JPH0673583A - Production of partial-oxidation product of methanol - Google Patents

Production of partial-oxidation product of methanol

Info

Publication number
JPH0673583A
JPH0673583A JP4230041A JP23004192A JPH0673583A JP H0673583 A JPH0673583 A JP H0673583A JP 4230041 A JP4230041 A JP 4230041A JP 23004192 A JP23004192 A JP 23004192A JP H0673583 A JPH0673583 A JP H0673583A
Authority
JP
Japan
Prior art keywords
electrode
methanol
metal
electrodes
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4230041A
Other languages
Japanese (ja)
Other versions
JP3456714B2 (en
Inventor
Kiyoshi Otsuka
大塚  潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP23004192A priority Critical patent/JP3456714B2/en
Publication of JPH0673583A publication Critical patent/JPH0673583A/en
Application granted granted Critical
Publication of JP3456714B2 publication Critical patent/JP3456714B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

PURPOSE:To produce the partial-oxidation product of methanol from methanol and oxygen by using a fuel-cell system. CONSTITUTION:A mixture of hydrogen, oxygen and methanol is brought into contact with the electrode on both sides of a proton conductor to produce the partial-oxidation product of methanol by a fuel-cell system. This system differs from the conventional fuel-cell system, and a hydrogen donor need not be supplied to one side and oxygen, etc., to the other side. Consequently, the oxygen, hydrogen, methanol, etc., as the raw materials need not be previously separated when the partial-oxidation product of methanol is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、二種類の異なる電極を
用い、燃料電池システムを応用した新規なメタノールの
部分酸化物である蟻酸メチル、ジメトキシメタン等の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a novel partial oxide of methanol, such as methyl formate and dimethoxymethane, by applying a fuel cell system using two different types of electrodes.

【0002】メタノールの部分酸化物である蟻酸メチ
ル、ジメトキシメタン等はそれぞれ酢酸、ホルマリン等
製造の中間体であり、工業的に極めて重要な物質であ
る。
Methyl formate and dimethoxymethane, which are partial oxides of methanol, are intermediates for the production of acetic acid, formalin and the like, and are industrially extremely important substances.

【0003】[0003]

【従来の技術】従来、メタノールの部分酸化物であるホ
ルマリン、ジメトキシメタン(メチラール)および蟻酸
メチル等はメタノールと酸素を触媒存在下に接触させて
得る方法が一般的に知られている。ホルマリンの製造
は、メタノールを原料とし、銀触媒存在下に空気を存在
させて500℃前後の高温反応によって一般的に製造さ
れている。一方、メチラールは最近低濃度の水を含有し
たホルマリンの製造原料として注目されている。例え
ば、特開平1−287051号および化学工学,第52
巻,411頁によれば固体酸触媒を用いて、ホルムアル
デヒドとメタノールより製造している。しかしながら、
この方法においては、原料としてホルムアルデヒドを使
用しており、直接メタノールから製造はしておらず、上
記したホルマリンを経由した間接的なメタノールからの
製造方法である。
2. Description of the Related Art Conventionally, it has been generally known that formalin, dimethoxymethane (methylal) and methyl formate which are partial oxides of methanol can be obtained by contacting methanol with oxygen in the presence of a catalyst. Formalin is generally produced by using methanol as a raw material, allowing air to exist in the presence of a silver catalyst, and performing a high-temperature reaction at about 500 ° C. On the other hand, methylal has recently been attracting attention as a raw material for producing formalin containing a low concentration of water. For example, JP-A 1-287051 and Chemical Engineering, No. 52
Vol. 4, page 411, it is produced from formaldehyde and methanol using a solid acid catalyst. However,
In this method, formaldehyde is used as a raw material and is not directly produced from methanol, but is an indirect method of producing from methanol via the above-mentioned formalin.

【0004】又、蟻酸メチルの製造方法としては、例え
ば、特公昭57−2702号、特公昭57−26502
号、特開昭54−12315号では、触媒として銅−亜
鉛系を用いて反応温度300℃程度でメタノールの脱水
素により製造している。又、特開昭56−16963
号、特開昭57−128642号では水素と一酸化炭素
をニッケル、銅等の触媒の存在下に高温高圧条件で反応
させ蟻酸メチルを得ている。
Further, as a method for producing methyl formate, for example, Japanese Patent Publication No. 57-2702 and Japanese Patent Publication No. 57-26502.
In JP-A-54-12315, a copper-zinc system is used as a catalyst to produce hydrogen by dehydrogenating methanol at a reaction temperature of about 300 ° C. Also, JP-A-56-16963
In JP-A-57-128642, methyl formate is obtained by reacting hydrogen and carbon monoxide in the presence of a catalyst such as nickel or copper under high temperature and high pressure conditions.

【0005】しかしながら、これらのメチラール、蟻酸
メチルの製造方法は反応条件が高温であったり又高圧で
ある等過酷であり、穏和な条件での製造方法とはいえな
い。
However, these methylal and methyl formate production methods are harsh such that the reaction conditions are high temperature and high pressure, and cannot be said to be production methods under mild conditions.

【0006】近年、燃料電池システムを用いて、穏和な
条件で種々の有用な化合物を製造すると同時に電力を取
り出す試みがなされてきている。例えば、燃料電池シス
テムを用いたメタノールの部分酸化に関しては、Chemis
try Letters;1945-1948ページ(1987年)で本発明者ら
が実施したもの以外は知られていない。この方法は、触
媒電極として、アノード及びカソードに白金電極を用い
ており、加えて、アノード側にメタノール、カソード側
に酸素を導入することによって、メタノールの部分酸化
物であるジメトキシメタン(メチラール)、蟻酸メチル
等を製造している。しかしながら、この方法では、アノ
ード側に導入する物質には被酸化剤(メタノール)、カ
ソード側に供給する物質は酸素等の酸化剤と各々区別し
て供給する必要があり、酸化剤と被酸化剤を混在させる
ことは出来ず、必然的に、反応を行うためには予めこれ
らを分離する必要性があった。
In recent years, various attempts have been made to produce electric power at the same time as producing various useful compounds under mild conditions using a fuel cell system. For example, regarding the partial oxidation of methanol using a fuel cell system, Chemis
Try Letters; 1945-1948 (1987), other than those conducted by the present inventors. This method uses a platinum electrode for the anode and cathode as a catalyst electrode, and in addition, by introducing methanol on the anode side and oxygen on the cathode side, dimethoxymethane (methylal), which is a partial oxide of methanol, Manufactures methyl formate, etc. However, in this method, it is necessary to separately supply the substance to be introduced to the anode side with the oxidant (methanol) and the substance to be supplied to the cathode side with the oxidant such as oxygen. It was impossible to mix them, and inevitably it was necessary to separate them in advance in order to carry out the reaction.

【0007】[0007]

【発明が解決しようとする課題】本発明は、メタノール
の部分酸化物の製造を、燃料電池システムを用い穏和な
条件で原料であるメタノールと酸素を敢えて分離する事
なく実施することにより製造工程の煩雑さ、エネルギー
の大量消費等の従来の問題点を解決するものである。
DISCLOSURE OF THE INVENTION The present invention provides a process for producing a partial oxide of methanol by using a fuel cell system under mild conditions without intentionally separating oxygen as a raw material from methanol. It solves the conventional problems such as complexity and large consumption of energy.

【0008】[0008]

【課題を解決するための手段】本発明者らは上記問題点
を解決すべく鋭意検討した結果、燃料電池システムにお
いて一方の電極(触媒電極A)を金属および/またはこ
の金属の金属化合物とし、他方の電極(触媒電極B)を
触媒電極Aに用いた金属とは異なる金属および/又はこ
の金属の金属化合物とする事により、従来の燃料電池シ
ステムのように、敢えて酸素とメタノールを分離するこ
と無く混合状態のままこのシステムに導入して、有効且
つ経済的にメタノールの部分酸化物を製造する方法を見
いだした。
As a result of intensive studies to solve the above problems, the present inventors have made one electrode (catalyst electrode A) in a fuel cell system a metal and / or a metal compound of this metal, By using a metal different from the metal used for the catalyst electrode A and / or a metal compound of this metal for the other electrode (catalyst electrode B), the oxygen and methanol are intentionally separated as in the conventional fuel cell system. We have found a method for producing a partial oxide of methanol effectively and economically by introducing it into this system without mixing.

【0009】即ち、本発明は、イオン伝導体で隔離され
た一方の電極室に金属および/またはこれらの金属化合
物からなる電極Aを、他方の電極室に電極Aに用いた金
属成分とは異なる金属および/またはこれらの金属化合
物からなる電極Bをそれぞれイオン伝導体に接するよう
に取り付け、電極AおよびBを導電体で短絡させ、双方
の電極にメタノール、酸素および水の混合物を連続的も
しくは間欠的に導入し、接触させることを特徴とするメ
タノールの部分酸化物の製造方法である。本発明で用い
られる電極は、実質的にアノードを形成する金属種とカ
ソードを形成する金属種が異なることが必須である。同
一の金属種を双方の電極に用いれば、メタノールの部分
酸化物の収率は極端に低下し実質的に本発明方法を実施
し得ない。
That is, the present invention is different from the metal component used for the electrode A composed of a metal and / or a metal compound thereof in one of the electrode chambers separated by the ion conductor and the metal component used for the electrode A in the other electrode chamber. An electrode B made of a metal and / or a metal compound thereof is attached so as to be in contact with an ionic conductor, and the electrodes A and B are short-circuited by a conductor, and a mixture of methanol, oxygen and water is continuously or intermittently supplied to both electrodes. Is a method for producing a partial oxide of methanol, which is characterized in that the partial oxide of methanol is introduced. It is essential that the metal species forming the anode and the metal species forming the cathode are substantially different in the electrode used in the present invention. If the same metal species is used for both electrodes, the yield of the partial oxide of methanol is extremely reduced, and the method of the present invention cannot be substantially carried out.

【0010】本発明方法において用いられる電極は、基
本的には金属もしくはこれらの金属化合物により調製さ
れる。電極に用いられる金属またはこれらの金属化合物
を構成する金属は、周期律表で第3族、4族、5族、6
族、7族、8族、9族、10族、11族および12族の
金属である。具体的には3族金属としては、元素記号S
c、Y、La、Ac等で表される金属であり、4族金属
としては、元素記号Ti、 Zr、Hfで表される金属
であり、5族金属としては、元素記号V、Nb、Taで
表される金属であり、6族金属としては元素記号Cr、
Mo、Wで表される金属であり、7族金属としては、元
素記号Mn、Reで表される金属であり、8族金属とし
ては、元素記号Fe、Ru、Osで表される金属であ
り、9族金属としては、元素記号Co、Rh,Irで表
される金属であり、10族金属としては、元素記号N
i、Pd、Ptで表される金属であり、11族金属とし
ては、元素記号Cu、Ag、Auで表される金属であ
り、12族金属としては、元素記号Zn、Cd、Hgで
表される金属である。又、本発明方法においてこれらの
金属をこれらの金属の化合物として電極に使用する場合
には、これらの金属のハロゲン化物、硝酸塩、硫酸塩、
酸化物、水酸化物、リン酸塩および/またはアンモニウ
ム塩として使用することが推奨される。本発明方法にお
いては、電極A、Bにそれぞれ異なる少なくとも1種以
上の金属成分(金属および/または金属化合物)からな
る電極として使用する。前記したように本発明方法にお
いては電極Aを構成する金属成分と電極Bを構成する金
属成分が異なることが必須となる。
The electrode used in the method of the present invention is basically prepared from a metal or a metal compound thereof. The metals used for the electrodes or the metals constituting these metal compounds are group 3, group 4, group 5 and group 6 of the periodic table.
It is a metal of group 10, group 7, group 8, group 9, group 10, group 11, and group 12. Specifically, as a Group 3 metal, the element symbol S
Metals represented by c, Y, La, Ac, etc., Group 4 metals are metals represented by element symbols Ti, Zr, Hf, and Group 5 metals are element symbols V, Nb, Ta. Is a metal represented by
Metals represented by Mo and W, Group 7 metals are metals represented by element symbols Mn and Re, and Group 8 metals are metals represented by element symbols Fe, Ru, Os. , Group 9 metals are metals represented by the element symbols Co, Rh, Ir, and group 10 metals are element symbols N
Metals represented by i, Pd, and Pt, Group 11 metals represented by element symbols Cu, Ag, and Au, and Group 12 metals represented by element symbols Zn, Cd, and Hg. It is a metal. Further, in the method of the present invention, when these metals are used in the electrode as a compound of these metals, halides, nitrates, sulfates of these metals,
It is recommended to use as oxide, hydroxide, phosphate and / or ammonium salt. In the method of the present invention, the electrodes A and B are used as electrodes composed of at least one different metal component (metal and / or metal compound). As described above, in the method of the present invention, it is essential that the metal component forming the electrode A and the metal component forming the electrode B be different.

【0011】本発明方法でいう周期律表とは国際純正お
よび応用化学連合無機化学命名法(1989年)による
周期律表のことである。
The periodic table used in the method of the present invention is a periodic table based on the International Union of Pure and Applied Chemistry Nomenclature of Inorganic Chemistry (1989).

【0012】本発明方法を実施し易くするために、電極
を調製する際に金属成分と共に導電性炭素質材料を混合
することが推奨される。更にこれに加えてバインダーを
使用し電極を成形し易くすることも推奨される。しかし
ながら本発明方法においてはこれらの調製法のみに限定
されるものではない。
To facilitate the practice of the method of the present invention, it is recommended to mix the conductive carbonaceous material with the metal component in preparing the electrode. In addition to this, it is also recommended to use a binder to facilitate the formation of the electrode. However, the method of the present invention is not limited to these preparation methods.

【0013】電極を調製する際に添加する炭素質物質は
基本的には電気伝導性を有する炭素質物質であれば何等
差し支えないが、入手し易い炭素質物質として、例えば
グラファイト、活性炭、カーボンブラック、カーボンウ
ィスカー等が挙げられる。又、これらの炭素質物質は金
属と混合する前に予め酸化処理を行いことで本発明方法
は更に実施し易くなる。
Basically, the carbonaceous substance added when preparing the electrode may be any carbonaceous substance having electric conductivity, but as the readily available carbonaceous substance, for example, graphite, activated carbon or carbon black. , Carbon whiskers and the like. In addition, by oxidizing these carbonaceous substances in advance before mixing with the metal, the method of the present invention can be carried out more easily.

【0014】炭素質物質の酸化処理は、通常の酸素含有
気体を用いての加熱処理、酸化性試薬を用いた試薬酸化
処理等の様々な方法によって行うことが可能である。例
えば、試薬酸化処理としては硝酸水加熱処理、過マンガ
ン酸水溶液処理、重クロム酸水溶液処理、過酸化水素水
処理等が挙げられる。しかしながら本発明方法はこれら
の処理のみに限定されるものではない。
The oxidation treatment of the carbonaceous material can be carried out by various methods such as heat treatment using a normal oxygen-containing gas and reagent oxidation treatment using an oxidizing reagent. Examples of the reagent oxidation treatment include nitric acid water heating treatment, permanganic acid aqueous solution treatment, dichromic acid aqueous solution treatment, and hydrogen peroxide water treatment. However, the method of the present invention is not limited to these treatments.

【0015】又、本発明方法において電極を成形する際
に使用するバインダーとしては種々のものを使用するこ
とが可能であるが、その成形し易さからテフロン樹脂粉
末を用いホットプレス成形することが好ましい。無論、
本発明方法がこれらの材料及び方法のみに限定されな
い。
Various kinds of binders can be used for forming the electrode in the method of the present invention, but hot pressing using Teflon resin powder is preferable because of its ease of forming. preferable. Of course,
The method of the present invention is not limited to only these materials and methods.

【0016】本発明方法で用いられるイオン伝導体とし
てはリン酸、硫酸、塩酸、硝酸等のプロトン酸、ヘテロ
ポリ酸、H−モンモリロナイト、リン酸ジルコニウム等
のプロトン伝導体として知られている固体電解質、Sr
CeO3を母体としたペロブスカイト型固溶体等が使用
できる。又、パーフルオロカーボンのような含フッ素高
分子をベースとし、これにスルホン酸基或いはカルボン
酸基などのカチオン交換基の1種以上を導入したもの、
例えば、Nafion(デュポン社の登録商標)も使用
できる。リン酸等の液体はシリカウールに含浸させて使
用したり、イオン透過性のフィルター又は膜ではさんで
使用することもできる。
As the ionic conductor used in the method of the present invention, a protonic acid such as phosphoric acid, sulfuric acid, hydrochloric acid or nitric acid, a solid electrolyte known as a proton conductor such as heteropolyacid, H-montmorillonite or zirconium phosphate, Sr
A perovskite type solid solution having CeO 3 as a matrix can be used. In addition, a fluoropolymer such as perfluorocarbon is used as a base, and one or more cation exchange groups such as sulfonic acid groups or carboxylic acid groups are introduced into the base,
For example, Nafion (registered trademark of DuPont) can also be used. A liquid such as phosphoric acid may be used by impregnating it with silica wool, or may be sandwiched between ion-permeable filters or membranes.

【0017】本発明方法において使用するメタノールは
特に精製する必要はなく一般的な試薬純度のものを使用
して差し支えなく、又メタノール以外の有機物(飽和炭
化水素等)との混合物であっても差し支えない。更に、
本発明方法においてはこれらのメタノール含有原料、水
及び酸素の混合物を双方の電極室に導入して実施する
が、この際にメタノール及び水は液体状態で導入しても
又、気体状態で導入しても差し支えない。液体状態で導
入する際には、メタノールおよび/または水に対する溶
媒等で希釈して導入しても構わない。更にこれら混合物
を気体状態で導入する場合には、窒素、ヘリウム、アル
ゴン等の不活性ガスの混合物として導入しても差し支え
ない。
The methanol used in the method of the present invention does not need to be particularly purified and may have a general reagent purity, and may be a mixture with an organic substance (saturated hydrocarbon etc.) other than methanol. Absent. Furthermore,
In the method of the present invention, a mixture of these raw materials containing methanol, water and oxygen is introduced into both electrode chambers, and at this time, methanol and water are introduced in a liquid state or in a gaseous state. It doesn't matter. When introducing in a liquid state, it may be diluted with a solvent such as methanol and / or water or the like and then introduced. Further, when these mixtures are introduced in a gas state, they may be introduced as a mixture of inert gases such as nitrogen, helium and argon.

【0018】本発明方法に従えば、反応温度は通常−2
0℃から200℃の範囲で行われるが、0℃から100
℃で行うことがより好ましい。あまりに低温で行えば、
反応速度の低下と共に冷却等のエネルギーを必要とし、
あまりに高温で行えば選択率の低下と共に加熱等のエネ
ルギーを必要とするため効率的ではない。又、本発明方
法に従えば、反応は一般に常圧で行われるが、必要に応
じて加圧もしくは減圧下で実施することも可能である。
反応生成物である蟻酸メチル、ジメトキシメタン等のメ
タノールの部分酸化物は、通常反応生成液もしくはガス
から蒸留、凝縮後の蒸留、気液分離後の蒸留、抽出等の
方法で分離精製して目的物を得ることができる。
According to the method of the present invention, the reaction temperature is usually -2.
It is performed in the range of 0 to 200 ℃, but 0 to 100
More preferably, it is carried out at ℃. If done too cold,
Energy such as cooling is required as the reaction rate decreases,
If it is carried out at an excessively high temperature, the selectivity is lowered and energy such as heating is required, which is not efficient. Further, according to the method of the present invention, the reaction is generally carried out at normal pressure, but it may be carried out under pressure or under reduced pressure if necessary.
Partial oxides of methanol such as methyl formate and dimethoxymethane, which are reaction products, are usually separated and purified by a method such as distillation from a reaction product liquid or gas, distillation after condensation, distillation after gas-liquid separation, and extraction. You can get things.

【0019】本発明方法を実施するために用いられる燃
料電池型反応器の概念図を図1に示す。電極AおよびB
を有する電極室1および2はイオン伝導体3で隔てられ
ており、これら2つの電極はリード線4で短絡されてい
る。電極は好ましくは多孔質もしくはシート状であるが
必ずしもこれに制限されない。必要によっては、両電極
間に電圧をかけることも可能である。又、必要に応じ
て、反応系から反応の自由エネルギーに相当する電気エ
ネルギーを電力として取り出すことも可能である。
A conceptual diagram of a fuel cell reactor used for carrying out the method of the present invention is shown in FIG. Electrodes A and B
The electrode chambers 1 and 2 having the are separated by an ion conductor 3 and these two electrodes are short-circuited by a lead wire 4. The electrodes are preferably porous or sheet-shaped, but are not necessarily limited thereto. If necessary, it is possible to apply a voltage between both electrodes. If necessary, electric energy corresponding to the free energy of the reaction can be taken out as electric power from the reaction system.

【0020】[0020]

【実施例】以下、本発明方法を実施例に基づき更に詳細
に説明する。しかしながら、これらは例示的なものであ
り、本発明方法は実施例のみによって制限されるもので
はない。
EXAMPLES The method of the present invention will be described in more detail based on the following examples. However, these are exemplary and the method of the present invention is not limited by the examples.

【0021】実施例1 電極の調製 (a)グラファイトの酸化処理 グラファイト粉末を8N硝酸水溶液に浸し、これを2時
間加熱沸騰させた後、充分純水で洗浄し、これを乾燥さ
せて電極調製に使用した。 (b)電極の調製 硝酸酸化処理したグラファイト50mgと表1に掲げる
それぞれの金属粉末20mgおよびテフロン粉末5mg
を良く混合した後、ホットプレス法により直径21mm
の円形シート状としたものをそれぞれ電極として使用し
た。
Example 1 Preparation of Electrode (a) Oxidation Treatment of Graphite Graphite powder was dipped in an 8N nitric acid aqueous solution, heated and boiled for 2 hours, washed thoroughly with pure water, and dried to prepare an electrode. used. (B) Preparation of electrode 50 mg of nitric acid-oxidized graphite, 20 mg of each metal powder listed in Table 1 and 5 mg of Teflon powder
21 mm in diameter by hot pressing after mixing well
Each of the circular sheets was used as an electrode.

【0022】[0022]

【表1】 ______________________ 添加金属粉末 触媒電極 ______________________ イリジウム 電極I ロジウム 電極II 白金 電極III ルテニウム 電極IV パラジウム 電極V ______________________[Table 1] ________________ Added metal powder Catalyst electrode _______________________________________ Iridium electrode I Rhodium electrode II Platinum electrode III Ruthenium electrode IV Palladium electrode V _______________

【0023】実施例2 ディスク状のシリカウール(厚さ1.0mm、直径21
mm)に85%リン酸水溶液を含ませたものをイオン伝
導体膜としこれにより2つの電極室を隔離し、一方の電
極室(電極室1)にイリジウムとグラファイトから調製
した電極(電極I)をイオン伝導体膜に接するように取
り付けた。同様にして、もう一方の電極室(電極室2)
にロジウムとグラファイトから調製した電極(電極I
I)を取り付けた。電極IおよびIIをリード線で結線
した後、反応温度を80℃とし、メタノール(8.3容
量%)、酸素(40.8容量%)および水蒸気(50.
9容量%)の混合ガスを流速34.6ml/分でそれぞ
れの電極室に導入した。この結果、反応中に電流が7.
0mA発生し、蟻酸メチルおよびジメトキシメタンがそ
れぞれ1.05μモル/分および0.07μモル/分の
速度で生成した。その他の生成物は二酸化炭素であり、
メタノールの部分酸化物の選択率は55%であった。
Example 2 Silica wool in the form of a disk (thickness 1.0 mm, diameter 21
(mm) containing an 85% phosphoric acid aqueous solution as an ion conductor membrane to separate two electrode chambers, and one electrode chamber (electrode chamber 1) was prepared from iridium and graphite (electrode I). Was attached so as to be in contact with the ion conductor membrane. Similarly, the other electrode chamber (electrode chamber 2)
Electrodes prepared from rhodium and graphite (electrode I
I) was installed. After connecting the electrodes I and II with lead wires, the reaction temperature was set to 80 ° C., and methanol (8.3% by volume), oxygen (40.8% by volume) and water vapor (50.
9% by volume) mixed gas was introduced into each electrode chamber at a flow rate of 34.6 ml / min. As a result, an electric current of 7.
0 mA was generated and methyl formate and dimethoxymethane were produced at rates of 1.05 μmol / min and 0.07 μmol / min, respectively. The other product is carbon dioxide,
The selectivity of the partial oxide of methanol was 55%.

【0024】実施例3〜5 電極室2に取り付けた電極をそれぞれ電極III、電極
IVおよび電極Vに代えた以外は全て実施例2と同一の
条件でメタノールの部分酸化反応を行った。その時の発
生電流値と部分酸化物(蟻酸メチルおよびジメトキシメ
タン)のトータル選択率を表2に掲げた。
Examples 3 to 5 The partial oxidation reaction of methanol was carried out under the same conditions as in Example 2 except that the electrodes attached to the electrode chamber 2 were replaced by electrodes III, IV and V, respectively. The generated current value and the total selectivity of partial oxides (methyl formate and dimethoxymethane) at that time are listed in Table 2.

【0025】[0025]

【表2】 ______________________________ 電極 発生電流(mA) 部分酸化物選択率(%) ______________________________ 電極III 11.49 28.2 電極IV 8.28 46.8 電極V 8.34 29.0 ______________________________TABLE 2 ______________________________ electrodes generating a current (mA) partial oxide selectivity (%) ______________________________ electrode III 11.49 28.2 electrodes IV 8.28 46.8 electrodes V 8.34 29.0 ______________________________

【0026】実施例6〜8 電極室1側の電極を電極IIIとし電極室2側の電極を
それぞれ電極II、電極IVおよびVに代えた以外は全
て実施例2と同一の条件で部分酸化反応を行った。結果
は表3に示したようにそれぞれの電極の組み合わせで電
流の発生と共にメタノールの部分酸化物の生成が認めら
れた。
Examples 6 to 8 Partial oxidation reaction under the same conditions as in Example 2 except that the electrode on the electrode chamber 1 side was changed to the electrode III and the electrodes on the electrode chamber 2 side were changed to the electrodes II, IV and V, respectively. I went. As a result, as shown in Table 3, it was confirmed that a partial oxide of methanol was generated with the generation of current in each combination of electrodes.

【0027】[0027]

【表3】 ________________________________ 電極室2 発生電流(mA) 部分酸化物選択率(%) ________________________________ 電極II 2.36 13.8 電極IV 1.56 44.3 電極V 29.5 10.4 _________________________________TABLE 3 ________________________________ electrode chamber 2 generation current (mA) partial oxide selectivity (%) ________________________________ electrode II 2.36 13.8 electrodes IV 1.56 44.3 electrodes V 29.5 10.4 _________________________________

【0028】比較例1 双方の電極室の電極に電極Iを使用した以外は全て実施
例2と同一の条件で反応を行った。この結果電流は0.
1mA発生したに過ぎず、又、メタノールの部分酸化物
の生成は殆ど確認されず、部分酸化物の選択率は0%で
あった。
Comparative Example 1 The reaction was carried out under the same conditions as in Example 2 except that the electrode I was used as the electrode in both electrode chambers. As a result, the current is 0.
Only 1 mA was generated, and generation of a partial oxide of methanol was hardly confirmed, and the selectivity of the partial oxide was 0%.

【0029】比較例2 双方の電極室の電極に電極IIIを使用した以外は全て
実施例2と同一の条件で反応を行った。結果は電流はわ
ずかに0.2mA発生しメタノールの部分酸化物は殆ど
生成せず、選択率も0%であった。
Comparative Example 2 The reaction was carried out under the same conditions as in Example 2 except that the electrode III was used for the electrodes in both electrode chambers. As a result, a current of only 0.2 mA was generated, a partial oxide of methanol was hardly formed, and the selectivity was 0%.

【0030】[0030]

【発明の効果】本発明に従えば、以下の効果が得られ
る。 (1)極めて穏和な条件で、選択率良くメタノールの部
分酸化物を製造することが出来る。 (2)反応を遂行するに際し、必要に応じて反応のエネ
ルギー変化分を電気エネルギー(電力)として反応系外
へとりだすことができ、電力を副産物として利用するこ
とが可能であり、極めて経済的にメタノールの部分酸化
物を製造できる。 (3)メタノール、酸素および水を予め分離せずに混合
物として反応を遂行することが出来、プロセス的な観点
からも簡便にメタノールの部分酸化物を製造することが
出来る。等の多くの利点を有したメタノールの部分酸化
物の製造方法となる。
According to the present invention, the following effects can be obtained. (1) Under extremely mild conditions, a partial oxide of methanol can be produced with good selectivity. (2) When carrying out the reaction, the energy change of the reaction can be taken out of the reaction system as electric energy (electric power) as necessary, and the electric power can be used as a by-product, which is extremely economical. A partial oxide of methanol can be produced. (3) The reaction can be carried out as a mixture without separating methanol, oxygen and water in advance, and a partial oxide of methanol can be easily produced from a process point of view. The method for producing a partial oxide of methanol has many advantages such as the following.

【図面の簡単な説明】[Brief description of drawings]

【図1】反応装置概念図FIG. 1 Schematic diagram of reactor

【符号の説明】[Explanation of symbols]

1 電極室 2 電極室 3 イオン伝導体 4 リード線 5 電極A 6 電極B 1 Electrode chamber 2 Electrode chamber 3 Ion conductor 4 Lead wire 5 Electrode A 6 Electrode B

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 イオン伝導体で隔離された一方の電極室
に金属および/またはこれらの金属化合物からなる電極
Aを、他方の電極室に電極Aに用いた金属成分とは異な
る金属および/またはこれらの金属化合物からなる電極
Bをそれぞれイオン伝導体に接するように取り付け、電
極AおよびBを導電体で短絡させ、双方の電極にメタノ
ール、酸素および水の混合物を連続的もしくは間欠的に
導入し、接触させることを特徴とするメタノールの部分
酸化物の製造方法。
1. An electrode A composed of a metal and / or a metal compound thereof in one electrode chamber isolated by an ionic conductor, and a metal and / or a metal component different from the metal component used for the electrode A in the other electrode chamber. Electrodes B made of these metal compounds were attached so as to be in contact with the respective ion conductors, electrodes A and B were short-circuited by the conductors, and a mixture of methanol, oxygen and water was introduced into both electrodes continuously or intermittently. And a method for producing a partial oxide of methanol, which comprises contacting.
【請求項2】 電極Aおよび/または電極Bに導電性炭
素質物質を存在させる請求項1記載の方法。
2. The method according to claim 1, wherein a conductive carbonaceous substance is present on the electrode A and / or the electrode B.
【請求項3】 電極を構成する金属および/または金属
化合物の構成金属が周期律表において、第3、4、5、
6、7、8、9、10、11および12族金属から選ば
れた金属である請求項1記載の方法。
3. The metal constituting the electrode and / or the constituent metal of the metal compound is represented by the third, fourth, fifth, and third elements in the periodic table.
The method according to claim 1, which is a metal selected from the metals of groups 6, 7, 8, 9, 10, 11 and 12.
【請求項4】 導電性炭素質物質が、活性炭、グラファ
イト、カーボンブラックおよびカーボンウィスカーから
選ばれた少なくとも1種以上である請求項2記載の方
法。
4. The method according to claim 2, wherein the conductive carbonaceous substance is at least one selected from activated carbon, graphite, carbon black and carbon whiskers.
【請求項5】 導電性炭素質物質があらかじめ酸化処理
された炭素質物質である請求項2記載の方法。
5. The method according to claim 2, wherein the conductive carbonaceous substance is a carbonaceous substance which has been previously subjected to an oxidation treatment.
【請求項6】 酸化処理が過マンガン酸塩水溶液、硝酸
水溶液、重クロム酸塩水溶液および硫酸水溶液から選ば
れた少なくとも1種以上の溶液中で炭素質物質を加熱も
しくは室温で接触又は放置することである請求項5記載
の方法。
6. The carbonaceous substance is heated or brought into contact with or left at room temperature in a solution of at least one selected from an aqueous solution of permanganate, an aqueous solution of nitric acid, an aqueous solution of dichromate and an aqueous solution of sulfuric acid. The method according to claim 5, wherein
【請求項7】 電極Aがイリジウムおよび/またはイリ
ジウム化合物からなる電極であり、且つ、電極Bがロジ
ウム、ロジウム化合物、プラチナ、プラチナ化合物、パ
ラジウム、パラジウム化合物、ルテニウム、およびルテ
ニウム化合物の群から選ばれた少なくとも1種以上から
なる電極である請求項1記載の方法。
7. The electrode A is an electrode composed of iridium and / or an iridium compound, and the electrode B is selected from the group of rhodium, rhodium compounds, platinum, platinum compounds, palladium, palladium compounds, ruthenium and ruthenium compounds. The method according to claim 1, which is an electrode composed of at least one kind.
【請求項8】 メタノールの部分酸化物がホルマリン、
蟻酸メチル及び/又はジメトキシメタンである請求項1
記載の方法。
8. The partial oxide of methanol is formalin,
Methyl formate and / or dimethoxymethane.
The method described.
JP23004192A 1992-08-28 1992-08-28 Method for producing partial oxide of methanol Expired - Lifetime JP3456714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23004192A JP3456714B2 (en) 1992-08-28 1992-08-28 Method for producing partial oxide of methanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23004192A JP3456714B2 (en) 1992-08-28 1992-08-28 Method for producing partial oxide of methanol

Publications (2)

Publication Number Publication Date
JPH0673583A true JPH0673583A (en) 1994-03-15
JP3456714B2 JP3456714B2 (en) 2003-10-14

Family

ID=16901642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23004192A Expired - Lifetime JP3456714B2 (en) 1992-08-28 1992-08-28 Method for producing partial oxide of methanol

Country Status (1)

Country Link
JP (1) JP3456714B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135338A (en) * 1999-11-04 2001-05-18 Toyota Motor Corp Fuel cell equipment and method of operating fuel cell
WO2004100301A1 (en) * 2003-05-07 2004-11-18 Gs Yuasa Corporation Direct fuel cell system
WO2005063614A1 (en) * 2003-12-26 2005-07-14 Gs Yuasa Corporation Method for producing hydrogen and hydrogen-producing apparatus used therefor
WO2005095144A1 (en) * 2004-03-31 2005-10-13 Gs Yuasa Corporation Electric car
WO2005095264A1 (en) * 2004-03-31 2005-10-13 Gs Yuasa Corporation Hydrogen supply system
JP2007039305A (en) * 2005-06-30 2007-02-15 Gs Yuasa Corporation:Kk Hydrogen production apparatus
WO2008138865A1 (en) * 2007-05-09 2008-11-20 Acta S.P.A. A process for the partial oxidation of alcohols in water by direct alcohol fuel cells
CN109943862A (en) * 2019-04-10 2019-06-28 哈尔滨师范大学 A kind of method of electrochemical oxidation methanol-fueled CLC dimethoxymethane

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135338A (en) * 1999-11-04 2001-05-18 Toyota Motor Corp Fuel cell equipment and method of operating fuel cell
WO2004100301A1 (en) * 2003-05-07 2004-11-18 Gs Yuasa Corporation Direct fuel cell system
WO2005063614A1 (en) * 2003-12-26 2005-07-14 Gs Yuasa Corporation Method for producing hydrogen and hydrogen-producing apparatus used therefor
US8679687B2 (en) 2003-12-26 2014-03-25 Gs Yuasa International Ltd. Hydrogen generating method and hydrogen generating system based on the method
WO2005095144A1 (en) * 2004-03-31 2005-10-13 Gs Yuasa Corporation Electric car
WO2005095264A1 (en) * 2004-03-31 2005-10-13 Gs Yuasa Corporation Hydrogen supply system
US7910252B2 (en) 2004-03-31 2011-03-22 Gs Yuasa Corporation Hydrogen supply system
US7939210B2 (en) 2004-03-31 2011-05-10 Gs Yuasa Corporation Electric automobile
JP2007039305A (en) * 2005-06-30 2007-02-15 Gs Yuasa Corporation:Kk Hydrogen production apparatus
WO2008138865A1 (en) * 2007-05-09 2008-11-20 Acta S.P.A. A process for the partial oxidation of alcohols in water by direct alcohol fuel cells
CN109943862A (en) * 2019-04-10 2019-06-28 哈尔滨师范大学 A kind of method of electrochemical oxidation methanol-fueled CLC dimethoxymethane

Also Published As

Publication number Publication date
JP3456714B2 (en) 2003-10-14

Similar Documents

Publication Publication Date Title
Eng et al. Catalytic and electrocatalytic methane oxidation with solid gxide membranes
US5064733A (en) Electrochemical conversion of CO2 and CH4 to C2 hydrocarbons in a single cell
US5427747A (en) Method and apparatus for producing oxygenates from hydrocarbons
US20240003017A1 (en) Electrochemical cells and electrochemical methods
KR20170063623A (en) Membrane electrode arrangement, reactor comprising the membrane electrode arrangement and method for hydrogen separation
JP5311478B2 (en) Electron / ion mixed conductive membrane and method for producing hydrogen peroxide using the same
JP2016519214A (en) Electrode / electrolyte assemblies, reactors and methods for direct amination of hydrocarbons
JPH0673583A (en) Production of partial-oxidation product of methanol
JPH05295578A (en) Production of partially oxidized aromatic compound
EA024313B1 (en) Hydrogen or oxygen electrochemical pumping catalytic membrane reactor and its applications
Woldman et al. Electrocatalytic methane coupling in the absence of oxygen on a high-temperature proton-conducting electrolyte
JP3337718B2 (en) Method for producing partial oxide of methanol
JP2001236968A (en) Fuel cell reactor and method of using the same
JP3110484B2 (en) Method for producing partial oxide of alicyclic compound
JP2919633B2 (en) Method for producing partial oxide of propylene
Otsuka et al. Electrolytic carbonylation of methanol over the CuCl2 anode in the gas phase
JPH07216570A (en) Production of chlorine
JP3090972B2 (en) Method for producing partial oxide of aromatic compound
JP2947968B2 (en) Method for producing acetaldehyde
JPH0672919A (en) Production of partial oxide of toluene
JP2010007152A (en) Method for producing methanol and production apparatus therefor
JPH0499188A (en) Production of benzaldehyde and benzoic acid
JP3110485B2 (en) Method for producing partial oxide of alicyclic compound
JP2021138994A (en) Electrode catalyst for reducing co2, method of producing electrode catalyst for reducing co2, co2 reducing electrode, and co2 reducing system
JPH03122296A (en) Production of partially oxidized aromatic compound

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090801

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100801

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 10