode 14 so that the reduction electrode 12 and the oxidation electrode 14 are in contact with each other. And the oxide electrode 14 may be separated from the ion exchange film. Further, for example, an electrolytic solution flow path for circulating the electrolytic solution may be provided so that the reducing electrode 12 and the oxidizing electrode 14 are in contact with the electrolytic solution. In addition to these, various modifications are possible.

以下、本発明の実施例を説明するが、実施例は本発明を好適に説明するための例示に過ぎず、なんら本発明を限定するものではない。 Hereinafter, examples of the present invention will be described, but the examples are merely examples for preferably explaining the present invention, and do not limit the present invention in any way.

(実施例1)
実施例1のCO還元側電極を、下記の手順により調製した。
(Example 1)
The CO 2 reducing side electrode of Example 1 was prepared by the following procedure.

(Co−NC配位錯体の調製)
硝酸コバルト6水和物(試薬特級、富士フイルム和光純薬株式会社製)をエタノール(試薬特級、富士フイルム和光純薬株式会社製)に溶解させ、コバルトが40mMとなるようにコバルト溶液を調製した。ポリ(4−ビニルピリジン)80mg(重量平均分子量60000,シグマアルドリッチ製)をエタノール(試薬特級、富士フイルム和光純薬株式会社製)に溶解させ全量を50mLとし、20分攪拌してポリマーを十分に分散した。次いで、コバルト溶液1.7mLを混合し15分攪拌した。ここで得られる錯体をコバルト錯体と表記する。
(Preparation of Co-N 4 C coordination complex)
Cobalt nitrate hexahydrate (special grade reagent, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was dissolved in ethanol (special grade reagent, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) to prepare a cobalt solution so that the cobalt content was 40 mM. .. Dissolve 80 mg of poly (4-vinylpyridine) (weight average molecular weight 60,000, manufactured by Sigma-Aldrich) in ethanol (special grade reagent, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) to make the total volume 50 mL, and stir for 20 minutes to sufficiently mix the polymer. Distributed. Then, 1.7 mL of the cobalt solution was mixed and stirred for 15 minutes. The complex obtained here is referred to as a cobalt complex.

(コバルト錯体の導電性多孔性材料への担持)
ケッチェンブラック担体107.6mg(ECP,LION社製)を上記溶液に混合したあと、ホットプレートで攪拌しながら343Kで加熱、蒸発乾固した。得られた粉体をホットプレート上343Kで16時間乾燥した。これをコバルト触媒前駆体と表記する。
(Support of cobalt complex on conductive porous material)
After mixing 107.6 mg of Ketjen black carrier (ECP, manufactured by LION) with the above solution, the mixture was heated at 343 K with stirring on a hot plate and evaporated to dryness. The obtained powder was dried on a hot plate at 343 K for 16 hours. This is referred to as a cobalt catalyst precursor.

(コバルト触媒前駆体の部分焼成)
コバルト触媒前駆体を平底型の石英製反応器に入れ、ヘリウム流通下、昇温速度25K/min、423Kで1時間、次いで673Kで3時間熱処理した。これをコバルト触媒(精製前)と表記する。
(Partial firing of cobalt catalyst precursor)
The cobalt catalyst precursor was placed in a flat-bottomed quartz reactor and heat-treated at a heating rate of 25 K / min at 423 K for 1 hour and then at 673 K for 3 hours under helium flow. This is referred to as a cobalt catalyst (before purification).

(コバルト触媒(精製前)の洗浄)
0.1Mの希硝酸中にコバルト触媒(精製前)を加え、300rpmで1時間攪拌したのち、孔径0.1μmの親水性メンブレンフィルターを用いて吸引ろ過し、イオン交換水200mLでpHが6〜7になるまで洗浄した。その後20mLの2−プロパノールで3回洗浄した。ろ過物を353Kで1時間減圧乾燥した。これをコバルト触媒(精製後)と表記する。
(Cleaning of cobalt catalyst (before purification))
A cobalt catalyst (before purification) was added to 0.1 M dilute nitrate, stirred at 300 rpm for 1 hour, suction filtered using a hydrophilic membrane filter with a pore size of 0.1 μm, and the pH was 6 to 6 to 200 mL of ion-exchanged water. It was washed until it became 7. It was then washed 3 times with 20 mL 2-propanol. The filtrate was dried under reduced pressure at 353 K for 1 hour. This is referred to as a cobalt catalyst (after purification).

(実施例2)
コバルト触媒前駆体の部分焼成の温度を723Kとした以外は実施例1と同様にして、実施例2のコバルト触媒(精製後)を調製した。
(Example 2)
A cobalt catalyst (after purification) of Example 2 was prepared in the same manner as in Example 1 except that the temperature of partial firing of the cobalt catalyst precursor was set to 723 K.

(実施例3)
コバルト触媒前駆体の部分焼成の温度を773Kとした以外は実施例1と同様にして、実施例3のコバルト触媒(精製後)を調製した。
(Example 3)
A cobalt catalyst (after purification) of Example 3 was prepared in the same manner as in Example 1 except that the temperature of partial firing of the cobalt catalyst precursor was 773 K.

(実施例4)
コバルト触媒前駆体の部分焼成の温度を673Kとし、コバルト触媒(精製前)の洗浄を行わなかった以外は実施例1と同様にして、実施例4のコバルト触媒(精製後)を調製した。
(Example 4)
The cobalt catalyst (after purification) of Example 4 was prepared in the same manner as in Example 1 except that the temperature of partial firing of the cobalt catalyst precursor was set to 673 K and the cobalt catalyst (before purification) was not washed.

(実施例5)
コバルト触媒前駆体の部分焼成の温度を773Kとし、コバルト触媒(精製前)の洗浄を行わなかった以外は実施例1と同様にして、実施例5のコバルト触媒(精製後)を調製した。
(Example 5)
The cobalt catalyst (after purification) of Example 5 was prepared in the same manner as in Example 1 except that the temperature of partial firing of the cobalt catalyst precursor was 773 K and the cobalt catalyst (before purification) was not washed.

(実施例6)
ケッチェンブラック担体の代わりにBP2000(キャボットジャパン株式会社製)を用い、コバルト触媒前駆体の部分焼成の温度を673Kとし、コバルト触媒(精製前)の洗浄を行わなかった以外は実施例1と同様にして、実施例6のコバルト触媒(精製後)を調製した。
(Example 6)
Same as Example 1 except that BP2000 (manufactured by Cabot Japan Co., Ltd.) was used instead of the Ketjen black carrier, the temperature of partial firing of the cobalt catalyst precursor was set to 673 K, and the cobalt catalyst (before purification) was not washed. The cobalt catalyst of Example 6 (after purification) was prepared.

(実施例7)
ケッチェンブラック担体の代わりにアセチレンブラック担体(デンカ株式会社製)を用い、コバルト触媒前駆体の部分焼成の温度を673Kとし、コバルト触媒(精製前)の洗浄を行わなかった以外は実施例1と同様にして、実施例7のコバルト触媒(精製後)を調製した。
(Example 7)
Example 1 and Example 1 except that an acetylene black carrier (manufactured by Denka Co., Ltd.) was used instead of the Ketjen black carrier, the temperature of partial firing of the cobalt catalyst precursor was set to 673 K, and the cobalt catalyst (before purification) was not washed. Similarly, the cobalt catalyst of Example 7 (after purification) was prepared.

(実施例8)
ケッチェンブラックの代わりにアクティブカーボン担体(富士フイルム和光純薬株式会社製)を用い、コバルト触媒前駆体の部分焼成の温度を673Kとし、コバルト触媒(精製前)の洗浄を行わなかった以外は実施例1と同様にして、実施例8のコバルト触媒(精製後)を調製した。
(Example 8)
An active carbon carrier (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) was used instead of Ketjen Black, the temperature of partial firing of the cobalt catalyst precursor was set to 673 K, and the cobalt catalyst (before purification) was not washed. The cobalt catalyst of Example 8 (after purification) was prepared in the same manner as in Example 1.

(実施例9)
重量平均分子量が60000であるポリ(4−ビニルピリジン)の代わりに、重量平均分子量が81500であるポリ(4−ビニルピリジン)(シグマアルドリッチ製)を用い、コバルト触媒前駆体の部分焼成の温度を773Kとし、コバルト触媒(精製前)の洗浄を行わなかった以外は実施例1と同様にして、実施例9のコバルト触媒(精製後)を調製した。
(Example 9)
Instead of poly (4-vinylpyridine) having a weight average molecular weight of 60,000, poly (4-vinylpyridine) (manufactured by Sigma Aldrich) having a weight average molecular weight of 81500 was used to control the partial firing temperature of the cobalt catalyst precursor. The cobalt catalyst of Example 9 (after purification) was prepared in the same manner as in Example 1 except that the cobalt catalyst (before purification) was not washed at 773K.

(参考例1)
コバルト触媒前駆体の部分焼成の温度を973Kとした以外は実施例1と同様にして、参考例1のコバルト触媒(精製後)を調製した。
(Reference example 1)
The cobalt catalyst (after purification) of Reference Example 1 was prepared in the same manner as in Example 1 except that the temperature of partial firing of the cobalt catalyst precursor was set to 973 K.

(参考例2)
コバルト触媒前駆体の部分焼成の温度を973Kとし、コバルト触媒(精製前)の洗浄を行わなかった以外は実施例1と同様にして、参考例2のコバルト触媒(精製後)を調製した。
(Reference example 2)
The cobalt catalyst (after purification) of Reference Example 2 was prepared in the same manner as in Example 1 except that the temperature of partial firing of the cobalt catalyst precursor was set to 973 K and the cobalt catalyst (before purification) was not washed.

(参考例3)
重量平均分子量が60000であるポリ(4−ビニルピリジン)の代わりに、重量平均分子量が15000であるポリ(4−ビニルピリジン)(シグマアルドリッチ製)を用い、コバルト触媒(精製前)の洗浄を行わなかった以外は実施例1と同様にして、参考例3のコバルト触媒(精製後)を調製した。
(Reference example 3)
The cobalt catalyst (before purification) is washed using poly (4-vinylpyridine) (manufactured by Sigma-Aldrich) having a weight average molecular weight of 15,000 instead of poly (4-vinylpyridine) having a weight average molecular weight of 60,000. A cobalt catalyst (after purification) of Reference Example 3 was prepared in the same manner as in Example 1 except that it was not present.

(比較例1)
コバルト触媒(精製前)の洗浄の際に、0.1Mの硝酸の代わりに0.5Mの硝酸を用いた以外は実施例1と同様にして、比較例1のコバルト触媒(精製後)を調製した。
(Comparative Example 1)
When cleaning the cobalt catalyst (before purification), the cobalt catalyst of Comparative Example 1 (after purification) was prepared in the same manner as in Example 1 except that 0.5 M nitric acid was used instead of 0.1 M nitric acid. bottom.

(比較例2)
硝酸コバルト6水和物の代わりに硝酸鉄(II)を用いた以外は実施例1と同様にして、比較例2のコバルト触媒(精製後)を調製した。
(Comparative Example 2)
A cobalt catalyst (after purification) of Comparative Example 2 was prepared in the same manner as in Example 1 except that iron (II) nitrate was used instead of cobalt nitrate hexahydrate.

実施例1〜9、参考例1〜3、比較例1、2のコバルト触媒(生成後)の全コバルト担持量に対するCo−NC結合をもつ錯体部のモル比、酸化コバルトのモル比、金属コバルトのモル比を、以下の手順で求めた。粉末試料のコバルトK吸収端X線吸収端近傍スペクトルを測定し、スペクトルを線形結合フィッティングすることによりコバルト種の存在割合を同定した。それぞれのモル比を下記表1に示す。 Examples 1-9, Reference Examples 1-3, the molar ratio of the complex portion with Co-N 4 C bonds to the total of cobalt loading amount of cobalt catalyst of Comparative Example 1 and 2 (after generation), the molar ratio of cobalt oxide, The molar ratio of metallic cobalt was determined by the following procedure. The spectrum near the cobalt K absorption edge X-ray absorption edge of the powder sample was measured, and the abundance ratio of the cobalt species was identified by linear combination fitting of the spectrum. The respective molar ratios are shown in Table 1 below.

以下の手順によって、実施例1〜9、参考例1〜3、比較例1、2のコバルト触媒(精製後)を用いた電気化学反応評価セルを作製した。 An electrochemical reaction evaluation cell using the cobalt catalysts (after purification) of Examples 1 to 9, Reference Examples 1 to 3, and Comparative Examples 1 and 2 was prepared by the following procedure.

(CO還元側電極作製)
コバルト触媒(精製後)8mg、10重量%ナフィオン分散液(シグマアルドリッチ製)50μL、アセトン400μLを混合し、超音波照射によって攪拌することで触媒インクを得た。これを直径1.6cm、幾何学的表面積2cmに切り出したカーボンペーパー(GDL−25−BC,SGL GROUP)の撥水層側に数回に分けて均一に塗布した。この電極を15分間減圧乾燥した。
( Preparation of CO 2 reduction side electrode)
A catalyst ink was obtained by mixing 8 mg of a cobalt catalyst (after purification), 50 μL of a 10 wt% Nafion dispersion (manufactured by Sigma-Aldrich), and 400 μL of acetone, and stirring the mixture by ultrasonic irradiation. This was uniformly applied to the water-repellent layer side of carbon paper (GDL-25-BC, SGL GROUP) cut out to a diameter of 1.6 cm and a geometric surface area of 2 cm 2 in several portions. The electrode was dried under reduced pressure for 15 minutes.

(酸化反応側電極作製)
20重量%のIrを担持させたケッチェンブラック粉末8gを10重量%ナフィオン溶液40μLとアセトン400μLと混合し、前項と同様にカーボンペーパーに担持した。
(Oxidation reaction side electrode fabrication)
8 g of Ketjen black powder carrying 20% by weight of Ir was mixed with 40 μL of 10% by weight Nafion solution and 400 μL of acetone, and supported on carbon paper in the same manner as in the previous section.

(イオン交換膜の前処理)
Nafion(登録商標)117(Du pont社製)を電解セルで必要とするサイズに切り出し、3%H水中で1時間、イオン交換水中で1時間、2N硫酸中で1時間の順で加熱還流を行った。最後にイオン交換水で1時間加熱還流し、得られた膜はイオン交換水中で保管した。
(Pretreatment of ion exchange membrane)
Cut Nafion (registered trademark) 117 (manufactured by Du pont Co., Ltd.) to a size required in the electrolysis cell, 1 hour with 3% H 2 O 2 in water, 1 hour with deionized water, in the order of 1 hour in 2N sulfuric acid Heat reflux was performed. Finally, it was heated to reflux with ion-exchanged water for 1 hour, and the obtained membrane was stored in ion-exchanged water.

(膜・電極接合体作製)
上記の手順で処理したNafion膜を還元側、酸化側の触媒で挟み込み、413K、50MPaで10分間ホットプレスし、膜・電極接合体(MEA)を得た。ホットプレス後、MEAをイオン交換水に5分浸漬した。
(Making a membrane / electrode assembly)
The Nafion membrane treated in the above procedure was sandwiched between the catalysts on the reducing side and the oxidizing side, and hot-pressed at 413K and 50 MPa for 10 minutes to obtain a membrane-electrode assembly (MEA). After hot pressing, MEA was immersed in ion-exchanged water for 5 minutes.

(電気化学反応評価セル組上)
上記の通り作製したMEAを、孔をあけたテフロン(登録商標)板(厚さ1mm)を金メッシュ(くればぁ社製、99.9%)で包んだ形状の集電体を両側から接触させ、さらに別のテフロン枠でシールすることで陽極室と陰極室を隔離した。
(On the electrochemical reaction evaluation cell set)
The MEA produced as described above is contacted from both sides with a current collector in the shape of a perforated Teflon (registered trademark) plate (thickness 1 mm) wrapped in a gold mesh (Kubaa Co., Ltd., 99.9%). The anode chamber and the cathode chamber were separated by sealing with another Teflon frame.

得られた電気化学反応評価セルを用いて、以下の手順で電気化学反応を行った。 Using the obtained electrochemical reaction evaluation cell, an electrochemical reaction was carried out according to the following procedure.

(電気化学反応)
陽極室には純水を、Nafion膜を伸ばした足の部分は0.5M HSOに浸漬し、Ag/AgCl参照極を飽和KCl溶液を液絡として介して接続した。陰極室にはCOガスを10ml/minで供給した。電気化学測定はポテンシオスタット(HZ−5000、北斗電工社製)を用いた。
(Electrochemical reaction)
Pure water was immersed in the anode chamber, and the foot portion on which the chloride film was stretched was immersed in 0.5 MH 2 SO 4 , and the Ag / AgCl reference electrode was connected via a saturated KCl solution as a liquid junction. CO 2 gas was supplied to the cathode chamber at 10 ml / min. Potentiostat (HZ-5000, manufactured by Hokuto Denko Co., Ltd.) was used for the electrochemical measurement.

−0.6V vs SHEの下で、電気化学反応を行った。生成したCO、Hについての評価を、以下の手順に従って行った。総ファラデー効率FE(FE(CO)+FE(H))は100%であった。実施例、参考例、比較例のそれぞれにおけるCO生成速度およびCO生成ファラデー効率を表1に示す。

Figure 2021138994
The electrochemical reaction was carried out under −0.6 V vs SHE. The generated CO and H 2 were evaluated according to the following procedure. The total Faraday efficiency FE (FE (CO) + FE (H 2 )) was 100%. Table 1 shows the CO production rate and the CO production Faraday efficiency in each of Examples, Reference Examples, and Comparative Examples.
Figure 2021138994

(生成物(CO)の評価)
陰極室からの出口ガスをオンラインガスクロマトグラフ(GC−8APT、島津製作所製、検出器:TCD、カラム:MS−5A、検出器温度210度、分析温度90℃)に注入し分析した。得られた濃度をCOガス供給速度や電極面積を加味することにより、CO生成速度r(CO)[μmol/h/cm]を算出した。COからCOへの還元が2電子反応であることを考慮し、CO生成速度を以下の式に従ってCO生成電流密度j(CO)に換算した。
j(CO)[mA/cm] = r(CO)[μmol/h/cm] x 96485 [C/mol] x 2(反応電子数)x 1/3600 [s/h]
CO生成ファラデー効率は、全電流密度j を用いて以下の通り算出した。
FE(CO)=j(CO)/j × 100
(Evaluation of product (CO))
The outlet gas from the cathode chamber was injected into an online gas chromatograph (GC-8APT, manufactured by Shimadzu Corporation, detector: TCD, column: MS-5A, detector temperature 210 ° C., analysis temperature 90 ° C.) for analysis. The CO production rate r (CO) [μmol / h / cm 2 ] was calculated by adding the CO 2 gas supply rate and the electrode area to the obtained concentration. Considering that the reduction from CO 2 to CO is a two-electron reaction, the CO production rate was converted to the CO production current density j (CO) according to the following equation.
j (CO) [mA / cm 2 ] = r (CO) [μmol / h / cm 2 ] x 96485 [C / mol] x 2 (number of reaction electrons) x 1/3600 [s / h]
The CO-generated Faraday efficiency was calculated as follows using the total current density j.
FE (CO) = j (CO) / j x 100

(生成物(H)の評価)
陰極室からの出口ガスをガスタイトシリンジにて分取し、ガスクロマトグラフ(GC−8APT,島津製作所製、検出器:TCD、カラム:Active carbon、検出器温度150度、分析温度100℃)に注入し分析した。得られた濃度をCOガス供給速度や電極面積を加味することにより、CO生成速度r(H)[μmol/h/cm]を算出した。COの場合と同様にH生成電流密度j(H)、H生成ファラデー効率FE(H)を算出した。
(Evaluation of product (H 2))
The outlet gas from the cathode chamber is separated by a gas tight syringe and injected into a gas chromatograph (GC-8APT, manufactured by Shimadzu Corporation, detector: TCD, column: activated carbon, detector temperature 150 ° C, analysis temperature 100 ° C). And analyzed. The CO production rate r (H 2 ) [μmol / h / cm 2 ] was calculated by adding the CO 2 gas supply rate and the electrode area to the obtained concentration. The H 2 generation current density j (H 2 ) and the H 2 generation Faraday efficiency FE (H 2 ) were calculated in the same manner as in the case of CO.

表1に示すように、Co−NC結合をもつ錯体部のモル比が0.3以上である実施例1〜9の触媒を還元電極として用いたセルでは、CO生成のファラデー効率が高かった。また、実施例3および6と、参考例1〜3とを比較すると、Co−NC結合をもつ錯体部のモル比が0.2以上であり、かつ金属コバルトのモル比が0.5以下であれば、CO生成のファラデー効率が実用に足るレベルとなることが示唆された。 As shown in Table 1, in the cells using the catalysts of Examples 1 to 9 in which the molar ratio of the complex portion having the Co-N 4 C bond was 0.3 or more as the reducing electrode, the Faraday efficiency of CO production was high. rice field. Further, as in Examples 3 and 6, when compared with Reference Examples 1-3, the molar ratio of the complex portion with Co-N 4 C bond is 0.2 or more, and the molar ratio of the metal cobalt 0.5 If the following, it was suggested that the Faraday efficiency of CO production would be at a practical level.

図2は、Co−NC結合をもつ錯体部のモル比とCO生成のファラデー効率との関係を示すグラフである。図3は、酸化コバルトのモル比とH生成のファラデー効率との関係を示すグラフである。図4は、金属コバルトのモル比とH生成のファラデー効率との関係を示すグラフである。図2に示すように、Co−NC結合をもつ錯体部のモル比0.3付近でCO生成のファラデー効率の大きな変化が見られた。また、図4に示すように、金属コバルトのモル比0.5付近でH生成のファラデー効率の大きな変化が見られた。 FIG. 2 is a graph showing the relationship between the molar ratio of the complex portion having a Co-N 4 C bond and the Faraday efficiency of CO production. Figure 3 is a graph showing the relationship between the faraday efficiency of the molar ratio and H 2 generated in the cobalt oxide. FIG. 4 is a graph showing the relationship between the molar ratio of metallic cobalt and the Faraday efficiency of H 2 formation. As shown in FIG. 2, a large change in the Faraday efficiency of CO production was observed near the molar ratio of 0.3 in the complex portion having a Co-N 4 C bond. Further, as shown in FIG. 4, a large change in the Faraday efficiency of H 2 generated in the vicinity of molar ratio 0.5 of the metal cobalt was observed.

10 CO還元システム
12 還元電極
14 酸化電極
16 電源
10 CO 2 reduction system 12 reduction electrode 14 oxidation electrode 16 power supply

Claims (7)

導電性を示す多孔質のカーボン担体と、
下記一般式(1):
Figure 2021138994
(式中、XはCまたはNであり、R〜Rは、それぞれ独立にHまたはアルキル基であり、R〜Rのうち少なくとも1つがアルキル基である。但し、XがNである場合、Rは存在せず、R〜RおよびRのうち少なくとも1つがアルキル基である。)
で表される化合物、および
前記一般式(1)で表される繰り返し単位を有し、前記一般式(1)中、R〜Rのうち1つのアルキル基が主鎖であり、複素芳香環が側鎖であるポリマー、および
下記一般式(2):
Figure 2021138994
(式中、R〜R13は、それぞれ独立にHまたはアルキル基であり、R〜R13のうち少なくとも1つがアルキル基である。)
で表される化合物からなる群より選択され、前記カーボン担体に担持されている窒素含有複素芳香環化合物と、
前記窒素含有複素芳香環化合物の複素芳香環上の窒素原子4つと配位しているコバルトイオンと、
を含み、
全コバルト担持量に対するCo−NC結合をもつ錯体部のモル比が0.3以上であるか、または
全コバルト担持量に対して、Co−NC結合をもつ錯体部のモル比が0.2以上であり、かつ金属コバルトのモル比が0.5以下であることを特徴とするCO還元用電極触媒。
Porous carbon carrier showing conductivity and
The following general formula (1):
Figure 2021138994
(In the formula, X is C or N, R 1 to R 5 are independently H or alkyl groups, and at least one of R 1 to R 5 is an alkyl group, where X is N. in some cases, R 4 is absent, at least one of alkyl groups of R 1 to R 3 and R 5.)
It has a compound represented by the above formula (1) and a repeating unit represented by the general formula (1), and in the general formula (1), one alkyl group from R 1 to R 5 is the main chain and has a complex aromaticity. Polymers whose ring is a side chain, and the following general formula (2):
Figure 2021138994
(In the formula, R 6 to R 13 are independently H or alkyl groups, and at least one of R 6 to R 13 is an alkyl group.)
A nitrogen-containing heteroaromatic ring compound selected from the group consisting of the compounds represented by the above carbon carriers and supported on the carbon carrier.
Cobalt ions coordinated with four nitrogen atoms on the heteroaromatic ring of the nitrogen-containing heteroaromatic ring compound,
Including
Or the molar ratio of the complex portion with Co-N 4 C bonds to the total cobalt supported amount is 0.3 or more, or the total cobalt loading amount, the molar ratio of the complex portion with Co-N 4 C bond An electrode catalyst for CO 2 reduction, which is 0.2 or more and has a molar ratio of metallic cobalt of 0.5 or less.
全コバルト担持量に対して、酸化コバルトのモル比が0.8以下であることを特徴とする請求項1に記載のCO還元用電極触媒。 The electrode catalyst for CO 2 reduction according to claim 1, wherein the molar ratio of cobalt oxide to the total supported amount of cobalt is 0.8 or less. 下記一般式(1):
Figure 2021138994
(式中、XはCまたはNであり、R〜Rは、それぞれ独立にHまたはアルキル基であり、R〜Rのうち少なくとも1つがアルキル基である。但し、XがNである場合、Rは存在せず、R〜RおよびRのうち少なくとも1つがアルキル基である。)
で表される化合物、および
前記一般式(1)で表される繰り返し単位を有し、前記一般式(1)中、R〜Rのうち1つのアルキル基が主鎖であり、複素芳香環が側鎖であるポリマー、および
下記一般式(2):
Figure 2021138994
(式中、R〜R13は、それぞれ独立にHまたはアルキル基であり、R〜R13のうち少なくとも1つがアルキル基である。)
で表される化合物からなる群より選択される窒素含有複素芳香環化合物をコバルトイオンに配位させ、前記コバルトイオンに配位させた前記窒素含有複素芳香環化合物を、導電性を示す多孔質のカーボン担体に吸着させ、焼成することを特徴とする請求項1または2に記載のCO還元用電極触媒の製造方法。
The following general formula (1):
Figure 2021138994
(In the formula, X is C or N, R 1 to R 5 are independently H or alkyl groups, and at least one of R 1 to R 5 is an alkyl group, where X is N. in some cases, R 4 is absent, at least one of alkyl groups of R 1 to R 3 and R 5.)
It has a compound represented by the above formula (1) and a repeating unit represented by the general formula (1), and in the general formula (1), one alkyl group from R 1 to R 5 is the main chain and has a complex aromaticity. Polymers whose ring is a side chain, and the following general formula (2):
Figure 2021138994
(In the formula, R 6 to R 13 are independently H or alkyl groups, and at least one of R 6 to R 13 is an alkyl group.)
A nitrogen-containing heteroaromatic ring compound selected from the group consisting of the compounds represented by is coordinated with cobalt ions, and the nitrogen-containing heteroaromatic ring compound coordinated with the cobalt ions is made of a porous material exhibiting conductivity. The method for producing an electrode catalyst for CO 2 reduction according to claim 1 or 2, wherein the compound is adsorbed on a carbon carrier and fired.
600K〜873Kの温度下で前記窒素含有複素芳香環化合物を吸着させた前記カーボン担体を焼成することを特徴とする請求項3に記載のCO還元用電極触媒の製造方法。 The method for producing an electrode catalyst for CO 2 reduction according to claim 3, wherein the carbon carrier on which the nitrogen-containing heteroaromatic ring compound is adsorbed is calcined at a temperature of 600 K to 873 K. 請求項1または2に記載のCO還元用電極触媒を含むことを特徴とするCO還元電極。 CO 2 reduction electrode, characterized in that it comprises a CO 2 reduction electrode catalyst according to claim 1 or 2. 請求項5に記載のCO還元電極と、
酸化電極と、
前記CO還元電極と前記酸化電極との間に接続された電源と、
を含むことを特徴とするCO還元システム。
The CO 2 reducing electrode according to claim 5 and
Oxidation electrode and
A power supply connected between the CO 2 reduction electrode and the oxidation electrode,
A CO 2 reduction system characterized by containing.
CO生成のエネルギー効率が、CO生成速度1mmol/h/cmにおいて63%以上であることを特徴とする請求項6に記載のCO還元システム。 The CO 2 reduction system according to claim 6, wherein the energy efficiency of CO production is 63% or more at a CO production rate of 1 mmol / h / cm 2.
JP2020036739A 2020-03-04 2020-03-04 CO2 reduction electrode catalyst, method for manufacturing CO2 reduction electrode catalyst, CO2 reduction electrode, and CO2 reduction system Active JP7462261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020036739A JP7462261B2 (en) 2020-03-04 2020-03-04 CO2 reduction electrode catalyst, method for manufacturing CO2 reduction electrode catalyst, CO2 reduction electrode, and CO2 reduction system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020036739A JP7462261B2 (en) 2020-03-04 2020-03-04 CO2 reduction electrode catalyst, method for manufacturing CO2 reduction electrode catalyst, CO2 reduction electrode, and CO2 reduction system

Publications (2)

Publication Number Publication Date
JP2021138994A true JP2021138994A (en) 2021-09-16
JP7462261B2 JP7462261B2 (en) 2024-04-05

Family

ID=77667977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020036739A Active JP7462261B2 (en) 2020-03-04 2020-03-04 CO2 reduction electrode catalyst, method for manufacturing CO2 reduction electrode catalyst, CO2 reduction electrode, and CO2 reduction system

Country Status (1)

Country Link
JP (1) JP7462261B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023163052A1 (en) * 2022-02-28 2023-08-31 国立大学法人大阪大学 Catalyst and production method for same, cathode, ion exchange membrane electrode assembly, and solid electrolyte electrolysis device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258152A (en) 2007-03-09 2008-10-23 Sumitomo Chemical Co Ltd Membrane-electrode assembly and fuel cell using this
EP2647430B1 (en) 2012-04-05 2015-07-08 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Method for preparing a catalyst mediating H2 evolution, said catalyst and uses thereof
CN103706401B (en) 2014-01-14 2016-04-13 东北师范大学 A kind of preparation method of cobalt metal organic frame/macropore carbon complex
CN111032920B (en) 2017-09-27 2023-08-01 积水化学工业株式会社 Carbon dioxide reduction device and porous electrode
CN108465476A (en) 2018-03-23 2018-08-31 中国科学院理化技术研究所 Electrocatalyst for reducing carbon dioxide by heterogeneous system and preparation and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023163052A1 (en) * 2022-02-28 2023-08-31 国立大学法人大阪大学 Catalyst and production method for same, cathode, ion exchange membrane electrode assembly, and solid electrolyte electrolysis device

Also Published As

Publication number Publication date
JP7462261B2 (en) 2024-04-05

Similar Documents

Publication Publication Date Title
Gao et al. Progress of electrochemical hydrogen peroxide synthesis over single atom catalysts
Sun et al. Activity–selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal–nitrogen–carbon catalysts
Chen et al. Mn-doped RuO2 nanocrystals as highly active electrocatalysts for enhanced oxygen evolution in acidic media
Wang et al. Recent advances in electrochemical 2e oxygen reduction reaction for on-site hydrogen peroxide production and beyond
Wang et al. Phthalocyanine precursors to construct atomically dispersed iron electrocatalysts
Arshad et al. Recent advances in electrocatalysts toward alcohol-assisted, energy-saving hydrogen production
CN108140862B (en) Redox flow battery with carbon dioxide-based redox couple
Sapountzi et al. Hydrogen from electrochemical reforming of C1–C3 alcohols using proton conducting membranes
CN113493917B (en) Electrode catalyst layer for carbon dioxide electrolytic cell, electrolytic cell provided with same, and electrolytic device for carbon dioxide electrolysis
JP2002100373A (en) Manufacturing method of catalyzed porous carbon electrode for fuel cell
WO2011132676A1 (en) Carbon catalyst for direct fuel cell cathode, and direct fuel cell cathode and direct fuel cell using same
JP2006210135A (en) Catalyst electrode material, catalyst electrode, manufacturing method thereof, support material for electrode catalyst and electrochemical device
Mazzucato et al. Insights on oxygen reduction reaction to H2O2: the role of functional groups and textural properties on the activity and selectivity of doped carbon electrocatalysts
Pushkarev et al. Electrocatalytic hydrogen production using the designed hexaphenanthrene iron, cobalt and ruthenium (II) cage complexes as cathode (pre) catalysts immobilized on carbonaceous substrates
JP7501316B2 (en) Carbon dioxide reduction device and artificial photosynthesis device
Guo et al. Research progress on metal-organic framework compounds (MOFs) in electrocatalysis
JP5288718B2 (en) Electrode catalyst for electrochemical cell, method for producing the same, electrochemical cell, fuel cell and fuel cell
JP2009238442A (en) Method of manufacturing ptru catalyst, catalyst manufactured by the manufacturing method, and fuel cell and membrane electrode assembly using the catalyst
JP7462261B2 (en) CO2 reduction electrode catalyst, method for manufacturing CO2 reduction electrode catalyst, CO2 reduction electrode, and CO2 reduction system
Belmesov et al. Anodic Electrocatalysts for Fuel Cells Based on Pt/Ti 1–x Ru x O 2
JP5386684B2 (en) FUEL CELL REACTOR AND METHOD FOR PRODUCING COMPOUND USING THE SAME
EP1358365A2 (en) Electrochemical cell
CN114892197B (en) Electrocatalysis synthesis of H2O2Catalyst, preparation method and application thereof
JP7459848B2 (en) Cathode electrode for gas diffusion type electrolytic flow cell and gas diffusion type electrolytic flow cell
JP7109069B2 (en) battery system

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20200401

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240315

R150 Certificate of patent or registration of utility model

Ref document number: 7462261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150