JPH04363607A - Two-dimensional light position detector - Google Patents

Two-dimensional light position detector

Info

Publication number
JPH04363607A
JPH04363607A JP3137444A JP13744491A JPH04363607A JP H04363607 A JPH04363607 A JP H04363607A JP 3137444 A JP3137444 A JP 3137444A JP 13744491 A JP13744491 A JP 13744491A JP H04363607 A JPH04363607 A JP H04363607A
Authority
JP
Japan
Prior art keywords
layer
position detector
transparent
optical position
resistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3137444A
Other languages
Japanese (ja)
Other versions
JP2511208B2 (en
Inventor
Takahiro Moronaga
諸永 高宏
Hiroyoshi Suzuki
鈴木 尋善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP13744491A priority Critical patent/JP2511208B2/en
Publication of JPH04363607A publication Critical patent/JPH04363607A/en
Application granted granted Critical
Publication of JP2511208B2 publication Critical patent/JP2511208B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a two-dimensional light position detector which enables a position detection accuracy for a light incidence position to be improved. CONSTITUTION:A transparent resistance layer 3, a photovoltaic layer 4, and a first conductive layer 5 are laminated in sequence in a light position detector A. Two pair of crossing second conductive layers 2a-2d are provided at the transparent resistance layer 3. The transparent resistance layer 3 is constituted by a face-shaped resistance 32 and a thin-wire-shaped resistance 31 connecting between adjacent face-shaped resistances, thus enabling a position detection accuracy for a light incidence position to be improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は光の入射位置を検出す
る2次元光位置検出器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a two-dimensional optical position detector for detecting the position of incidence of light.

【0002】0002

【従来の技術】近年、高い耐久性と信頼性をもって物体
の直線変位を検出するため、電気的接触を用いる可変抵
抗器を用いた位置センサにかわり、移動体より放射ある
いは移動体で反射,透過される光を、抵抗層を有する光
位置検出器で受光し、この光位置検出器での受光位置に
より非接触に前記移動体の変位を検出する非接触位置セ
ンサが用いられている。このような光位置検出器として
、例えば特開昭61−271413号公報や特開昭63
−32305号公報等に開示されてるようなアモルファ
スシリコン半導体膜を用いたものがある。このような従
来の光位置検出器について以下に図を参照して述べる。
[Prior Art] In recent years, in order to detect the linear displacement of an object with high durability and reliability, position sensors using variable resistors that use electrical contact have been replaced with position sensors that emit radiation from a moving object or are reflected or transmitted by the moving object. A non-contact position sensor is used in which the light is received by an optical position detector having a resistive layer, and the displacement of the moving body is detected in a non-contact manner based on the light receiving position of the optical position detector. As such an optical position detector, for example, Japanese Patent Laid-Open No. 61-271413 and Japanese Patent Laid-open No. 63
There is one using an amorphous silicon semiconductor film as disclosed in Japanese Patent No. 32305 and the like. Such a conventional optical position detector will be described below with reference to the drawings.

【0003】図7(a)は従来のアモルファスシリコン
半導体膜を用いた光位置検出器の斜視図、図7(b)は
そのO−O′線に沿ったその断面を示す断面図、図8は
従来の光位置検出器を用いた位置センサである。以下、
従来装置を図7及び図8を用いて説明する。
FIG. 7(a) is a perspective view of a conventional optical position detector using an amorphous silicon semiconductor film, FIG. 7(b) is a cross-sectional view of the optical position detector taken along line O-O', and FIG. is a position sensor using a conventional optical position detector. below,
A conventional device will be explained using FIGS. 7 and 8.

【0004】図7(a),(b)において、Aは光位置
検出器であり、1は基板で、ここでは透明板ガラスであ
る場合を示し、2a,2b,2c,2dは検出電極でA
l等の金属を基板1上に蒸着にて形成した導電層であり
、3は透明抵抗層で酸化インジウムスズ(ITO)膜あ
るいは酸化スズ(SnO2 )膜をその4辺部が検出電
極2a,2b,2c,2dと重なるようスパッタ、また
は蒸着にて帯状に形成してある。
In FIGS. 7(a) and 7(b), A is an optical position detector, 1 is a substrate, in this case a transparent plate glass, and 2a, 2b, 2c, and 2d are detection electrodes A.
3 is a transparent resistance layer formed of an indium tin oxide (ITO) film or a tin oxide (SnO2) film, and its four sides are sensing electrodes 2a, 2b. , 2c, and 2d are formed into a band shape by sputtering or vapor deposition.

【0005】4はアモルファスシリコン半導体(以下、
a−Siと略称する。)光起電力層で、プラズマCVD
法等の蒸着法により透明抵抗層3上にP層,I層,N層
の順に成膜されPIN構造の光起電力層を形成し、5は
バイアス電極で同じくAl等の金属をa−Si光起電力
層4の検出領域の上に蒸着にて形成した導電層である。
4 is an amorphous silicon semiconductor (hereinafter referred to as
It is abbreviated as a-Si. ) photovoltaic layer, plasma CVD
A P layer, an I layer, and an N layer are deposited in this order on the transparent resistance layer 3 by a vapor deposition method such as a method to form a photovoltaic layer with a PIN structure. This is a conductive layer formed by vapor deposition on the detection area of the photovoltaic layer 4.

【0006】次に図8において、7はLED等の光源で
あり、a−Si光起電力層4の受光感度特性により通常
可視光源が用いられ、8はその一部に光を透過させるホ
ール81を有する2次元移動板で、光源7と光位置検出
器Aの間に配置されて光位置検出器A上に2次元的に移
動する。
Next, in FIG. 8, 7 is a light source such as an LED, and a visible light source is usually used depending on the light-receiving sensitivity characteristics of the a-Si photovoltaic layer 4, and 8 is a hole 81 that allows light to pass through a part thereof. This is a two-dimensional moving plate having a two-dimensional moving plate, which is disposed between the light source 7 and the optical position detector A, and moves two-dimensionally over the optical position detector A.

【0007】6は光位置検出器Aの出力信号に基づいて
X−Y直交座標上の光の入射位置に対応した位置検出信
号を出力する位置検出回路であり、7つの非反転増幅器
61a〜61d,62a,62c,63と、基準電圧源
65が接続された比較増幅器64とから主に構成されて
いる。
Reference numeral 6 denotes a position detection circuit that outputs a position detection signal corresponding to the incident position of light on the X-Y orthogonal coordinates based on the output signal of the optical position detector A, and includes seven non-inverting amplifiers 61a to 61d. , 62a, 62c, 63, and a comparison amplifier 64 to which a reference voltage source 65 is connected.

【0008】光位置検出器Aの検出電極2a,2b,2
c,2dが非反転増幅器61a,61b,61c,61
dの反転入力に各々接続され、バイアス電極5がバイア
ス電位(ここでは接地電位)に接続されている。
Detection electrodes 2a, 2b, 2 of optical position detector A
c, 2d are non-inverting amplifiers 61a, 61b, 61c, 61
d, and the bias electrode 5 is connected to a bias potential (here, ground potential).

【0009】また、非反転増幅器61a,61bの出力
の片側(ここでは61aの出力)が非反転増幅器62a
の反転入力に接続され、非反転増幅器62aの出力がX
座標の位置出力Vx として外部に出力される。また、
非反転増幅器61c,61dの出力の片側(ここでは6
1cの出力)が非反転増幅器62cの反転入力に接続さ
れ、非反転増幅器62cの出力がY座標の位置出力Vy
 として外部に出力される。
[0009] Also, one side of the outputs of the non-inverting amplifiers 61a and 61b (in this case, the output of 61a) is connected to the non-inverting amplifier 62a.
The output of the non-inverting amplifier 62a is connected to the inverting input of
It is output to the outside as a coordinate position output Vx. Also,
One side of the output of the non-inverting amplifiers 61c and 61d (here 6
1c) is connected to the inverting input of the non-inverting amplifier 62c, and the output of the non-inverting amplifier 62c is the Y-coordinate position output Vy.
is output externally as .

【0010】一方、非反転増幅器61a,61bの出力
の双方が非反転増幅器63の反転入力に接続され、非反
転増幅器63の出力は比較増幅器64の一方の入力に接
続されるとともに、比較増幅器64の他方の入力に基準
電圧源65の基準電圧Vref が接続され、比較増幅
器64の出力が前記光源7に接続される。
On the other hand, both the outputs of the non-inverting amplifiers 61a and 61b are connected to the inverting input of the non-inverting amplifier 63, and the output of the non-inverting amplifier 63 is connected to one input of the comparator amplifier 64. The reference voltage Vref of a reference voltage source 65 is connected to the other input of the reference voltage source 65, and the output of the comparison amplifier 64 is connected to the light source 7.

【0011】次に、図7及び図8を参照してこの従来例
の動作について説明する。光源7は比較増幅器64によ
り駆動されて発光し、この光束の一部は2次元移動板8
のホール81を透過して光位置検出器Aに入射する。
Next, the operation of this conventional example will be explained with reference to FIGS. 7 and 8. The light source 7 is driven by the comparator amplifier 64 to emit light, and a part of this light beam is transmitted to the two-dimensional moving plate 8.
The light passes through the hole 81 and enters the optical position detector A.

【0012】この光位置検出器Aの入射光は基板1、透
明抵抗層3を透過してa−Si光起電力層4に到達し、
その一部はさらにバイアス電極5で反射されて再度a−
Si光起電力層4に戻される。a−Si光起電力層4に
は、この入射光束により光起電力が発生し、入射光量に
応じた光電流Iが発生し、この光電流Iは透明抵抗層3
をその両端に設けた検出電極2a,2bおよび2c,2
dに分流する。
The incident light of this optical position detector A passes through the substrate 1 and the transparent resistance layer 3 and reaches the a-Si photovoltaic layer 4.
A part of it is further reflected by the bias electrode 5 and is again a-
It is returned to the Si photovoltaic layer 4. A photovoltaic force is generated in the a-Si photovoltaic layer 4 by this incident light flux, and a photocurrent I corresponding to the amount of incident light is generated.
Detection electrodes 2a, 2b and 2c, 2 provided at both ends thereof
Divided into d.

【0013】この時、各分流光電流をIa ,Ib ,
Ic ,Id 、検出電極2間の長さ(受光長さ)をL
X (X軸方向)、LY (Y軸方向)、透明抵抗層3
の全抵抗値Rt、検出電極2b,2dより光入射位置ま
での距離を各々x,y、その間の透明抵抗層3の抵抗値
をRx ,Ry とすれば、例えばX−Y座標のX座標
のみに着目して示すとその位置xは下記数1式で与えら
れる。
At this time, each branch photocurrent is Ia, Ib,
Ic, Id, the length between the detection electrodes 2 (light receiving length) is L
X (X-axis direction), LY (Y-axis direction), transparent resistance layer 3
, the distances from the detection electrodes 2b and 2d to the light incident position are x and y, respectively, and the resistance values of the transparent resistive layer 3 between them are Rx and Ry, then, for example, only the X coordinate of the X-Y coordinate Focusing on , the position x is given by the following equation 1.

【0014】[0014]

【数1】[Math 1]

【0015】光電流Ia ,Ib は各々非反転増幅器
61a,61bで負荷抵抗(抵抗値R)で電流電圧変換
され、各々電圧Va ,Vb となり、これらの電圧V
a ,Vb は非反転増幅器63により加算され、加算
値(Va +Vb )が所定の基準電圧Vref とな
るように比較増幅器64により光源7の発光光量が制御
される。
The photocurrents Ia and Ib are converted into voltages by load resistors (resistance value R) in non-inverting amplifiers 61a and 61b, respectively, and become voltages Va and Vb, respectively, and these voltages V
a and Vb are added by a non-inverting amplifier 63, and the amount of light emitted from the light source 7 is controlled by a comparator amplifier 64 so that the added value (Va + Vb) becomes a predetermined reference voltage Vref.

【0016】一方、非反転増幅器61aの出力は非反転
増幅器62aにより所定ゲインKが与えられて、電圧V
X として出力される。即ち、Vxは下記数2式のよう
に表わされる。
On the other hand, the output of the non-inverting amplifier 61a is given a predetermined gain K by the non-inverting amplifier 62a, and the voltage V
Output as X. That is, Vx is expressed as shown in Equation 2 below.

【0017】[0017]

【数2】[Math 2]

【0018】上記数2式は、上記数1式より下記数3式
となって表わされる。電圧Vx は光位置検出器AのX
方向の入射位置に相当する。
The above equation 2 can be expressed as the following equation 3 from the above equation 1. Voltage Vx is X of optical position detector A
Corresponds to the incident position in the direction.

【0019】[0019]

【数3】[Math 3]

【0020】同様にして、光電流Ic ,Id は各々
非反転増幅器61c,61dで負荷抵抗(抵抗値R)で
電流−電圧変換され、各々電圧Vc ,Vd となる。 非反転増幅器61cの出力は非反転増幅器62cにより
所定ゲインKが与えられて、電圧Vy として出力され
る。この電圧Vy は光位置検出器AのY方向の入射位
置に相当する。
Similarly, the photocurrents Ic and Id are current-voltage converted by load resistors (resistance value R) in non-inverting amplifiers 61c and 61d, respectively, and become voltages Vc and Vd, respectively. The output of the non-inverting amplifier 61c is given a predetermined gain K by the non-inverting amplifier 62c and is output as a voltage Vy. This voltage Vy corresponds to the incident position of the optical position detector A in the Y direction.

【0021】したがって、2次元移動板8を移動させ、
そのホール81を透過する光の光位置検出器Aへの入射
位置を検出することにより、2次元移動板8のホール8
1の位置を知ることができる。
Therefore, by moving the two-dimensional moving plate 8,
By detecting the incident position of the light transmitted through the hole 81 to the optical position detector A, the hole 8 of the two-dimensional moving plate 8 is detected.
You can know the position of 1.

【0022】[0022]

【発明が解決しようとする課題】しかしながら、従来の
2次元光位置検出器においては以下のごとき問題点があ
った。即ち、透明抵抗層3には光電流Iの他に非反転増
幅器61a,61bの入力オフセット電圧ΔVa ,Δ
Vbの差による電流ΔIが下記数4式のようになって流
れる。
However, the conventional two-dimensional optical position detector has the following problems. That is, in addition to the photocurrent I, the transparent resistance layer 3 receives input offset voltages ΔVa and Δ of the non-inverting amplifiers 61a and 61b.
A current ΔI due to the difference in Vb flows as shown in equation 4 below.

【0023】[0023]

【数4】[Math 4]

【0024】このため、実際に非反転増幅器61a,6
1bの負荷抵抗を流れる電流Ia ,Ib は入力オフ
セット電圧の極性、大きさにより例えば各々(Ia +
ΔI),(Ib −ΔI)となり位置出力Vx は下記
数5式のようになって、誤差電流ΔI,オフセット電圧
による位置検出誤差Δxが生じる。
For this reason, the non-inverting amplifiers 61a, 6
The currents Ia and Ib flowing through the load resistance 1b are, for example, (Ia +
.DELTA.I), (Ib - .DELTA.I), and the position output Vx becomes as shown in Equation 5 below, resulting in a position detection error .DELTA.x due to the error current .DELTA.I and the offset voltage.

【0025】[0025]

【数5】[Math 5]

【0026】ところが、従来の光位置検出器Aの透明抵
抗層3の抵抗値Rtは小さいため、光電流Iに対する誤
差電流ΔIの比率が無視できず、位置出力Vx の誤差
Δxが大となり、検出精度が悪いと言った問題点があっ
た。
However, since the resistance value Rt of the transparent resistive layer 3 of the conventional optical position detector A is small, the ratio of the error current ΔI to the photocurrent I cannot be ignored, and the error Δx of the position output Vx becomes large, causing detection There was a problem with poor accuracy.

【0027】かかる問題点を解決しようと透明抵抗層3
の厚さを減じて抵抗値Rt を大にすると、光電流Iに
対する誤差電流ΔIの比率は小となるが、透明抵抗層3
の膜厚の一様性が損なわれるため、位置検出誤差は結局
同様に大となる。
In order to solve this problem, the transparent resistive layer 3
When the resistance value Rt is increased by decreasing the thickness of the transparent resistive layer 3, the ratio of the error current ΔI to the photocurrent I becomes small;
Since the uniformity of the film thickness is impaired, the position detection error becomes similarly large.

【0028】また、透明抵抗層3を細線状に形成して抵
抗値Rt を上げても同様に誤差電流ΔIは小となるが
、a−Si光起電力層4の光照射領域の内、光電流に寄
与する領域はa−Si光起電力層4と透明抵抗層3が重
なりあう部分のみとなり、上記重畳面積が小さい場合に
は、入射光量に対する光電流Iもまた小となる。結局光
電流Iに対する誤差電流ΔIの比率は同様に大となり、
さらにオフセット電圧に対するR(Ia +ΔI)の比
率は逆に小となって、位置検出誤差は大となる。
Furthermore, even if the resistance value Rt is increased by forming the transparent resistance layer 3 in the shape of a thin line, the error current ΔI will similarly become small; The region that contributes to the current is only the portion where the a-Si photovoltaic layer 4 and the transparent resistance layer 3 overlap, and if the overlapping area is small, the photocurrent I with respect to the amount of incident light will also be small. Eventually, the ratio of error current ΔI to photocurrent I becomes similarly large,
Furthermore, the ratio of R(Ia +ΔI) to the offset voltage becomes smaller, and the position detection error becomes larger.

【0029】この発明は上記のような課題を解決するた
めになされたもので、光入射位置に対する位置検出精度
を向上できる2次元光位置検出器を提供することを目的
とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a two-dimensional optical position detector that can improve the accuracy of position detection with respect to a light incident position.

【0030】[0030]

【課題を解決するための手段】この発明の2次元光位置
検出器は、透明抵抗層、光起電力層、第1の導電層を積
層し、透明抵抗層に2対の直交する第2の導電層が設け
られた光位置検出器において、透明抵抗層が多数の面状
抵抗と隣接する面状抵抗間を接続する細線状抵抗で構成
したものである。
[Means for Solving the Problems] The two-dimensional optical position detector of the present invention has a transparent resistive layer, a photovoltaic layer, and a first conductive layer laminated, and the transparent resistive layer has two pairs of perpendicular second conductive layers. In an optical position detector provided with a conductive layer, the transparent resistive layer is composed of a large number of sheet resistors and thin wire resistors that connect adjacent sheet resistors.

【0031】[0031]

【作用】この発明の2次元光位置検出器は、第1の導電
層がバイアス電極の作用をし、第2の導電層が検出電極
の作用をし、光起電力層に入射した入射光の位置を多数
の面状抵抗と細線状抵抗で構成した透明抵抗層を介して
2対の各第2の導電層に流入する光電流により検出する
[Function] In the two-dimensional optical position detector of the present invention, the first conductive layer functions as a bias electrode, the second conductive layer functions as a detection electrode, and the incident light incident on the photovoltaic layer is The position is detected by photocurrent flowing into each of the two pairs of second conductive layers through a transparent resistive layer composed of a large number of sheet resistors and thin wire resistors.

【0032】[0032]

【実施例】以下、この発明の各実施例を図について説明
する。なお、各図中、同一又は相当部分には同一符号を
付してある。図1はこの発明の一実施例の2次元光位置
検出器の構成図で、(a)は斜視図、(b)はそのO−
O′線に沿ったその断面を示す断面図、図2は光位置検
出器の透明抵抗層のパターン例を示す図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the drawings. In each figure, the same or corresponding parts are given the same reference numerals. FIG. 1 is a block diagram of a two-dimensional optical position detector according to an embodiment of the present invention, in which (a) is a perspective view, and (b) is an O-
FIG. 2 is a cross-sectional view showing the cross section along the O' line, and FIG. 2 is a diagram showing an example of a pattern of a transparent resistive layer of an optical position detector.

【0033】この実施例は、基本的構成が従来例と同じ
であるが、その透明抵抗層3の構成が異なるものである
。図1において、光位置検出器Aは、例えば透明ガラス
板等の基板1上にAl等の2対の直交する検出電極2a
,2b,2c,2dが蒸着等により形成され、次に基板
1上に検出電極2a,2b,2c,2dとその両端が重
なり合うよう酸化インジウムスズ(ITO)あるいは酸
化スズ(SnO2 )をスパッタリング等により数百〜
千Åの厚さに成膜してパターン化した透明抵抗層3を形
成し、さらにこの上にプラズマCVD等の蒸着法やスパ
ッタリングにて数千Å程度のa−Si光起電力層4をP
層,I層,N層の順に透明抵抗層3の巾より広い巾で積
層し、最後にAl等のバイアス電極5を透明抵抗層3と
略同程度の巾に蒸着等で形成する。
This embodiment has the same basic structure as the conventional example, but the structure of the transparent resistance layer 3 is different. In FIG. 1, an optical position detector A includes two pairs of orthogonal detection electrodes 2a made of Al or the like on a substrate 1 such as a transparent glass plate.
, 2b, 2c, and 2d are formed by vapor deposition or the like, and then indium tin oxide (ITO) or tin oxide (SnO2) is formed on the substrate 1 by sputtering or the like so that the detection electrodes 2a, 2b, 2c, and 2d and their both ends overlap. hundreds~
A patterned transparent resistance layer 3 is formed to a thickness of 1,000 Å, and an a-Si photovoltaic layer 4 of approximately 1,000 Å is deposited on top of this by vapor deposition such as plasma CVD or sputtering.
A layer, I layer, and N layer are laminated in this order to have a width wider than the width of the transparent resistive layer 3, and finally, a bias electrode 5 made of Al or the like is formed by vapor deposition or the like to have a width approximately the same as that of the transparent resistive layer 3.

【0034】図2にも示すように、透明抵抗層3を多数
の面状抵抗32と隣接する面状抵抗32間を接続する細
線状抵抗31から構成している。この実施例の場合、面
状抵抗32は、各面が略同寸法の正方形状をなし、マト
リックス状に配列され、隣接する面状抵抗32の各辺の
中間部が細線状抵抗31により接続されている。しかも
、面状抵抗32の内で検出電極2a,2b,2c,2d
に各々隣接する面状抵抗32は細線状抵抗31を介して
隣接する検出電極2a,2b,2c,2dに各々重畳接
続されている。かかる構成の光位置検出器A等の動作は
従来例と同様なのでその説明を省略する。
As shown in FIG. 2, the transparent resistive layer 3 is composed of a large number of sheet resistors 32 and thin wire resistors 31 connecting adjacent sheet resistors 32. In the case of this embodiment, the sheet resistors 32 each have a square shape with substantially the same size on each side, are arranged in a matrix, and the intermediate portions of each side of adjacent sheet resistors 32 are connected by thin wire resistors 31. ing. Moreover, within the sheet resistor 32, the detection electrodes 2a, 2b, 2c, 2d
The planar resistors 32 adjacent to each other are connected via thin wire resistors 31 to the adjacent detection electrodes 2a, 2b, 2c, and 2d in a superimposed manner. The operation of the optical position detector A and the like having such a configuration is the same as that of the conventional example, so a description thereof will be omitted.

【0035】上記面状抵抗32間の巾(抵抗が形成され
ていない部分)は、入射光径より小さく設定するのが分
解能上で有利である。しかし、通常入射光径は面状抵抗
32の面積程度に設定されるため、極端に小とする必要
はない。
It is advantageous in terms of resolution to set the width between the planar resistors 32 (portions where no resistors are formed) to be smaller than the diameter of the incident light. However, since the diameter of the incident light is usually set to about the area of the sheet resistor 32, it is not necessary to make it extremely small.

【0036】透明抵抗層3の面状抵抗32と細線状抵抗
31は次の様にして決定すればよい。即ち、a−Si光
起電力層4に入射する光束面積をS、平均照度をE、光
電流変換効率をkとし、a−Si光起電力層4に対する
透明抵抗層3の重畳面積比をmとすれば平均光電流Iは
下記数6式で与えられる。
The sheet resistance 32 and the thin wire resistance 31 of the transparent resistance layer 3 may be determined as follows. That is, the area of the luminous flux incident on the a-Si photovoltaic layer 4 is S, the average illuminance is E, the photocurrent conversion efficiency is k, and the overlapping area ratio of the transparent resistance layer 3 to the a-Si photovoltaic layer 4 is m. Then, the average photocurrent I is given by Equation 6 below.

【0037】[0037]

【数6】[Math 6]

【0038】ここでX座標のみに注目してみれば、図8
に示す位置検出回路6における非反転増幅器61a,6
1bのオフセット電圧ΔVa ,ΔVb に対し、上記
数5式より平均光電流Iが所定の誤差許容率α(<<1
)を用いて下記数7式となるよう、即ち下記数8式にな
るよう前記重畳面積比mを決め、さらに上記数4式より
透明抵抗層3の全抵抗値Rt が誤差許容差β(<<1
)を用いて、下記数9式となるよう、即ち上記数5式に
おいて誤差電流ΔIに対してI>>ΔIとなるよう面状
抵抗32及び細線状抵抗31の大きさを決定して、全抵
抗値Rt を調整する。
[0038] If we pay attention to only the X coordinate here, we can see FIG.
Non-inverting amplifiers 61a, 6 in the position detection circuit 6 shown in FIG.
For the offset voltages ΔVa and ΔVb of 1b, the average photocurrent I is determined by the above formula 5 to a predetermined error tolerance rate α (<<1
) is used to determine the superimposed area ratio m so as to satisfy the following formula 7, that is, the following formula 8, and furthermore, from the above formula 4, the total resistance value Rt of the transparent resistive layer 3 is determined as the error tolerance β (<<1
), determine the size of the sheet resistor 32 and the thin wire resistor 31 so that the following equation 9 is satisfied, that is, I >> ΔI for the error current ΔI in the above equation 5, and the total Adjust the resistance value Rt.

【0039】[0039]

【数7】[Math 7]

【0040】[0040]

【数8】[Math. 8]

【0041】[0041]

【数9】[Math. 9]

【0042】即ち、かかる実施例によれば透明抵抗層3
の全抵抗値Rt を従来の単なる単面状の透明抵抗層よ
り、約10〜100倍程度高い値とすることができ、単
に透明抵抗層を細線として抵抗値を上げた場合に比較し
、重畳面積比mを大きくとれるため、入射光量に対する
光電流Iをあまり減少させることなく、誤差電流ΔIに
対する光電流Iの比率を従来の光位置検出器よりも大き
くでき、位置検出精度を大巾に向上できる。
That is, according to this embodiment, the transparent resistive layer 3
It is possible to make the total resistance value Rt about 10 to 100 times higher than that of a conventional single-sided transparent resistance layer. Since the area ratio m can be increased, the ratio of photocurrent I to error current ΔI can be made larger than that of conventional optical position detectors without significantly reducing photocurrent I to the amount of incident light, greatly improving position detection accuracy. can.

【0043】図3乃至図5は透明抵抗層3の他の各パタ
ーン例を示している。図3において、透明抵抗層3は、
各面が略同寸法の正方形状でマトリックス状に配列され
た多数の面状抵抗32と、その対角線上も含めて隣接す
る面状抵抗32間をその角部間で接続する細線状抵抗3
1から構成されている。
FIGS. 3 to 5 show other examples of patterns of the transparent resistance layer 3. In FIG. 3, the transparent resistance layer 3 is
A large number of square-shaped sheet resistors 32 each having approximately the same size and arranged in a matrix, and a thin wire resistor 3 that connects adjacent sheet resistors 32, including those on the diagonal, between their corners.
It consists of 1.

【0044】図4において、図3のパターンの透明抵抗
層3のみを45°回転させた構成をなし、透明抵抗層3
の外周囲の面状抵抗32は検出電極2a,2b,2c,
2dに直接重畳接続されたり、角部で隣接する検出電極
2a,2b,2c,2dに細線状抵抗31を介して重畳
接続されている。
In FIG. 4, only the transparent resistive layer 3 of the pattern shown in FIG. 3 is rotated by 45°, and the transparent resistive layer 3
The sheet resistance 32 around the outer periphery of the detection electrodes 2a, 2b, 2c,
2d, or to adjacent detection electrodes 2a, 2b, 2c, and 2d at the corners via thin wire resistors 31.

【0045】図5において、透明抵抗層3は、各面が略
同寸法の六角形状で蜂の巣状に配列された多数の面状抵
抗32と、隣接する面状抵抗32間をその隣接する角部
間で接続する細線状抵抗31で構成されている。この場
合の外周囲の面状抵抗32も検出電極2a,2b,2c
,2dに各々直接重畳接続されたり、細線状抵抗31を
介して各々重畳接続されている。
In FIG. 5, the transparent resistive layer 3 includes a large number of hexagonal resistors 32 arranged in a honeycomb shape, each surface having approximately the same size, and a corner portion between the adjacent resistors 32. It is composed of a thin wire resistor 31 connected between the two. In this case, the sheet resistance 32 on the outer periphery is also the detection electrode 2a, 2b, 2c.
, 2d, either directly or via a thin wire resistor 31.

【0046】図6はこの発明の他の実施例の光位置検出
器の構成図で、(a)は光位置検出器の斜視図、(b)
はそのO−O′線に沿ったその断面を示す断面図である
。この実施例においては、基板1として、表面が平滑な
エポキシ,ポリイミド等の樹脂、アルミナ等のセラミッ
ク、あるいはステンレス等の金属の不透明なものが用い
られている。
FIG. 6 is a block diagram of an optical position detector according to another embodiment of the present invention, in which (a) is a perspective view of the optical position detector, and (b) is a perspective view of the optical position detector.
is a cross-sectional view showing the cross section along the line O-O'. In this embodiment, the substrate 1 is made of a resin with a smooth surface such as epoxy or polyimide, a ceramic such as alumina, or an opaque metal such as stainless steel.

【0047】この基板1の上に、順にバイアス電極5、
a−Si光起電力層4、多数の面状抵抗32と隣接する
面状抵抗32間を接続する細線状抵抗31から構成され
た透明抵抗層3、直交する2対の検出電極2a,2b,
2c,2dを積層している。この場合、a−Si光起電
力層4はバイアス電極5の上にN層,I層,P層の順に
成膜してPIN構造にされている。
On this substrate 1, bias electrodes 5,
an a-Si photovoltaic layer 4, a transparent resistance layer 3 composed of a large number of sheet resistors 32 and thin wire resistors 31 connecting adjacent sheet resistors 32, two orthogonal pairs of detection electrodes 2a, 2b,
2c and 2d are stacked. In this case, the a-Si photovoltaic layer 4 is formed into a PIN structure by forming an N layer, an I layer, and a P layer in this order on the bias electrode 5.

【0048】この実施例においても、図1の実施例と同
等の効果が得られるとともに、基板1を金属にした場合
には、バイアス電極5を兼ねることが可能となり部品点
数をへらすことができる。また、基板1を樹脂あるいは
プラスチックにした場合には、同じ基板上に光位置検出
器A用の位置検出回路6を実装できる利点がある。
In this embodiment as well, the same effects as in the embodiment of FIG. 1 can be obtained, and if the substrate 1 is made of metal, it can also serve as the bias electrode 5, and the number of parts can be reduced. Further, when the substrate 1 is made of resin or plastic, there is an advantage that the position detection circuit 6 for the optical position detector A can be mounted on the same substrate.

【0049】[0049]

【発明の効果】以上のように、この発明の2次元光位置
検出器によれば、光起電力層の片面側に形成されている
透明抵抗層を多数の面状抵抗と隣接する面状抵抗間を接
続する細線状抵抗とで構成したので、位置検出回路の非
反転増幅器の入力オフセット電圧の誤差電流の割合を低
減でき、大きな光電流を得ることにより位置分解能を向
上させるとともに、LEDの発光を最小限として扱える
ことで、長寿命化が図れる。
As described above, according to the two-dimensional optical position detector of the present invention, a transparent resistive layer formed on one side of a photovoltaic layer is connected to a large number of planar resistors and an adjacent planar resistor. Since it is constructed with a thin wire resistor connected between the By treating this as a minimum, it is possible to extend the lifespan.

【0050】また、非反転増幅器からの温度ドリフトの
影響を低減できることにより機種選択が制約されないた
め、検出器の構成が簡単にでき、これに加えてコスト低
減も図れる。
Furthermore, since the influence of temperature drift from the non-inverting amplifier can be reduced, there are no restrictions on model selection, so the configuration of the detector can be simplified, and in addition, costs can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明の一実施例による2次元光位置検出器
の構成図である。
FIG. 1 is a configuration diagram of a two-dimensional optical position detector according to an embodiment of the present invention.

【図2】上記一実施例による透明抵抗層のパターン例を
示す図である。
FIG. 2 is a diagram showing an example of a pattern of a transparent resistive layer according to the above embodiment.

【図3】この発明の他の一実施例による透明抵抗層のパ
ターン例を示す図である。
FIG. 3 is a diagram showing an example of a pattern of a transparent resistive layer according to another embodiment of the present invention.

【図4】この発明の他の一実施例による透明抵抗層のパ
ターン例を示す図である。
FIG. 4 is a diagram showing an example of a pattern of a transparent resistive layer according to another embodiment of the present invention.

【図5】この発明の他の一実施例による透明抵抗層のパ
ターン例を示す図である。
FIG. 5 is a diagram showing an example of a pattern of a transparent resistive layer according to another embodiment of the present invention.

【図6】この発明の他の一実施例による2次元光位置検
出器の構成図である。
FIG. 6 is a configuration diagram of a two-dimensional optical position detector according to another embodiment of the present invention.

【図7】従来の2次元光位置検出器の構成図である。FIG. 7 is a configuration diagram of a conventional two-dimensional optical position detector.

【図8】光位置センサの構成図である。FIG. 8 is a configuration diagram of an optical position sensor.

【符号の説明】[Explanation of symbols]

1  基板 2  検出電極(第2の導電層) 3  透明抵抗層 31  細線状抵抗 32  面状抵抗 4  a−Si光起電力層(光起電力層)5  バイア
ス電極(第1の導電層)
1 Substrate 2 Detection electrode (second conductive layer) 3 Transparent resistance layer 31 Thin wire resistance 32 Planar resistance 4 a-Si photovoltaic layer (photovoltaic layer) 5 Bias electrode (first conductive layer)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  透明抵抗層と、光起電力層と、第1の
導電層が順次積層され、前記透明抵抗層に2対の直交す
る第2の導電層が設けられ、前記透明抵抗層を介して前
記光起電力層に入射した入射光の位置を前記2対の直交
する第2の導電層に4分割され流入する光電流により検
出する2次元光位置検出器において、前記透明抵抗層が
多数の面状抵抗と隣接する前記面状抵抗間を接続する細
線状抵抗で構成されている事を特徴とする2次元光位置
検出器。
1. A transparent resistance layer, a photovoltaic layer, and a first conductive layer are sequentially laminated, and the transparent resistance layer is provided with two pairs of second conductive layers orthogonal to each other, and the transparent resistance layer is In a two-dimensional optical position detector that detects the position of incident light that has entered the photovoltaic layer through the photovoltaic layer using a photocurrent divided into four parts and flowing into the two pairs of orthogonal second conductive layers, the transparent resistive layer is A two-dimensional optical position detector comprising a large number of planar resistors and a thin wire resistor connecting adjacent planar resistors.
JP13744491A 1991-06-10 1991-06-10 Two-dimensional optical position detector Expired - Lifetime JP2511208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13744491A JP2511208B2 (en) 1991-06-10 1991-06-10 Two-dimensional optical position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13744491A JP2511208B2 (en) 1991-06-10 1991-06-10 Two-dimensional optical position detector

Publications (2)

Publication Number Publication Date
JPH04363607A true JPH04363607A (en) 1992-12-16
JP2511208B2 JP2511208B2 (en) 1996-06-26

Family

ID=15198767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13744491A Expired - Lifetime JP2511208B2 (en) 1991-06-10 1991-06-10 Two-dimensional optical position detector

Country Status (1)

Country Link
JP (1) JP2511208B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050448A (en) * 2008-08-05 2010-03-04 Asml Netherlands Bv Optical position sensor, position detector, lithographic apparatus and method for determining absolute position of movable object to be used in relative position measurement system
CN102759327A (en) * 2012-06-30 2012-10-31 东南大学 Sensor for detecting two-dimensional light-spot position

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050448A (en) * 2008-08-05 2010-03-04 Asml Netherlands Bv Optical position sensor, position detector, lithographic apparatus and method for determining absolute position of movable object to be used in relative position measurement system
CN102759327A (en) * 2012-06-30 2012-10-31 东南大学 Sensor for detecting two-dimensional light-spot position
WO2014000352A1 (en) * 2012-06-30 2014-01-03 东南大学 Sensor for detecting two-dimensional light-spot position

Also Published As

Publication number Publication date
JP2511208B2 (en) 1996-06-26

Similar Documents

Publication Publication Date Title
TWI686594B (en) Pressure sensing module and pressure sensing touch control system
US8902197B2 (en) Display surface and control device combined therewith for a data processing system
US4435616A (en) Graphical data entry apparatus
JPH04363607A (en) Two-dimensional light position detector
JPH04363608A (en) Two-dimensional light position detector
WO1993014376A1 (en) Structure of semiconductor element for detecting image position and method of detecting image position
US4961096A (en) Semiconductor image position sensitive device with primary and intermediate electrodes
JPH04340773A (en) One-dimensional optical position detector
JPH04355305A (en) Light position detector
JPH04343276A (en) Light position detector
JPH03111704A (en) Multiple output electrode type detector of image position
JPS61180104A (en) Measuring instrument for position displacement
JPS63137319A (en) Position detector
JPS629841B2 (en)
JPH0650754A (en) Inclination-angle and vibration sensor and inclination-angle measuring method using the same
JP3123172B2 (en) A device that detects the position and intensity of light
JPH01296331A (en) Optical coordinate input element
JP2545144Y2 (en) Semiconductor optical position detector
JPH01298426A (en) Coordinate input element
JPH0624733Y2 (en) Phase discrimination type capacitance detector
JP2928061B2 (en) Displacement sensor
JP2771709B2 (en) Optical position detector
JPH08201166A (en) Infrared sensor
JPS63164281A (en) Position detecting device
JPH01297716A (en) Optical coordinate input device