JPH04363872A - Sealed lead-acid battery - Google Patents

Sealed lead-acid battery

Info

Publication number
JPH04363872A
JPH04363872A JP3163800A JP16380091A JPH04363872A JP H04363872 A JPH04363872 A JP H04363872A JP 3163800 A JP3163800 A JP 3163800A JP 16380091 A JP16380091 A JP 16380091A JP H04363872 A JPH04363872 A JP H04363872A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
expanded
negative electrode
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3163800A
Other languages
Japanese (ja)
Other versions
JP3146438B2 (en
Inventor
Takao Omae
孝夫 大前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP16380091A priority Critical patent/JP3146438B2/en
Publication of JPH04363872A publication Critical patent/JPH04363872A/en
Application granted granted Critical
Publication of JP3146438B2 publication Critical patent/JP3146438B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To reduce the weight, extend the life and reduce the cost of a sealed lead-acid battery by using an expanded grating as a positive electrode, charging and disposing a silica fine powder in the clearance with a negative electrode plate and around the electrodes, and impregnating and holding a sulfuric acid electrolyte therein. CONSTITUTION:A general Pb-Ca alloy sheet containing 0.7-1.5wt.% of Sb, 0.02-0.12wt.% of Ca, and 0-1.0wt.% of Sn is expanded to form an expanded grating, and a positive electrode active material is charged therein to form a positive electrode plate 1. The Pb alloy for a negative electrode grating is a general Pb-Ca alloy containing 0.05-0.12wt.% of Ca and 0-0.15wt.% of Sn, and the grating is formed by expanding the allay sheet. Small projections 3 are dispersively arranged on a separator 3. The positive and negative electrode plates and the separator are laminated to form an electrode plate group, which is inserted in a battery jar, and a silica fine powder 8 is charged therein. The powder 8 is fixed by a foamed resin plate 9. The battery jar is sealed by a lid 12, and a necessary amount of a sulfuric acid electrolyte is impregnated in and held by the fine powder and the positive and negative electrode plates. According to this constitution, no deformation is caused even if the expanded grating is used in the positive electrode, and a light-weighted, long-lived, and inexpensive sealed Pb storage battery can be provided.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は密閉式鉛蓄電池の改良に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvements in sealed lead-acid batteries.

【0002】0002

【従来の技術とその課題】現在、鉛蓄電池は自動車用、
産業用をはじめとしてあらゆる分野で広く用いられてい
る。そして軽量化、無保守化(密閉化)、コストダウン
が市場からの潜在的な要求となっている。
[Conventional technology and its issues] Currently, lead-acid batteries are used for automobiles,
It is widely used in all fields including industrial use. Light weight, no maintenance (sealing), and cost reduction are latent demands from the market.

【0003】軽量化のために、例えば格子を軽くするこ
とが行われている。ペースト式極板の格子体の製造には
、鋳造法によるものとエキスパンド法によるものが一般
に広く用いられている。
[0003] In order to reduce the weight, for example, the grid is made lighter. Casting methods and expanding methods are generally widely used to manufacture grid bodies for paste-type electrode plates.

【0004】鋳造は、溶融鉛を鋳型内に流し込んで凝固
させ格子を作製するために、比較的厚い格子では作製が
容易であるが、薄い格子では作製が困難になって生産性
が悪く、軽量化しにくいという欠点を有している。
[0004] Casting involves pouring molten lead into a mold and solidifying it to create a lattice, so relatively thick lattices are easy to manufacture, but thin lattices are difficult to manufacture, resulting in poor productivity and low weight. It has the disadvantage of being difficult to change.

【0005】エキスパンド法は、連続した鉛合金製のシ
ートの一部を網目状に展開して格子を作製するもので、
薄いシートを用いることで軽量化が可能である。また、
連続的に格子作製、活物質充填が行えるため、生産性が
非常に高く低コストとなる製造方法である。
[0005] The expanding method is a method in which a part of a continuous lead alloy sheet is expanded into a mesh shape to create a lattice.
Weight reduction is possible by using a thin sheet. Also,
This is a manufacturing method with extremely high productivity and low cost, as grid formation and active material filling can be performed continuously.

【0006】しかしエキスパンド格子は、シートを展開
した構造であるので機械的強度が弱く、変形し易いとい
う致命的な欠陥をもっている。鉛蓄電池の正極は、格子
の腐食や充放電による活物質の膨張、収縮のために格子
が変形しやすい。そのため、鉛蓄電池の正極にエキスパ
ンド格子を用いて寿命試験を行なった場合、格子の変形
による活物質の脱落やショートによって早期に寿命とな
ることがある。これに対し、負極は還元電位におかれる
ため正極のような腐食はおこらず、また変形もおこりに
くい。このような理由から、エキスパンド格子は一般に
変形しやすい正極には用いず、負極にのみ用いられるこ
とが多い。
[0006] However, since the expanded lattice has a structure in which sheets are expanded, it has a fatal flaw in that it has low mechanical strength and is easily deformed. The positive electrode of a lead-acid battery is susceptible to deformation of the lattice due to corrosion of the lattice and expansion and contraction of the active material due to charging and discharging. Therefore, when a life test is performed using an expanded lattice for the positive electrode of a lead-acid battery, the life may end prematurely due to dropout of the active material or short circuit due to deformation of the lattice. On the other hand, since the negative electrode is placed at a reducing potential, it does not undergo corrosion like the positive electrode, and is less likely to deform. For these reasons, the expanded lattice is generally not used for the positive electrode, which is easily deformed, but is often used only for the negative electrode.

【0007】エキスパンド格子を正極に用いるために、
鉛合金シート上に鉛−アンチモン合金や鉛−錫合金など
からなる金属箔を貼り付けたものなどが提案されている
が、基本的に変形は防げず、エキスパンド格子を正極に
用いた電池は短寿命であるという欠点は解消されるに至
っていない。
[0007] In order to use the expanded lattice for the positive electrode,
Some proposals have been made, such as pasting metal foil made of lead-antimony alloy or lead-tin alloy onto a lead alloy sheet, but this basically does not prevent deformation, and batteries using expanded lattice as the positive electrode have short lifespans. The drawback of limited lifespan has not yet been resolved.

【0008】一方、密閉化の手段としては現在、リテー
ナ式、ゲル式の2つが実用化されている。いずれも電池
の充電中に発生する酸素ガスを負極で吸収させることで
電解液の減少をなくしている。
On the other hand, two types of sealing means are currently in practical use: a retainer type and a gel type. In both cases, oxygen gas generated during battery charging is absorbed by the negative electrode, thereby eliminating the loss of electrolyte.

【0009】リテーナ式は正極板と負極板との間に微細
ガラス繊維を素材とするマット状セパレータ(ガラスセ
パレータ)を挿入し、これによって放電に必要な硫酸電
解液の保持と両極の隔離を行なっており、無保守、無漏
液、ポジションフリーなどの特徴を生かして、近年、ポ
ータブル機器やコンピュータのバックアップ電源として
広く用いられるようになってきた。
In the retainer type, a mat-like separator (glass separator) made of fine glass fiber is inserted between the positive electrode plate and the negative electrode plate, and this holds the sulfuric acid electrolyte necessary for discharge and isolates the two electrodes. In recent years, it has become widely used as a backup power source for portable equipment and computers, taking advantage of its characteristics such as no maintenance, no leakage, and no positioning.

【0010】しかし、反面ガラスセパレータが高価なこ
とや極板群を強く圧迫する必要から電槽の強度も大きく
しなければならないなど電池の製造コストが高くなる要
因が多く、さらに流動液が過剰にある電池(以下、液式
電池という)に比べて低率放電性能が劣るなどの欠点が
あって、この種の密閉電池の普及に障害となっている。
However, on the other hand, there are many factors that increase the manufacturing cost of the battery, such as the high cost of the glass separator and the need to press the electrode plate group strongly and increase the strength of the battery case. They have drawbacks such as inferior low rate discharge performance compared to certain batteries (hereinafter referred to as liquid batteries), which is an obstacle to the widespread use of this type of sealed battery.

【0011】一方、ゲル式はリテーナ式よりも安価であ
るが、電池性能が液式やリテーナ式に劣るという欠点を
有している。そしてリテーナ式、ゲル式のいずれも正極
にエキスパンド格子を用いた場合、前述したような理由
で短寿命となっている。
On the other hand, although the gel type is cheaper than the retainer type, it has the disadvantage that its battery performance is inferior to the liquid type and retainer type. In both the retainer type and gel type, when an expanded lattice is used for the positive electrode, the lifespan is short due to the reasons mentioned above.

【0012】これらのことから、軽量化、密閉化、低コ
ストという条件を満たす電池を開発するためには、正極
にエキスパンド格子が使用可能な構造で、かつ低コスト
な密閉方式とすることが最大の課題となっていた。
[0012] From the above, in order to develop a battery that satisfies the requirements of being lightweight, sealed, and low cost, it is most important to have a structure that allows the use of an expanded lattice for the positive electrode and a low-cost sealing method. This had become an issue.

【0013】[0013]

【課題を解決するための手段】エキスパンド格子を正極
に用いた場合でも、その変形を防止できる密閉化方式を
開発すれば上述した課題を解決することができる。その
ため、極板周囲に液保持性のある粉体としてシリカなど
の微粉体を充填することで極板を圧迫して変形を防止し
、さらにこの微粉体に電解液を保持させることで密閉化
をはかったことを特徴とする電池構造とした。
[Means for Solving the Problems] Even when an expanded lattice is used as a positive electrode, the above-mentioned problems can be solved by developing a sealing method that can prevent deformation of the expanded lattice. Therefore, by filling the area around the electrode plate with a fine powder such as silica that has a liquid-retaining property, it compresses the electrode plate and prevents it from deforming.Furthermore, by having this fine powder hold the electrolyte, it is possible to create a hermetic seal. The battery structure is characterized by the fact that it is thin.

【0014】[0014]

【実施例】以下、本発明を実施例に基づいて説明する。 図1は本発明による密閉形鉛蓄電池を示す概略図である
。正極板1はアンチモンフリーの鉛合金またはアンチモ
ンを少量含む鉛合金のシートを展開して作製したエキス
パンド格子に正極活物質を充填した正極板である。アン
チモンフリーの鉛合金としては、カルシウム0.02〜
0.12重量%、錫0〜1.0重量%を含む一般的な鉛
−カルシウム系合金が使用できる。
EXAMPLES The present invention will be explained below based on examples. FIG. 1 is a schematic diagram showing a sealed lead-acid battery according to the present invention. The positive electrode plate 1 is a positive electrode plate in which an expanded lattice prepared by expanding a sheet of an antimony-free lead alloy or a lead alloy containing a small amount of antimony is filled with a positive electrode active material. Antimony-free lead alloys include calcium 0.02~
A common lead-calcium alloy containing 0.12% by weight and 0-1.0% by weight of tin can be used.

【0015】本発明で電解液保持体として使用するシリ
カ微粉体は、アンチモンを吸着する特性があるので鉛シ
ートに鉛−アンチモン系合金の使用が可能である。鉛−
アンチモン系合金を用いた場合のアンチモン含有量とし
てはアンチモン0.7〜2.0重量%、とくに0.7〜
1.5重量%  が好ましい。
Since the silica fine powder used as the electrolyte holder in the present invention has the property of adsorbing antimony, it is possible to use a lead-antimony alloy for the lead sheet. Lead-
When an antimony-based alloy is used, the antimony content is 0.7 to 2.0% by weight, particularly 0.7 to 2.0% by weight.
1.5% by weight is preferred.

【0016】負極板2はアンチモンフリーの鉛合金を用
いた格子にリグニンや硫酸バリウムなどの防縮剤を添加
した通常の負極ペーストを充填して製造する。負極格子
の鉛合金はカルシウム0.05〜0.12重量%、錫0
〜0.5重量%を含む一般的な鉛−カルシウム系合金が
使用できる。負極格子は鋳造したものや鉛合金シートを
展開したエキスパンド格子あるいは打ち抜き格子などい
づれも使用可能である。
The negative electrode plate 2 is manufactured by filling a lattice made of antimony-free lead alloy with an ordinary negative electrode paste containing an antishrink agent such as lignin or barium sulfate. The lead alloy of the negative electrode grid contains 0.05 to 0.12% by weight of calcium and 0% of tin.
Common lead-calcium based alloys containing ~0.5% by weight can be used. The negative electrode grid may be a cast one, an expanded grid made of a lead alloy sheet, or a punched grid.

【0017】3は正極板と負極板との間に挿入した合成
セパレータである。厚みが薄く多孔性でかつ電気抵抗の
低いセパレータであればいづれも使用できるが、孔径の
小さすぎるセパレータはガスが透過しにくいので好まし
くない。
3 is a synthetic separator inserted between the positive electrode plate and the negative electrode plate. Although any separator can be used as long as it is thin, porous, and has low electrical resistance, separators with too small pore diameters are not preferred because they are difficult for gas to pass through.

【0018】なお、セパレータ3の片面または両面に突
起4を設ける。粉体を電解液保持体とする密閉形鉛蓄電
池では正、負極板間に粉体を均一に充填しなければなら
ないので、極板間の間隔を一定に保つ必要からこのよう
な突起を設けるのである。
Note that protrusions 4 are provided on one or both sides of the separator 3. In a sealed lead-acid battery that uses powder as an electrolyte holder, the powder must be uniformly filled between the positive and negative electrode plates, so these protrusions are provided to maintain a constant spacing between the electrode plates. be.

【0019】この突起はロール状に巻いたセパレータ用
の帯状のシートにホットメルトガンを用いて断続的に点
状または線状にホットメルト樹脂を付着させることによ
って容易に形成できる。突起を設けた部分では、セパレ
ータの空孔がブロックされてイオン電導性が失われるた
め、突起部分の占める面積を大きくするのは電池性能上
好ましくない。セパレータに占める突起部分の合計の面
積は多くとも1%以下に抑えるべきである。
These protrusions can be easily formed by applying hot melt resin intermittently in dots or lines using a hot melt gun to a rolled separator band-like sheet. Since the pores of the separator are blocked and ion conductivity is lost in the portion where the projections are provided, increasing the area occupied by the projections is not preferable in terms of battery performance. The total area of the protrusions on the separator should be kept to at most 1% or less.

【0020】このようなことから正、負極板間の距離を
一定に保つためには小さな突起を分散して設けるのがよ
い。本実施例では厚み0.25mmの合成セパレータの
片面に直径約  2mm、高さ1.2mmの突起を隔離
板の面積の約0.7%となるように設けた。
For this reason, in order to maintain a constant distance between the positive and negative electrode plates, it is preferable to provide small projections in a dispersed manner. In this example, protrusions with a diameter of about 2 mm and a height of 1.2 mm were provided on one side of a synthetic separator with a thickness of 0.25 mm so that the protrusions accounted for about 0.7% of the area of the separator.

【0021】上述した正極板、負極板および突起を設け
たセパレータとを積み重ね、正、負極板それぞれ別々に
溶接して極板群を作製し電槽5に挿入する。従来のガラ
スセパレータを用いたものでは、極板群を強く圧迫しな
ければならないので電槽への挿入が非常に困難であるが
、本発明では極板群を圧迫する必要がないので挿入は容
易である。
The above-described positive electrode plate, negative electrode plate, and separator provided with protrusions are stacked, and the positive and negative electrode plates are separately welded to form an electrode plate group, which is inserted into the battery case 5. With conventional glass separators, it is very difficult to insert the battery into the battery case because the electrode plates must be strongly pressed, but with the present invention, there is no need to press the electrode plates, so insertion is easy. It is.

【0022】極板群を電槽に挿入したのちシリカ微粉体
8を充填する。本実施例ではシリカ微粉体として、一次
粒子径が10〜40ミリミクロン、比表面積100〜1
50m2 /gの含水二酸化珪素(SiO2 /nH2
 O)微細粒子が凝集して50〜200ミクロンの二次
粒子を形成している粉体であって、安息角が25〜30
度の流動性のよい粉体を用いた。
After inserting the electrode plate group into the battery case, fine silica powder 8 is filled. In this example, the silica fine powder has a primary particle diameter of 10 to 40 millimicrons and a specific surface area of 100 to 1.
50 m2 /g of hydrated silicon dioxide (SiO2 /nH2
O) A powder in which fine particles aggregate to form secondary particles of 50 to 200 microns, and the angle of repose is 25 to 30.
A powder with good fluidity was used.

【0023】このように流動性に優れた粉体なので、電
槽内への粉体の充填は重力加速度2〜4G、振幅1〜2
mmの振動をかければ短時間に密に充填できる。また、
この粉体は、工業的に大量生産されているため非常に安
価であり、容易に入手することができる。該粉体は極板
群の正極ストラップ6および負極ストラップ7がちょう
ど埋まる程度まで充填するのがよい。
[0023] Since the powder has excellent fluidity, filling the battery container with the powder is carried out at a gravitational acceleration of 2 to 4 G and an amplitude of 1 to 2.
By applying vibration of mm, dense filling can be achieved in a short time. Also,
This powder is industrially mass-produced, so it is very inexpensive and easily available. It is preferable to fill the powder to such an extent that the positive electrode strap 6 and negative electrode strap 7 of the electrode plate group are just buried.

【0024】ついでこの粉体の上部に、連続気泡を有す
る発泡樹脂板9を挿入し、粉体層を固定した。本発明で
用いた粉体は流動性が高いので、もし粉体8を発泡樹脂
板9で固定しないと粉体粒子が容易に移動し、粉体層内
に空洞が生じてしまう。とくに未充電電池に硫酸電解液
を注液する際や初充電中のガッシングで生じやすい。粉
体層に空洞が生じるとその部分には電解液が保持されな
いので、活物質が働かなくなって目標の電池性能が得ら
れない。粉体層の固定は非常に重要である。極板群を収
納し粉体を充填したのち上述した方法で粉体層を固定す
れば、あとは電槽5と電槽フタ12を接着または溶着す
れば未充電電池が完成する。
[0024] Next, a foamed resin plate 9 having open cells was inserted above the powder to fix the powder layer. Since the powder used in the present invention has high fluidity, if the powder 8 is not fixed with the foamed resin plate 9, the powder particles will easily move and create cavities in the powder layer. This is particularly likely to occur when pouring sulfuric acid electrolyte into an uncharged battery or during gassing during initial charging. If a cavity is created in the powder layer, the electrolyte will not be retained in that part, so the active material will no longer work and the desired battery performance will not be achieved. Fixation of the powder bed is very important. After the electrode plate group is housed and filled with powder, the powder layer is fixed by the method described above, and then the battery case 5 and the battery case cover 12 are bonded or welded to complete an uncharged battery.

【0025】13は電槽フタ12と一体になった排気栓
で、14は電池内圧が上昇したときには開き、減圧され
たときは閉じるような排気弁である。排気弁14はキャ
ップ弁、リング弁、板弁など一般的に用いられるいずれ
の弁でもよい。排気弁は未充電電池に硫酸電解液を注液
後装着してもよいし、初充電後に装着してもよい。ただ
し、電池を充電してから装着する場合は充電完了後直ち
に装着しなければならない。
Reference numeral 13 is an exhaust plug integrated with the battery case lid 12, and 14 is an exhaust valve that opens when the internal pressure of the battery increases and closes when the pressure decreases. The exhaust valve 14 may be any commonly used valve such as a cap valve, ring valve, or plate valve. The exhaust valve may be attached after pouring sulfuric acid electrolyte into an uncharged battery, or may be attached after initial charging. However, if the battery is charged and then installed, it must be installed immediately after charging is complete.

【0026】次に本発明による密閉式鉛蓄電池の寿命試
験の結果を説明する。試験に供した電池は12Vの自動
車用密閉式鉛蓄電池で、公称容量は25Ahである。表
1に供試電池の内容を示す。
Next, the results of a life test of the sealed lead-acid battery according to the present invention will be explained. The battery used in the test was a 12V automotive sealed lead-acid battery with a nominal capacity of 25Ah. Table 1 shows the contents of the test battery.

【0027】[0027]

【表1】[Table 1]

【0028】電池No.1、4で用いたエキスパンド格
子には、図2に示すように、厚み1.2mmの鉛−カル
シウム−錫合金よりなる鉛シートを網目状に展開して格
子厚を1.6mmにしたものを使用した。電池No.2
,5で用いたエキスパンド格子は厚み1.2mmの鉛−
アンチモン合金よりなる鉛シートを同様に展開したもの
である。電池No.3、6で用いた鋳造格子は、厚み1
.6mmのものを鉛−カルシウム−錫合金を用いて通常
の方法で作製した。エキスパンド格子の重量は、鋳造格
子に比べて約50%軽くなった。
Battery No. As shown in Fig. 2, the expanded lattice used in 1 and 4 was made by expanding a lead sheet made of a lead-calcium-tin alloy with a thickness of 1.2 mm into a mesh shape to make the lattice thickness 1.6 mm. used. Battery No. 2
The expanded grid used in , 5 is a lead wire with a thickness of 1.2 mm.
This is a similar development of a lead sheet made of antimony alloy. Battery No. The cast grid used in 3 and 6 has a thickness of 1
.. A 6 mm piece was produced using a lead-calcium-tin alloy by a conventional method. The weight of the expanded grid was approximately 50% lighter compared to the cast grid.

【0029】負極格子には、いずれの電池についても厚
み0.6mmの鉛−カルシウム−錫合金よりなる鉛シー
トより作った図2の形状のエキスパンド格子を用いた。 正負極活物質などは通常のものを用い、電解液には比重
1.30の希硫酸を用いた。これらの電池は、充電を行
なった後、JIS  D−5301の寿命試験を行ない
、放電容量の推移を調べ容量が初期の70%に達した時
点で寿命とした。
For the negative electrode grid, an expanded grid having the shape shown in FIG. 2 made of a lead sheet made of a lead-calcium-tin alloy and having a thickness of 0.6 mm was used for each battery. Regular positive and negative electrode active materials were used, and dilute sulfuric acid with a specific gravity of 1.30 was used as the electrolyte. After these batteries were charged, they were subjected to a life test according to JIS D-5301, and the change in discharge capacity was examined, and the life was determined to have expired when the capacity reached 70% of the initial capacity.

【0030】電池重量、寿命サイクルを比較したものを
表2に示した(No.6電池のそれぞれの値を100と
した)。
Table 2 shows a comparison of battery weight and life cycle (each value of battery No. 6 was set as 100).

【0031】[0031]

【表2】[Table 2]

【0032】電池重量は、ガラスセパレータ(電池No
.4、5、6)よりもシリカ微粉体(電池No.1、2
、3)を用いた方が若干重くなった。これはシリカ微粉
体を極板周囲にまで充填しているためである。また正極
格子を鋳造格子からエキスパンド格子に変えたことで、
電池重量は約10%軽くなった。これは電池全体の重量
に占める正極格子の割合が、約20%と非常に多いため
である。本発明の電池(電池No.1、2)の電池重量
は、電池No.6に比べ92%と1割程度軽くなった。
[0032] The battery weight is determined by the glass separator (battery No.
.. 4, 5, 6) than silica fine powder (Battery No. 1, 2).
, 3) was slightly heavier. This is because the silica fine powder is filled around the electrode plate. In addition, by changing the positive electrode grid from a cast grid to an expanded grid,
The weight of the battery has been reduced by approximately 10%. This is because the positive electrode grid accounts for a very large percentage of the total weight of the battery, about 20%. The battery weight of the batteries of the present invention (Battery Nos. 1 and 2) is as follows. It is 92% lighter than 6, which is about 10% lighter.

【0033】電池No.6の寿命を100とすると、正
極格子にPb−Ca合金のエキスパンド格子を用いたリ
テーナ式電池No.4は64、Pb−Sb合金のエキス
パンド格子を用いたリテーナ式電池No.5は55と、
かなり短寿命であった。
Battery No. Assuming that the lifespan of battery No. 6 is 100, retainer type battery No. 6 uses an expanded grid of Pb-Ca alloy as the positive electrode grid. 4 is 64, a retainer type battery No. 64 using an expanded grid of Pb-Sb alloy. 5 is 55,
It had a fairly short lifespan.

【0034】電池No.4、5、6を解体したところ、
いずれの電池においても正極格子の変形が大きく、正極
活物質の脱落や伸びによるショートがみられた。特に電
池No.4、5は寿命が短いにもかかわらず、正極エキ
スパンド格子の伸びが非常に大きかった。さらに電池N
o.5では電池内の電解液がほとんど無くなっていた。 これは極板上にSbが析出し、電池内での水分解が促進
されたためと考えられる。
Battery No. After dismantling 4, 5, and 6,
In all batteries, the positive electrode lattice was significantly deformed, and short circuits were observed due to falling or elongation of the positive electrode active material. Especially battery no. Although the lifespan of samples 4 and 5 was short, the elongation of the positive electrode expanded lattice was extremely large. Furthermore, battery N
o. 5, the electrolyte in the battery was almost gone. This is thought to be because Sb was deposited on the electrode plates and water decomposition within the battery was promoted.

【0035】これらに対し正極格子にエキスパンド格子
を用い、シリカ微粉体を電解液保持体に用いた本発明に
よる電池No.1、2の寿命は190、210と、エキ
スパンド格子を用いているにもかかわらず電池No.6
の約2倍、電池No.4、5の3〜4倍であった。
On the other hand, battery No. 1 according to the present invention uses an expanded lattice for the positive electrode lattice and uses fine silica powder for the electrolyte holder. The lifespan of batteries No. 1 and 2 is 190 and 210, although they use an expanded grid. 6
Approximately twice that of battery No. It was 3 to 4 times that of 4 and 5.

【0036】電池No.1、2を解体したところ、長寿
命のわりには正極エキスパンド格子の変形は小さかった
。 これは、正極板を含む極板群全体が、その周囲にあるシ
リカ微粉体によって圧迫され、その結果、正極板の変形
が抑えられたものと考えられる。
Battery No. When samples 1 and 2 were disassembled, the deformation of the positive electrode expanded lattice was small despite the long life. This is thought to be because the entire electrode plate group including the positive electrode plate was compressed by the silica fine powder around it, and as a result, deformation of the positive electrode plate was suppressed.

【0037】電池No.2ではPb−Sb合金を使用し
たにもかかわらず、電池No.5のような電解液の枯渇
はみられなかった。これはシリカ微粉体が正極格子から
溶出したアンチモンを吸着し、アンチモンの負極板上へ
の析出が抑えられたためと思われる。電池No.2が電
池No.1よりも寿命が長かったのは、正極格子中に含
まれるアンチモンが正極活物質の劣化を少なくしたため
と思われる。
Battery No. Although battery No. 2 used a Pb-Sb alloy, battery No. No depletion of the electrolyte as in Example 5 was observed. This seems to be because the silica fine powder adsorbed antimony eluted from the positive electrode lattice, suppressing the precipitation of antimony onto the negative electrode plate. Battery No. 2 is battery number. The reason that the lifespan was longer than that of No. 1 is thought to be because the antimony contained in the positive electrode lattice reduced the deterioration of the positive electrode active material.

【0038】正極格子に鋳造格子を用い、シリカ微粉体
を電解液保持体に用いた電池No.3の寿命は、210
と電池No.1より少し長く、電池No.2と同じであ
った。 しかし、電池重量やコストなどを含め総合的に考慮した
場合、本発明の電池No.1、2の方が優れている。
Battery No. 1 uses a cast grid as the positive electrode grid and fine silica powder as the electrolyte holder. The lifespan of 3 is 210
and battery no. A little longer than 1, battery no. It was the same as 2. However, when considering comprehensively including battery weight and cost, battery No. 1 of the present invention. 1 and 2 are better.

【0039】本発明の電池では、鋳造格子の代わりにエ
キスパンド格子を用いることや、ガラスセパレータの代
わりにシリカ微粉体を用いることなどから、電池製造コ
ストを大幅に下げることが可能である。
In the battery of the present invention, since an expanded grid is used instead of a cast grid, and silica fine powder is used instead of a glass separator, the battery manufacturing cost can be significantly reduced.

【0040】今回は正極エキスパンド格子として、厚さ
1.2mmの鉛シートを図2の様に展開したものを用い
たが、格子形状や鉛シートの厚さは電池の種類、用途、
目的などによりいろいろなものが使用できる。
This time, a 1.2 mm thick lead sheet expanded as shown in Figure 2 was used as the positive electrode expanded lattice, but the lattice shape and the thickness of the lead sheet will vary depending on the type of battery, application, and
Various types can be used depending on the purpose.

【0041】エキスパンド格子の製造方法としては、現
在ロータリー式およびレシプロ式が主流となっており、
いずれも連続した鉛合金製のシートの一部を網目状に展
開、切断して図2の様な格子を作製するものである。図
3に展開部分の概略図を示すが、格子形状は、大きく分
けてきざみの入れ方、きざみ幅、X(ます目の横幅)、
Y(ます目の縦幅)によって決定される。これらを変え
ることで様々な形状の格子が作製可能である。
[0041] Currently, the rotary type and reciprocating type are the mainstream methods for manufacturing expanded gratings.
In both cases, a part of a continuous lead alloy sheet is developed into a mesh shape and cut to create a grid as shown in FIG. Figure 3 shows a schematic diagram of the developed part, and the lattice shape can be roughly divided into how to make increments, increment width, X (width of squares),
It is determined by Y (vertical width of the square). By changing these, grids of various shapes can be produced.

【0042】図4,図5に示した格子は、X=Y、X<
Yとすることで図2よりもH(格子の高さ)を大きくし
たものである。図6の格子は、格子上部と下部とでYの
値を変えて上部のます目を密にしており、格子のオーム
損の低減を図ったものである。
The lattices shown in FIGS. 4 and 5 have X=Y, X<
By setting Y, H (height of the grating) is made larger than in FIG. The grid shown in FIG. 6 is designed to reduce the ohmic loss of the grid by changing the value of Y between the upper and lower parts of the grid to make the upper squares denser.

【0043】また、格子上部や下部のみきざみ幅を大き
くしてオーム損の低減や格子強度の向上を図った格子も
作製されている。図7に示した格子は、きざみの入れ方
を変えることによって、ます目を正方形に近い形状とし
たものである。
[0043] In addition, gratings have also been manufactured in which the increments at the upper and lower portions of the grating are increased to reduce ohmic loss and improve grating strength. In the lattice shown in FIG. 7, the grid has a shape close to a square by changing the way the increments are made.

【0044】鉛シートの厚みについては、電気自動車用
電池のように軽量化が要求されるような用途では、薄い
鉛シートを使用すれば軽くて寿命性能の優れた電池が低
コストで作製できる。また、産業用などのような大容量
電池で、重量よりもコストダウンが重視される用途では
、厚めの鉛シートを使用すればその要求を満足できる電
池が得られる。さらに家電用の小型密閉式鉛蓄電池など
では、軽量化、長寿命化、コストダウンが強く求められ
るので、本発明が非常に効果的なものとなる。
Regarding the thickness of the lead sheet, in applications where weight reduction is required, such as batteries for electric vehicles, if a thin lead sheet is used, a light battery with excellent longevity can be produced at low cost. Furthermore, in applications where cost reduction is more important than weight in large-capacity batteries such as those used in industrial applications, the use of thicker lead sheets can provide a battery that satisfies the requirements. Furthermore, in the case of small sealed lead-acid batteries for home appliances, etc., there is a strong demand for weight reduction, long life, and cost reduction, making the present invention extremely effective.

【0045】以上示したように、電池重量、寿命性能、
電池製造コストなどいずれにおいても本発明の電池は優
れていた。今回は、自動車用について試験を行なったが
、前述したように電気自動車用、産業用、家電用をはじ
めあらゆる密閉式鉛蓄電池に本発明は使用可能であり、
その場合においても軽量化、長寿命化、低コスト化とい
う同様な効果を得ることができる。
As shown above, battery weight, life performance,
The battery of the present invention was excellent in all respects including battery manufacturing cost. This time, we conducted tests for automobiles, but as mentioned above, the present invention can be used for all kinds of sealed lead-acid batteries, including those for electric cars, industrial uses, and home appliances.
Even in that case, similar effects such as weight reduction, longer life, and lower cost can be obtained.

【0046】なお、上記実施例ではシリカ微粉体を用い
て試験を行ったが、耐酸性を有し、比表面積や多孔度の
大きな微粉体であればシリカ微粉体と同様な効果が得ら
れる。
[0046] In the above examples, the test was conducted using fine silica powder, but any fine powder that is acid resistant and has a large specific surface area and porosity can provide the same effects as fine silica powder.

【0047】[0047]

【発明の効果】上述の実施例からも明らかなように、本
発明による密閉式鉛蓄電池はエキスパンド格子を正極に
用い、かつ正極板と負極板との間隙および極板周囲にシ
リカ微粉体を充填、配置し充放電に必要な量の硫酸電解
液を該微粉体及び正負極板に含浸、保持させるという方
法で従来の密閉式鉛蓄電池に比べ、軽量、長寿命、低コ
ストとなるものであり、その工業的価値は甚だ大なるも
のである。
Effects of the Invention As is clear from the above embodiments, the sealed lead-acid battery according to the present invention uses an expanded lattice for the positive electrode, and fills the gap between the positive electrode plate and the negative electrode plate and the periphery of the electrode plate with fine silica powder. The fine powder and the positive and negative electrode plates are impregnated with and retained in the amount of sulfuric acid electrolyte required for charging and discharging, making it lighter, longer lasting, and lower cost than conventional sealed lead-acid batteries. , its industrial value is enormous.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明電池による密閉式鉛蓄電池の要部断面図
[Fig. 1] Cross-sectional view of main parts of a sealed lead-acid battery according to the present invention

【図2】本発明で用いたエキスパンド格子を示した図[Figure 2] Diagram showing the expanded lattice used in the present invention


図3】エキスパンド格子の展開部の概略図
[
Figure 3: Schematic diagram of the expanded portion of the expanded lattice

【図4】X=
Yとしたエキスパンド格子の例
[Figure 4] X=
Example of expanded lattice with Y

【図5】X<Yとしたエ
キスパンド格子の例
[Figure 5] Example of expanded lattice with X<Y

【図6】格子上部と下部とでYが異
なるエキスパンド格子の例
[Figure 6] Example of an expanded lattice with different Y values at the top and bottom of the lattice

【図7】ます目形状が正方形に近いエキスパンド格子の
[Figure 7] Example of an expanded lattice whose grid shape is close to square

【符号の説明】[Explanation of symbols]

1  正極板 2  負極板 3  セパレータ 4  突起 5  電槽 6  正極ストラップ 7  負極ストラップ 8  粉体 9  発泡樹脂板 10  ポール 11  セル間接続部 12  電槽フタ 13  排気栓 13  排気弁 1 Positive electrode plate 2 Negative electrode plate 3 Separator 4.Protrusion 5 Battery case 6 Positive electrode strap 7 Negative electrode strap 8 Powder 9 Foamed resin board 10 Paul 11 Inter-cell connection 12 Battery case lid 13 Exhaust plug 13 Exhaust valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  電池の充電中に発生する酸素ガスを負
極で吸収させる密閉式鉛蓄電池において、エキスパンド
格子を正極に用い、かつ正極板と負極板との間隙および
極板の周囲にシリカなどの微粉体を充填、配置し充放電
に必要な量の硫酸電解液を該微粉体及び正負極板に含浸
、保持させたことを特徴とする密閉式鉛蓄電池。
Claim 1: In a sealed lead-acid battery in which oxygen gas generated during charging of the battery is absorbed by the negative electrode, an expanded lattice is used for the positive electrode, and silica or the like is used in the gap between the positive electrode plate and the negative electrode plate and around the electrode plate. 1. A sealed lead-acid battery, characterized in that fine powder is filled and arranged, and the fine powder and positive and negative electrode plates are impregnated and retained with a sulfuric acid electrolyte in an amount necessary for charging and discharging.
JP16380091A 1991-06-07 1991-06-07 Sealed lead-acid battery Expired - Fee Related JP3146438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16380091A JP3146438B2 (en) 1991-06-07 1991-06-07 Sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16380091A JP3146438B2 (en) 1991-06-07 1991-06-07 Sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JPH04363872A true JPH04363872A (en) 1992-12-16
JP3146438B2 JP3146438B2 (en) 2001-03-19

Family

ID=15780944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16380091A Expired - Fee Related JP3146438B2 (en) 1991-06-07 1991-06-07 Sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP3146438B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273403A (en) * 2006-03-31 2007-10-18 Gs Yuasa Corporation:Kk Control valve type lead-acid battery and its charging method
US7488557B2 (en) 2002-01-30 2009-02-10 Panasonic Corporation Electrode for lead-acid battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101777210B1 (en) * 2015-12-11 2017-09-12 재단법인 포항산업과학연구원 Heating apparatus for gardening

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7488557B2 (en) 2002-01-30 2009-02-10 Panasonic Corporation Electrode for lead-acid battery
JP2007273403A (en) * 2006-03-31 2007-10-18 Gs Yuasa Corporation:Kk Control valve type lead-acid battery and its charging method

Also Published As

Publication number Publication date
JP3146438B2 (en) 2001-03-19

Similar Documents

Publication Publication Date Title
EP0443451B1 (en) Sealed lead-acid battery
EP2559084B1 (en) Battery, battery plate assembly, and method of assembly
AU2008229650A1 (en) Optimised energy storage device
US20170324098A1 (en) Battery, battery plate assembly and method of assembly
EP3352285B1 (en) Lead storage battery
WO2003067684A2 (en) Lead acid battery with gelled electrolyte formed by filtration action of absorbent separators, electrolyte therefor, and absorbent separators therefor
JPH04363872A (en) Sealed lead-acid battery
JP2003036831A (en) Sealed lead storage battery having gel electrolyte
JPH06260208A (en) Sealed lead-acid battery
JP2002093409A (en) Control valve type lead-acid battery
JPH06295718A (en) Lead-acid battery separator
JP3163510B2 (en) Sealed lead-acid battery
JP2573082B2 (en) Sealed lead-acid battery
JP2586249B2 (en) Sealed lead-acid battery
JP3266918B2 (en) Sealed lead-acid battery
JPH0693367B2 (en) Sealed lead acid battery
JPH0729595A (en) Retainer type sealed lead-acid battery
JPH04324256A (en) Manufacture of closed type lead-acid battery
JPH0636793A (en) Sealed lead-acid battery
JPH06150961A (en) Sealed lead-acid battery
JPH05343093A (en) Sealed lead acid battery
JPH05290875A (en) Sealed lead-acid battery
JP2794588B2 (en) Sealed lead-acid battery
JPH0652882A (en) Sealed lead-acid battery
JP2006066252A (en) Lead-acid storage battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090112

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees