JPH0436408A - Manufacture of high strength structural member - Google Patents

Manufacture of high strength structural member

Info

Publication number
JPH0436408A
JPH0436408A JP2141836A JP14183690A JPH0436408A JP H0436408 A JPH0436408 A JP H0436408A JP 2141836 A JP2141836 A JP 2141836A JP 14183690 A JP14183690 A JP 14183690A JP H0436408 A JPH0436408 A JP H0436408A
Authority
JP
Japan
Prior art keywords
alloy powder
powder
raw material
oxygen gas
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2141836A
Other languages
Japanese (ja)
Inventor
Hiroyuki Horimura
弘幸 堀村
Kenji Okamoto
憲治 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2141836A priority Critical patent/JPH0436408A/en
Publication of JPH0436408A publication Critical patent/JPH0436408A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a high strength structural member by degassing alloy powder composed of amorphous single phase alloy powder, etc., and dispersed with oxygen gas on the outer peripheral part with heating treatment and executing pressurize forming treatment. CONSTITUTION:Raw material powder 1a composed of amorphous single phase alloy powder, etc., having <about 22 mu average particle diameter and with the oxygen gas diffused on the outer peripheral part 2, is charged into a die 11 in a vacuum chamber 10 of hot press apparatus 9 to make an assembly 1. Inner part in the vacuum chamber 10 is held to the prescribed vacuum degree and the assembly 1 is heated at the crystallize temp. or more with a heater 12 and the degassing treatment is executed to the assembly 1. Successively, the pressurizing force is applied to the assembly 1 with a punch 13 to execute the pressurize forming treatment and the sintering is executed. By this method, the powders are mutually and sufficiently joined and a high strength structural material is manufactured.

Description

【発明の詳細な説明】 A0発明の目的 (1)産業上の利用分野 本発明は高強度構造部材の製造方法、特に、原料粉末を
焼結(成形固化を含む)して前記部材を得る方法の改良
に関する。
Detailed Description of the Invention A0 Object of the Invention (1) Industrial Application Field The present invention relates to a method for manufacturing a high-strength structural member, and in particular, a method for obtaining the member by sintering (including compacting and solidifying) raw material powder. Regarding improvements.

(2)従来の技術 従来、前記製造方法においては各種原料粉末が用いられ
ているが、構造部材のなお一層の高強度化を狙った場合
、原料粉末として、例えば非晶質単相合金粉末を用いる
ことが考えられる。
(2) Conventional technology Conventionally, various raw material powders have been used in the above manufacturing method, but when aiming to further increase the strength of structural members, for example, amorphous single-phase alloy powder is used as the raw material powder. It is possible to use it.

その理由は、前記合金粉末に結晶化温度Tx以上の熱履
歴を与えると、高合金であるにも拘らず微細な結晶組織
が均一に現出するので、前記部材における高強度化およ
び高靭性化を期待し得るからである。
The reason for this is that when the alloy powder is subjected to a thermal history higher than the crystallization temperature Tx, a fine crystal structure appears uniformly even though it is a high alloy. This is because we can expect

(3)発明が解決しようとする課題 しかしながら前記合金粉末を原料粉末として用いた場合
、焼結に際して、粉末相互間を十分に接合させることが
難しく、その結果、期待通りの強度を持つ部材を得るこ
とができない、という問題がある。
(3) Problems to be solved by the invention However, when the above-mentioned alloy powder is used as a raw material powder, it is difficult to sufficiently bond the powders together during sintering, and as a result, it is difficult to obtain a member with the expected strength. The problem is that it cannot be done.

本発明は前記に鑑み、粉末相互間を強固に接合して、高
強度、且つ高靭性な構造部材を得ることのできる前記製
造方法を提供することを目的とする。
In view of the above, an object of the present invention is to provide the above-mentioned manufacturing method that can firmly bond powders together to obtain a structural member with high strength and high toughness.

B0発明の構成 (1)課題を解決するための手段 本発明は、原料粉末を焼結して高強度構造部材を製造す
るに当り、前記原料粉末として、非晶質単相合金粉末、
非晶質相と結晶質相とを含む混相合金粉末、および非晶
質相形成組成に近似した組成を有する過飽和固溶体粉末
から選択される少なくとも一種であって、外周部に酸素
ガスが拡散している合金粉末を用い、焼結工程において
、前記原料粉末の集合体から前記酸素ガスを排出させる
と共にその集合体に加圧成形処理を施すことを特徴とす
る。
B0 Structure of the Invention (1) Means for Solving the Problems The present invention provides for producing a high-strength structural member by sintering a raw material powder, using an amorphous single-phase alloy powder as the raw material powder;
At least one type selected from a mixed phase alloy powder containing an amorphous phase and a crystalline phase, and a supersaturated solid solution powder having a composition similar to the amorphous phase forming composition, in which oxygen gas is diffused in the outer periphery. In the sintering step, the oxygen gas is discharged from the aggregate of the raw material powder, and the aggregate is subjected to a pressure forming process.

(2)作 用 前記酸素ガス排出過程で、原料粉末の外周部に存する酸
素ガスは、原料粉末外表面に酸化膜が存する場合には、
その酸化膜を破砕しつ〜、一方の粉末から他方の粉末へ
と動き回りながら排出され、これにより原料粉末外表面
が活性化される。このような状況下で原料粉末の集合体
に加圧成形処理を施すと、活性化された粉末外表面相互
が十分に密着して、それらの間にネック部(接触部)を
生じ、これにより原料粉末相互間を十分に接合させるこ
とができる。
(2) Effect In the oxygen gas discharge process, the oxygen gas present in the outer periphery of the raw material powder is
While crushing the oxide film, the powder is discharged while moving from one powder to the other, thereby activating the outer surface of the raw material powder. When an aggregate of raw powder is subjected to pressure molding under these circumstances, the outer surfaces of the activated powders come into close contact with each other, creating a neck (contact) between them, which causes The raw material powders can be sufficiently bonded to each other.

(3)実施例 原料粉末として用いられる非晶質単相合金粉末、非晶質
相と結晶質相とを含む混和合金粉末、および非晶質形成
組成に近似した組成を有する過飽和固溶体粉末は、高圧
ヘリウムガスアトマイズ法等の液体急冷法により製造さ
れる。第1図に示すように、原料粉末1aは、その外周
部2に酸素ガスが拡散している層を有し、また外表面は
酸化膜3により覆われていることもある。
(3) The amorphous single-phase alloy powder, the mixed alloy powder containing an amorphous phase and a crystalline phase, and the supersaturated solid solution powder having a composition similar to the amorphous forming composition used as the raw material powder in the examples are as follows: Manufactured by a liquid quenching method such as high-pressure helium gas atomization method. As shown in FIG. 1, the raw material powder 1a has a layer on its outer periphery 2 in which oxygen gas is diffused, and the outer surface may be covered with an oxide film 3.

前記非晶質単相合金粉末としては、AiA、、Ni、Y
、、、All@aN f IoCeh 、 Aj!ma
N j +oD Vh 、A1m5N is Y@CO
x 、AfssF et、s Yq、s 、AfeoN
 i IoCa to、M g *zN i s Y 
to、MgtiNi+oCe1oCr4 (数値は原子
%)等の組成を有する合金粉末が該当する。
The amorphous single phase alloy powder includes AiA, Ni, Y
,,,All@aN f IoCeh, Aj! ma
N j +oD Vh , A1m5N is Y@CO
x, AfssF et, s Yq, s, AfeoN
i IoCa to, M g *zN i s Y
This corresponds to an alloy powder having a composition such as to, MgtiNi+oCe1oCr4 (values are atomic %).

また前記混和合金粉末としては、An!*zFesY3
 、Aj!s3N is Y+。Bz 、Aj2s3N
 i5 Y+。
Further, as the mixed alloy powder, An! *zFesY3
,Aj! s3N is Y+. Bz, Aj2s3N
i5 Y+.

Nbz 、A1.ssN 14 Cab 、A1.oN
 It Y3、AfHF e6 Y3 、Mg5sN 
is Ceq 、MgmbN ih Ys  (数値は
原子%)等の組成を有する合金粉末が該当する。
Nbz, A1. ssN 14 Cab, A1. oN
It Y3, AfHF e6 Y3, Mg5sN
This includes alloy powders having compositions such as is Ceq and MgmbN ih Ys (values are in atomic %).

さらに前記過飽和固溶体粉末としては、AlqzN 1
 s Ys 、A f ?。N 16Dy4 、Alq
xN 14Dya 、Aj2qoN is Cas 、
AlqaFex Y3、Mg5sN is Y7 、M
g5sN ih Ceh  (数値は原子%)等の組成
を有する合金粉末が該当する。
Further, as the supersaturated solid solution powder, AlqzN 1
s Ys, A f? . N 16Dy4 , Alq
xN 14Dya, Aj2qoN is Cas,
AlqaFex Y3, Mg5sN is Y7, M
An alloy powder having a composition such as g5sN ih Ceh (values are atomic %) falls under this category.

なお、組成上は前記非晶質単相合金粉末と同一であって
も、製造時における冷却速度の差に伴い平均直径の小さ
なものは非晶質単相合金粉末となり、また平均直径が大
きなものは結晶質単相合金粉末となり、さらに平均直径
がそれらの中間であるものは非晶質相と結晶質相との混
相合金粉末となる。
In addition, even if the composition is the same as the amorphous single-phase alloy powder, due to the difference in cooling rate during production, those with a small average diameter will become amorphous single-phase alloy powder, and those with a large average diameter will become amorphous single-phase alloy powder. is a crystalline single-phase alloy powder, and when the average diameter is between these, it is a mixed-phase alloy powder of an amorphous phase and a crystalline phase.

一例として、A j2 ssN I s Ys  CO
2(数値は原子%)の組成を有する溶湯を調製し、その
溶湯を用いて高圧ヘリウムガスアトマイズ法の適用下合
金粉末を製造した。
As an example, A j2 ssN I s Ys CO
A molten metal having a composition of 2 (values are atomic %) was prepared, and the molten metal was used to produce alloy powder by applying a high-pressure helium gas atomization method.

この合金粉末において、平均直径22μm未満の粉末は
、その全体が非晶質相よりなり、したがって非晶質単相
合金粉末である。この非晶質単相合金粉末の結晶化温度
Txは299.5°Cである。
In this alloy powder, the powder having an average diameter of less than 22 μm consists entirely of an amorphous phase, and is therefore an amorphous single-phase alloy powder. The crystallization temperature Tx of this amorphous single-phase alloy powder is 299.5°C.

また平均直径22μm以上、44μm以下の粉末は、非
晶質相と結晶質相とよりなり、したがって混相合金粉末
である。さらに平均直径44μmを超える粉末は、その
全体が結晶質相よりなり、したがって結晶質単相合金粉
末である。
Further, powder having an average diameter of 22 μm or more and 44 μm or less consists of an amorphous phase and a crystalline phase, and is therefore a mixed phase alloy powder. Moreover, powders with an average diameter of more than 44 μm consist entirely of crystalline phases, and are therefore crystalline single-phase alloy powders.

各粉末についてオージェ分析および成分分析を行ったと
ころ、第2図および表■の結果を得た。
When each powder was subjected to Auger analysis and component analysis, the results shown in FIG. 2 and Table 2 were obtained.

第2図において、線Aは非晶質単相合金粉末の酸素ガス
量を、また線Bは結晶質単相合金粉末の酸素ガス量をそ
れぞれ示す。線Aの斜線部において、alは非晶質単相
合金粉末の外周部(第1図の外周部2に対応する)に対
応し、したがって酸素ガスが拡散している層が存するこ
とを表わしている。またa2は前記外周部における酸素
ガス量を表わす、線Bにおいては、前記のような斜線部
は表われず、したがって結晶質単相合金粉末の外周部に
は酸素ガスが拡散している層は存しない。
In FIG. 2, line A indicates the amount of oxygen gas in the amorphous single-phase alloy powder, and line B indicates the amount of oxygen gas in the crystalline single-phase alloy powder. In the shaded area of line A, al corresponds to the outer periphery of the amorphous single-phase alloy powder (corresponding to outer periphery 2 in Fig. 1), and therefore indicates that there is a layer in which oxygen gas is diffused. There is. In addition, a2 represents the amount of oxygen gas at the outer periphery. In line B, the shaded area as described above does not appear, so there is no layer in which oxygen gas is diffused in the outer periphery of the crystalline single-phase alloy powder. Does not exist.

表      ■ 次いで、第3図(a)に示すように、原料粉末である非
晶質単相合金粉末1aをアルミニウム合金(AA規格 
6061材)よりなる縮体5に入れて集合体1とし、そ
の縮体5を、開口6を開けた状態で真空チャンバ7内に
設置した。そして、真空チャンハフ内を3 X 10−
5Torrまで減圧した状態で集合体1をそれの結晶化
温度Tx以上の温度まで加熱して、その集合体lに脱ガ
ス処理を施した。この脱ガス処理により、集合体1に含
まれた酸素ガス(および水素ガス)の大部分が排出され
るので、真空チャンバ7内の真空度が下がるが、所定時
間経過後再び真空度が当初の3 X 10−’T。
Table ■ Next, as shown in Figure 3(a), the raw material powder, amorphous single-phase alloy powder 1a, was mixed with an aluminum alloy (AA standard).
6061 material) to form an aggregate 1, and the shrunken body 5 was placed in a vacuum chamber 7 with an opening 6 open. Then, inside the vacuum chamber, 3 x 10-
The aggregate 1 was heated to a temperature equal to or higher than its crystallization temperature Tx while the pressure was reduced to 5 Torr, and the aggregate 1 was subjected to a degassing treatment. Through this degassing process, most of the oxygen gas (and hydrogen gas) contained in the assembly 1 is exhausted, so the degree of vacuum in the vacuum chamber 7 decreases, but after a predetermined period of time, the degree of vacuum returns to the original level. 3 x 10-'T.

rrまで戻るので、その時点まで加熱状態を続行した。Since the temperature returned to rr, the heating state was continued until that point.

例えば、加熱温度を450°Cに設定した場合、その温
度に達した後約7分間で当初の真空度に戻ることが確認
されている。また前記脱ガス処理により非晶質単相合金
粉末1aは結晶化して結晶質単相合金粉末(便宜上、相
変化合金粉末ICという)に変化する。
For example, when the heating temperature is set to 450°C, it has been confirmed that the original degree of vacuum returns to the original degree of vacuum in about 7 minutes after reaching that temperature. Further, by the degassing treatment, the amorphous single-phase alloy powder 1a is crystallized and changed into a crystalline single-phase alloy powder (for convenience, referred to as phase change alloy powder IC).

次いで、真空チャンバ7内にアルゴンガスを導入しなが
ら集合体1を冷却し、十分温度が下がったとき、第3図
(b)に示すように縮体5の開口6に栓8をして、その
縮体5を真空チャンバ7内から取出した。
Next, the assembly 1 is cooled while introducing argon gas into the vacuum chamber 7, and when the temperature has dropped sufficiently, a stopper 8 is placed in the opening 6 of the contraction body 5, as shown in FIG. 3(b). The reduced body 5 was taken out from the vacuum chamber 7.

二のような操作を、脱ガス処理時の加熱温度を変化させ
て行い、その後、グローブボンクス内をアルゴンガス雰
囲気下に保持して、脱ガス処理により得られた相変化合
金粉末についてオージェ分析を行った。
The operations described in step 2 are performed by varying the heating temperature during the degassing treatment, and then the inside of the glove box is maintained in an argon gas atmosphere, and the phase change alloy powder obtained by the degassing treatment is subjected to Auger analysis. I did it.

第2図線Cは相変化合金粉末ICの酸素ガス量を示し、
線Cから明らかなように、その線Cでは、線Aの斜線部
は略消失しており、これは非晶質単相合金粉末1aの外
周部に存在していた酸素ガスの大部分が排出されたこと
を意味する。
Line C in Figure 2 shows the amount of oxygen gas in the phase change alloy powder IC,
As is clear from line C, the shaded part of line A has almost disappeared, and this is because most of the oxygen gas that was present in the outer periphery of the amorphous single-phase alloy powder 1a has been exhausted. means that it has been done.

表■は成分分析結果を示す。Table ■ shows the results of component analysis.

表 ■ 表■から明らかなように、前記組成を有する非晶質単相
合金粉末においては、脱ガス処理時の加熱温度400°
C以上にて酸素ガス排出作用が発生することが判る。
Table ■ As is clear from Table ■, in the amorphous single-phase alloy powder having the above composition, the heating temperature during degassing treatment was 400°.
It can be seen that the oxygen gas discharge effect occurs at temperatures above C.

なお、表Iに示した結晶質単相合金粉末においては、前
記脱ガス処理による酸素ガス排出作用は認められなかっ
た。
In addition, in the crystalline single-phase alloy powder shown in Table I, no oxygen gas discharge effect was observed due to the degassing treatment.

(実施例I〕 A j2ssN i s Ys Co z  (数値は
原子%)の組成を有する平均直径22μm未満の非晶質
単相合金粉末(酸素ガス量0.14重量%、結晶化温度
Tχ299.5°C)を原料粉末として選定した。
(Example I) Amorphous single-phase alloy powder with an average diameter of less than 22 μm having a composition of A j2ssN i s Ys Co z (values are atomic %) (oxygen gas amount 0.14% by weight, crystallization temperature Tχ299.5 °C) was selected as the raw material powder.

第4図に示すように、ホントプレス装置9の真空チャン
バ10内に内径30閣のダイス11を設置し、そのダイ
ス11内に原料粉末1aを入れて集合体1とし、真空チ
ャンバ10内を真空度3×10−’Torr以下に保持
した状態でヒータ12により集合体1をそれの結晶化温
度Tx以上に加熱し、その集合体1に脱ガス処理を施し
た。
As shown in FIG. 4, a die 11 with an inner diameter of 30 mm is installed in the vacuum chamber 10 of the real press device 9, and the raw material powder 1a is put into the die 11 to form an aggregate 1, and the vacuum chamber 10 is vacuumed. The aggregate 1 was heated to a temperature equal to or higher than its crystallization temperature Tx by the heater 12 while the temperature was maintained at 3×10 −' Torr or less, and the aggregate 1 was subjected to a degassing treatment.

次いで、集合体1に、ポンチ13の加圧力30トンの条
件下で加圧成形処理を施して焼結を行い、各種構造部材
1〜■を得た。
Next, the aggregate 1 was subjected to pressure molding treatment under conditions of a pressing force of 30 tons from the punch 13 and sintered, thereby obtaining various structural members 1 to (2).

同様の操作を、原料粉末として前記と同一組成を有し、
且つ平均直径が44μmを超える結晶質単相合金粉末を
用いて行い、各種構造部材V〜■を得た。
The same operation is carried out with the raw material powder having the same composition as above,
Various structural members V to (2) were obtained by using crystalline single-phase alloy powder having an average diameter exceeding 44 μm.

各構造部材1〜■について密度および強度を調べたとこ
ろ、表■の結果を得た。
When the density and strength of each of the structural members 1 to (2) were examined, the results shown in Table (2) were obtained.

表     ■ 表■から明らかなように、原料粉末1aとして非晶質単
相合金粉末を用い、その集合体1に400°C以上にて
脱ガス処理を施すと、高密度、且つ高強度な構造部材■
、■を得ることができる。
Table ■ As is clear from Table ■, when an amorphous single-phase alloy powder is used as the raw material powder 1a and the aggregate 1 is degassed at 400°C or higher, a high-density and high-strength structure is formed. Part ■
,■ can be obtained.

このような構造部材■、■が得られる理由は次の通りで
ある。
The reason why such structural members (1) and (2) are obtained is as follows.

即ち、前記脱ガス処理の加熱温度を400°C以上に設
定することにより、原料粉末1aの外周部2に存する酸
素ガスが、原料粉末1a外表面に酸化膜3が存する場合
には、その酸化膜3を破砕しつ−1一方の粉末から他方
の粉末へと動き回りながら排出され、これにより原料粉
末1a外表面が活性化される。このような状況下で原料
粉末1aの集合体1に加圧成形処理を施すと、活性化さ
れた粉末外表面相互が十分に密着して、それらの間にネ
ック部(接触部)を生し、これにより原料粉末1a相互
間を十分に接合させることができるものである。
That is, by setting the heating temperature of the degassing treatment to 400°C or higher, the oxygen gas existing in the outer peripheral part 2 of the raw material powder 1a is oxidized when the oxide film 3 exists on the outer surface of the raw material powder 1a. While the membrane 3 is crushed, the powder is discharged while moving from one powder to the other, thereby activating the outer surface of the raw material powder 1a. When the aggregate 1 of the raw material powder 1a is subjected to pressure molding under these circumstances, the outer surfaces of the activated powders come into close contact with each other, creating a neck (contact) between them. This makes it possible to sufficiently bond the raw material powders 1a to each other.

このような現象は原料粉末として結晶質単相合金粉末を
用いた場合には発生しない。
Such a phenomenon does not occur when crystalline single-phase alloy powder is used as the raw material powder.

第5図は構造部材の金属組織を示す顕微鏡写真倍)であ
り、倍率10.000倍の同図(a)が原料粉末として
前記非晶質単相合金粉末を用いた場合に、また倍率1 
、500倍の同図(ロ)が原料粉末として前記結晶質単
相合金粉末を用いた場合にそれぞれ該当する0両部材は
、パンチの加圧力10トン、加圧成形開始温度450℃
の条件下で製造された。
Figure 5 is a micrograph (magnification) showing the metallographic structure of a structural member, and the same figure (a) at a magnification of 10.000 times shows the case where the amorphous single-phase alloy powder is used as the raw material powder, and the image at a magnification of 1
, 500 times the same figure (b) corresponds to the case where the above-mentioned crystalline single-phase alloy powder is used as the raw material powder.For both members, the pressing force of the punch is 10 tons, and the pressure forming start temperature is 450°C.
Manufactured under the following conditions.

第5図(a)、 (b”)を比較すると明らかなように
同図(a)の場合は原料粉末18間にネック部nが発生
していることが認められるが、同図(b)の場合はネッ
ク部nの発生は認められない。
Comparing Figures 5(a) and 5(b''), it is clear that in Figure 5(a) there is a neck part n between the raw powders 18, but in Figure 5(b) In the case of , the occurrence of neck part n is not recognized.

〔実施例■〕[Example ■]

実施例I同様にAffi8SN is ya c Ox
  (数値は原子%)の組成を有する平均直径22μm
未満の非晶質単相合金粉末(酸素ガス量0.14重量%
、結晶化温度Tχ299.5°C)を原料粉末として選
定した。
Similar to Example I, Affi8SN is ya c Ox
(values are atomic %) with an average diameter of 22 μm
Amorphous single-phase alloy powder (oxygen gas amount 0.14% by weight)
, crystallization temperature Tχ299.5°C) was selected as the raw material powder.

第4図に示すように、ホットプレス装置9の真空チャン
バ10内に内径30mm+のダイス11を設置し、その
ダイス11内に原料粉末1aを入れて集合体1とし、真
空チャンバ10内を真空度3×10−’Torr以下に
保持した状態で集合体1をヒータ12により500°C
に加熱し、その集合体1に脱ガス処理を施した。
As shown in FIG. 4, a die 11 with an inner diameter of 30 mm+ is installed in the vacuum chamber 10 of the hot press device 9, and the raw material powder 1a is put into the die 11 to form an aggregate 1, and the vacuum chamber 10 is maintained at a vacuum level. The assembly 1 is heated to 500°C by the heater 12 while maintaining the temperature below 3×10-'Torr.
The aggregate 1 was degassed.

次いで、集合体1に、パンチ13の加圧力30トン、加
圧保持時間1時間の条件下で加圧成形処理を施して1次
焼結体を得た。
Next, the aggregate 1 was subjected to pressure molding under conditions of a pressing force of 30 tons from the punch 13 and a pressure holding time of 1 hour to obtain a primary sintered body.

1次焼結体の密度は95%以上で、特に、表層部は10
0%に近く気孔は殆ど認められなかった。
The density of the primary sintered body is 95% or more, especially the surface layer has a density of 10% or more.
It was close to 0% and almost no pores were observed.

次いで、1次焼結体に、450℃、2000気圧、1時
間の条件下で熱間静水圧プレス(HIP)を施して構造
部材を得た。
Next, the primary sintered body was subjected to hot isostatic pressing (HIP) under conditions of 450° C., 2000 atm, and 1 hour to obtain a structural member.

この構造部材の密度は略100%であり、また引張強さ
σ、は88kgf/am”であって、熱間押出し材と略
同様の物性を持つことが確認された。
The density of this structural member was approximately 100%, the tensile strength σ was 88 kgf/am'', and it was confirmed that it had approximately the same physical properties as a hot extruded material.

〔実施例■〕[Example ■]

実施例■同様にA2□Ni、Y、Co□ (数値は原子
%)の組成を有する平均直径22μm未満の非晶質単相
合金粉末(酸素ガス量0.14重量%、結晶化温度T 
x 299.5°C)を原料粉末として選定した。
Example ■Amorphous single-phase alloy powder with an average diameter of less than 22 μm having a composition of A2□Ni, Y, Co□ (values are atomic%) (oxygen gas amount 0.14% by weight, crystallization temperature T)
x 299.5°C) was selected as the raw material powder.

(i)  第6図(a)に示すように、原料粉末1aを
本体14と蓋体15とよりなるゴム製鐘体16に入れて
、それに圧力4000kgf/cdの条件下で冷間静水
圧プレス(CIP)を施した。
(i) As shown in FIG. 6(a), the raw material powder 1a is put into a rubber bell body 16 consisting of a main body 14 and a lid body 15, and then subjected to a cold isostatic press under a pressure of 4000 kgf/cd. (CIP) was applied.

(ii )  同図[有])に示すように、前記冷間静
水圧プレスによって、直径58mm、長さ40m1.密
度78%の短円柱状圧粉体、したがって原料粉末の集合
体lを得た。
(ii) As shown in the same figure, a diameter of 58 mm and a length of 40 m1. A short cylindrical green compact having a density of 78%, thus an aggregate l of raw material powder was obtained.

(ij)  同図(C)に示すように、集合体Iを、ア
ルミニウム合金(AA規格 6061材)よりなる縮体
18に装填した。この縮体18は、外径78圓、長さ7
0■の本体19と、その本体19の開口に溶接される蓋
体20とよりなり、その蓋体20は本体19の内外を連
通ずる通気管21を有する・            
 7 (1v)  同図(d)に示すように、縮体18と共に
集合体1を単動式熱間押出し加工機22のコンテナ23
に装填した。この場合、通気管21はダイス24のダイ
ス孔25を貫通してダイハツカ26内に延びている。
(ij) As shown in FIG. 2C, the aggregate I was loaded into a shrunken body 18 made of aluminum alloy (AA standard 6061 material). This reduced body 18 has an outer diameter of 78 mm and a length of 78 mm.
It consists of a main body 19 and a lid 20 welded to the opening of the main body 19, and the lid 20 has a ventilation pipe 21 that communicates the inside and outside of the main body 19.
7 (1v) As shown in FIG. 7(d), the aggregate 1 together with the contracted body 18 is transferred to the container 23 of the single-acting hot extrusion processing machine 22.
loaded into. In this case, the vent pipe 21 passes through the die hole 25 of the die 24 and extends into the die cutter 26 .

熱間押出し加工機22において、最大加圧力は500ト
ン、コンテナ23の内径は80m1、コンテナ23の予
熱温度は470℃に設定された。
In the hot extrusion processing machine 22, the maximum pressing force was set to 500 tons, the inner diameter of the container 23 was set to 80 m1, and the preheating temperature of the container 23 was set to 470°C.

次いで通気管21に真空ポンプ27をゴム管28を介し
て接続し、縮体18内を減圧した。縮体18内の真空度
が10−’Torrを超えた時点でステム29を前進さ
せてダミーブロック30を介し罐体18に約120トン
の荷重を作用させた。これにより成体18が変形してコ
ンテナ23に密着するので、集合体1の温度が急速に上
昇し、約7分間で450℃に達する。
Next, a vacuum pump 27 was connected to the ventilation pipe 21 via a rubber pipe 28 to reduce the pressure inside the compressed body 18. When the degree of vacuum in the compacted body 18 exceeded 10-' Torr, the stem 29 was advanced to apply a load of about 120 tons to the housing 18 via the dummy block 30. As a result, the adult body 18 deforms and comes into close contact with the container 23, so that the temperature of the aggregate 1 rapidly rises and reaches 450° C. in about 7 minutes.

この加熱および減圧作用によって集合体lに脱ガス処理
が施され、この脱ガスに伴い成体18内の真空度は低下
するが、集合体1の温度が450°Cに達してから約7
分後にはl 0−5Torrを超えた状態に復帰した。
This heating and depressurization action degasses the aggregate 1, and the degree of vacuum inside the aggregate 18 decreases due to this degassing, but after the temperature of the aggregate 1 reaches 450°C, approximately 7
Minutes later, the temperature returned to above 10-5 Torr.

この温度下における保持時間は、集合体lの密度、組成
、組織等により異なるが、1分間〜2時間に設定される
。この製造例では、成体18内の真空度が10−’To
rrに復帰した時、成体18と共に集合体1を押出して
、粉末相互間を焼結することにより丸棒状構造部材■を
得た。この場合、ダイス孔25の直径および押出し圧力
を変えて、3種類の構造部材■を製造した。
The holding time at this temperature varies depending on the density, composition, structure, etc. of the aggregate 1, but is set to 1 minute to 2 hours. In this production example, the degree of vacuum inside the compact 18 is 10-'To
When the temperature returned to rr, the aggregate 1 was extruded together with the compact 18, and the powders were sintered to obtain a round bar-shaped structural member (2). In this case, three types of structural members (2) were manufactured by changing the diameter of the die hole 25 and the extrusion pressure.

また原料粉末として、AI!*zFes Ys  (数
値は原子%)の組成を有する平均直径22μm未満の混
相合金粉末(酸素ガス量0.15重量%、結晶化温度T
 x 3 B 4.2°C)を選定し、前記と同一条件
下で3種類の丸棒状構造部材Xを得た。
Also, as a raw material powder, AI! *Mixed-phase alloy powder with an average diameter of less than 22 μm and having a composition of zFes Ys (values are atomic%) (oxygen gas amount 0.15% by weight, crystallization temperature T
x 3 B 4.2°C), and three types of round rod-shaped structural members X were obtained under the same conditions as above.

さらに原料粉末として、89重量%A!、6重量%Cr
、2重量%Zr、3重量%Feの組成を有する平均直径
22μm未満の急冷凝固合金粉末(結晶質単相合金粉末
、酸素ガス量0.27重量%)を選定し、前記と同一条
件下で比較例としての3種類の丸棒状構造部材XIを得
た。
Furthermore, as a raw material powder, 89% by weight A! , 6% by weight Cr
A rapidly solidified alloy powder (crystalline single-phase alloy powder, oxygen gas amount: 0.27 wt%) with an average diameter of less than 22 μm and having a composition of , 2 wt% Zr, and 3 wt% Fe was selected, and it was heated under the same conditions as above. Three types of round bar-shaped structural members XI were obtained as comparative examples.

表■は、各種構造部材■〜XIの製造条件と物性とを比
較したものである。
Table (2) compares the manufacturing conditions and physical properties of various structural members (1) to (XI).

表■から明らかなように、本発明による構造部材■、X
においては、破壊が粉末内部で発生していることから、
ダイス孔25の直径の変化、したがって加工比の変化に
それ程影響されずに、脱ガスに伴う粉末界面での接合が
十分に行われ、高強度化が達成されている。
As is clear from Table ■, structural members ■, X according to the present invention
In this case, since the destruction occurs inside the powder,
Bonding at the powder interface due to degassing is sufficiently performed without being affected by changes in the diameter of the die hole 25, and hence changes in processing ratio, and high strength is achieved.

一方、比較例である構造部材XIにおいては、加工比が
低いと、粉末界面での接合が十分に行われないため低強
度となり、また加工比が高い場合にも本発明による構造
部材IX、 Xに比べて強度が大幅に低くなる。これは
、酸素ガス量が加工前後において変化せず、したがって
比較例においては、本発明における脱ガス作用が全熱発
生していないことに起因する。
On the other hand, in structural member XI, which is a comparative example, when the processing ratio is low, the bonding at the powder interface is not sufficiently performed, resulting in low strength, and even when the processing ratio is high, structural members IX, The strength is significantly lower than that of This is because the amount of oxygen gas does not change before and after processing, and therefore, in the comparative example, the degassing effect in the present invention does not generate total heat.

〔実施例■〕[Example ■]

実施例■同様にA1@sN i5 YB CO2(数値
は原子%)の組成を有する平均直径22μm未満の非晶
質単相合金粉末(酸素ガス量0.14重量%、結晶化温
度T x 299.5℃)を原料粉末として選定した。
Similarly to Example 2, an amorphous single-phase alloy powder with an average diameter of less than 22 μm and having the composition A1@sN i5 YB CO2 (values are atomic %) (oxygen gas amount 0.14% by weight, crystallization temperature T x 299. 5°C) was selected as the raw material powder.

(i)  第7図(a)に示すように、原料粉末1aを
アルミニウム合金(AA規格 6061材)よりなる成
体31に略半分程度入れた。この成体31の寸法は、外
径78mm、内径58m+、長さ200謹、厚さ20m
mである。
(i) As shown in FIG. 7(a), about half of the raw material powder 1a was put into a compact 31 made of aluminum alloy (AA standard 6061 material). The dimensions of this adult body 31 are an outer diameter of 78 mm, an inner diameter of 58 m+, a length of 200 m, and a thickness of 20 m.
It is m.

(ii)  同図(b)に示すように、成体31をダイ
ス32内に設置し、原料粉末1aをポンチ33により加
圧力160 kg f /wm”で加圧して密度95%
の圧粉体、したがって集合体1を成形した。
(ii) As shown in Figure (b), the compact 31 is placed in the die 32, and the raw material powder 1a is pressed with a pressure of 160 kgf/wm'' by the punch 33 to give a density of 95%.
The green compact, and therefore the aggregate 1, was molded.

同図(C)に示すように、成体31に機械加工を施して
その長さを集合体1の長さに略等しくした。
As shown in FIG. 3C, the adult body 31 was machined to have a length substantially equal to the length of the aggregate 1.

集合体の寸法は、直径60mm、長さ40圓であり、成
体31の寸法は外径78mm、長さ60mmである。
The dimensions of the aggregate are 60 mm in diameter and 40 mm in length, and the dimensions of the adult body 31 are 78 mm in outer diameter and 60 mm in length.

(ji)  この集合体1を、成体31の底壁を押出し
方向前側に位置させて、第6図の単動式熱間押出し加工
機22のコンテナ23に装填した。この場合、コンテナ
23の予熱温度は470℃に設定された。
(ji) This aggregate 1 was loaded into the container 23 of the single-action hot extrusion processing machine 22 shown in FIG. 6, with the bottom wall of the adult body 31 positioned on the front side in the extrusion direction. In this case, the preheating temperature of the container 23 was set to 470°C.

次いで、ステム29を前進させてダミーブロック30を
介し成体31に約200トンの荷重を作用させた。これ
により、成体31が変形してコンテナ23に密着するの
で、集合体1の温度が急速に上昇し、約7分間で450
°Cに達する。その後直ちに成体31と共に集合体lを
押出して、粉末相互間を焼結することにより丸棒状構造
部材を得た。
Next, the stem 29 was advanced to apply a load of about 200 tons to the adult body 31 through the dummy block 30. As a result, the adult body 31 deforms and adheres closely to the container 23, so the temperature of the aggregate 1 rises rapidly, and the temperature rises to 450 degrees in about 7 minutes.
reach °C. Immediately thereafter, the aggregate 1 was extruded together with the compact 31, and the powders were sintered to obtain a round bar-shaped structural member.

この構造部材には、真空下で脱ガス処理を行わなかった
ことに起因して残存水素ガスによる気孔が存在するので
、その引張強さσ6は62kgfl■2程度であって、
実施例■で得られた構造部材IX、 Xに比べて低いが
、酸素ガス量はそれら部材IX、  Xと同じであった
。これは真空下でなくても、酸素ガスの除去が行われて
いることを意味する。
This structural member has pores due to residual hydrogen gas due to not performing degassing treatment under vacuum, so its tensile strength σ6 is approximately 62 kgfl■2,
Although the oxygen gas amount was lower than that of structural members IX and X obtained in Example ①, the amount of oxygen gas was the same as those of structural members IX and X. This means that oxygen gas is removed even if it is not under vacuum.

C1発明の効果 本発明によれば、前記のように特定された原料粉末を用
い、また焼結工程で酸素ガスの排出および加圧成形を行
うことによって、粉末相互間を十分に接合させた高強度
な構造部材を得ることができる。
C1 Effects of the Invention According to the present invention, by using the raw material powder specified as described above, and by discharging oxygen gas and performing pressure molding in the sintering process, a high-density product with sufficient bonding between the powders is produced. A strong structural member can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は原料粉末の説明図、第2図はオージェ分析図、
第3図は脱ガス処理の説明図、第4図はホットプレス装
置の説明図、第5図は構造部材の金属組織を示す顕微鏡
写真、第6図は構造部材の製造側説明図、第7図は集合
体の成形工程説明図である。 l・・・集合体、1a・・・原料粉末、2・・・外周部
、9・・・ホットプレス装置、22・・・熱間押出し加
工機第1図 第2図 浅い←粉末表面からのaさ一→深い 第3図 (a) (b) 第4図 第5図 (b)
Figure 1 is an explanatory diagram of the raw material powder, Figure 2 is an Auger analysis diagram,
Figure 3 is an explanatory diagram of the degassing process, Figure 4 is an explanatory diagram of the hot press equipment, Figure 5 is a micrograph showing the metal structure of the structural member, Figure 6 is an explanatory diagram of the manufacturing side of the structural member, and Figure 7 is an explanatory diagram of the manufacturing side of the structural member. The figure is an explanatory diagram of the forming process of the aggregate. l...Aggregation, 1a...Raw material powder, 2...Outer periphery, 9...Hot press device, 22...Hot extrusion processing machine Figure 1 Figure 2 Shallow ← From the powder surface a Saichi → deep Fig. 3 (a) (b) Fig. 4 Fig. 5 (b)

Claims (1)

【特許請求の範囲】[Claims] 原料粉末(1a)を焼結して高強度構造部材を製造する
に当り、前記原料粉末(1a)として、非晶質単相合金
粉末、非晶質相と結晶質相とを含む混相合金粉末、およ
び非晶質相形成組成に近似した組成を有する過飽和固溶
体粉末から選択される少なくとも一種であって、外周部
(2)に酸素ガスが拡散している合金粉末を用い、焼結
工程において、前記原料粉末(1a)の集合体(1)か
ら前記酸素ガスを排出させると共にその集合体(1)に
加圧成形処理を施すことを特徴とする高強度構造部材の
製造方法。
In producing a high-strength structural member by sintering the raw material powder (1a), the raw material powder (1a) may be an amorphous single-phase alloy powder or a mixed-phase alloy powder containing an amorphous phase and a crystalline phase. , and a supersaturated solid solution powder having a composition similar to an amorphous phase forming composition, using an alloy powder in which oxygen gas is diffused in the outer peripheral part (2), and in the sintering step, A method for manufacturing a high-strength structural member, characterized in that the oxygen gas is discharged from the aggregate (1) of the raw material powder (1a), and the aggregate (1) is subjected to a pressure molding process.
JP2141836A 1990-05-31 1990-05-31 Manufacture of high strength structural member Pending JPH0436408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2141836A JPH0436408A (en) 1990-05-31 1990-05-31 Manufacture of high strength structural member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2141836A JPH0436408A (en) 1990-05-31 1990-05-31 Manufacture of high strength structural member

Publications (1)

Publication Number Publication Date
JPH0436408A true JPH0436408A (en) 1992-02-06

Family

ID=15301273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2141836A Pending JPH0436408A (en) 1990-05-31 1990-05-31 Manufacture of high strength structural member

Country Status (1)

Country Link
JP (1) JPH0436408A (en)

Similar Documents

Publication Publication Date Title
US5561829A (en) Method of producing structural metal matrix composite products from a blend of powders
US2809891A (en) Method of making articles from aluminous metal powder
JP4860029B2 (en) Method for manufacturing high-density sputter target made of two or more metals
JPH11172425A (en) Production of sputtering target
EP2325342B1 (en) Hot compaction and extrusion of L12 aluminum alloys
JPS6347304A (en) Powder metallurgical method for producing compact having high strength and low relative density from heat resistant aluminum alloy
US5445787A (en) Method of extruding refractory metals and alloys and an extruded product made thereby
JPH0130898B2 (en)
US4410488A (en) Powder metallurgical process for producing a copper-based shape-memory alloy
JP3113144B2 (en) Method for producing high density sintered titanium alloy
JPH0436408A (en) Manufacture of high strength structural member
JPS62224602A (en) Production of sintered aluminum alloy forging
JPH02259029A (en) Manufacture of aluminide
US5709758A (en) Process for producing structural member of aluminum alloy
JP3551355B2 (en) Ru target and method of manufacturing the same
JP2860427B2 (en) Method for producing sintered body made of amorphous alloy powder
JPS6360265A (en) Production of aluminum alloy member
JP2596205B2 (en) Manufacturing method of Al alloy powder compact
JPH04131304A (en) Manufacture of al-si alloy sintered forging member
JPS62278240A (en) Compacting method for ti-al intermetallic compound member
JPS62199703A (en) Hot hydrostatic compression molding method for al-si powder alloy
JPH0436404A (en) Manufacture of high strength structural member
JPS62188735A (en) Manufacture of tini alloy wire or plate
JPH03173705A (en) Production of high density sintered body
JPS5822307A (en) Method of hot hydrostatic pressure press treatment using hydraulic pressure