JPH01296331A - Optical coordinate input element - Google Patents

Optical coordinate input element

Info

Publication number
JPH01296331A
JPH01296331A JP63127338A JP12733888A JPH01296331A JP H01296331 A JPH01296331 A JP H01296331A JP 63127338 A JP63127338 A JP 63127338A JP 12733888 A JP12733888 A JP 12733888A JP H01296331 A JPH01296331 A JP H01296331A
Authority
JP
Japan
Prior art keywords
electrodes
linear
base plate
coordinate input
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63127338A
Other languages
Japanese (ja)
Inventor
Seiichiro Yokoyama
横山 誠一郎
Tsuneyuki Suzuki
常之 鈴木
Hiroshi Imagawa
今川 容
Tetsuo Shimomura
哲生 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP63127338A priority Critical patent/JPH01296331A/en
Publication of JPH01296331A publication Critical patent/JPH01296331A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make intervals of the linear bodies of electrodes of coordinate input elements at the positions where the linear bodies cross the X- and Y-central axes of a base plate shorter than a prescribed value and to form the electrodes of a minute pattern in a high-resolution and large-area state by an etching and resist technology by forming the electrodes on one surface of the base plate in such a way that the numerous lines of the electrodes cross the center axes of the base plate. CONSTITUTION:The linear electrodes 1 of coordinate input elements used for a coordi nate input device are formed in such a way that a photodetecting thin film is formed by depositing amorphous silicon on a base plate 2 of glass, etc., by a CVD method and A is vapor-deposited on the thin film. Then the minute pattern is formed by etching the A film in such a way that the linear electrodes 1 of the pattern cross the X- and Y-center axes on one surface of the base plate 2 and the electrodes are formed to linear bodies of one or several electrodes. Then the line intervals among the linear bodies at the positions where the linear bodies cross the X- and Y-center axes of the base plate 2 are set to 500mum and electrode terminal sections 3 are formed on both end sections of the linear electrodes 1. Thus the linear electrodes 1 are easily formed in a high-resolution and large-area state.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、座標入力装置に用いる座標入力素子に関し、
特に光学方式による座標入力素子に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a coordinate input element used in a coordinate input device.
In particular, the present invention relates to an optical coordinate input element.

(従来の技術) 座標入力装置は、画像データー、二次元座標データー等
をコンピューター等の情報処理装置に入力するため等に
コンピューター等の周辺装置として有用なものであり、
種々の方式、種々の素子を用いた入力装置が開発されて
いる。例えば、(A)直交するワイヤ状電極上にコイル
により磁場を印加し発生する信号を読みとる電磁誂導方
式(B)直交して配されたワイヤ状電極対の一方電極に
圧力を加えて、他方電極に導通させ位置を検出するタッ
チパネル方式(C)平板状シリコンダイオード等で光出
力電流を表面抵抗層で分割して、入力位置を検出する非
走査ポジションセンサー(D)LEl)アレイと受光素
子アレイをマトリックス状に組み合わして光の遮断等に
より位置を検出する光電式、さらには(E)平面抵抗層
と受光素子を組み合わせて発生する信号を読みとり座標
検出する光電方式(Wall Mark型)等がある。
(Prior Art) A coordinate input device is useful as a peripheral device for a computer, etc., for inputting image data, two-dimensional coordinate data, etc. into an information processing device such as a computer.
Input devices using various methods and various elements have been developed. For example, (A) an electromagnetic induction method in which a magnetic field is applied by a coil to orthogonal wire-shaped electrodes and the generated signal is read; (B) pressure is applied to one electrode of a pair of orthogonal wire-shaped electrodes, and the other Touch panel method (C) Non-scanning position sensor that detects the input position by dividing the optical output current with a surface resistance layer using a flat silicon diode (D) LEl) array and light receiving element array There are photoelectric methods (Wall Mark type) that detect positions by combining them in a matrix to block light, and (E) photoelectric methods (Wall Mark type) that combine planar resistive layers and light receiving elements to read signals generated and detect coordinates. be.

(発明が解決しようとする課題) 前記した従来の座標入力装置は種々の問題点を有してい
る。(A)の方式においては、分解能を向上させるため
には2組の直交するワイヤ状電極の密度を高くしなけれ
ばならず構造が複雑となりコストの高いものとなる。さ
らにワイヤ状電極に誘起された電流はアナログ解析を必
要とし電子回路の複雑さを招き、さらに磁界を利用して
いるために周辺部例えば磁気記録媒体に悪影響を及ぼす
等の問題点を有している。(B)方式、(D)方式にお
いても分解能を向上させるためには、ワイヤ状電極や、
LEDアレイ、受光素子アレイの密度を高くしなければ
ならず、その結果構造が複雑になる等の問題点を有して
いる。(C)方式、(E)方式においては、表面抵抗層
の精度により読みとり精度がきまり、高精度を必要とす
る場合表面抵抗層の不均一性が問題となり、大面積化が
困難となる。(E)方式の場合には座標検出用電極が平
面伏であり、検出する位置情報が、平面上で拡散等によ
り不正確になる。
(Problems to be Solved by the Invention) The conventional coordinate input device described above has various problems. In the method (A), in order to improve the resolution, the density of two sets of orthogonal wire-shaped electrodes must be increased, resulting in a complicated structure and high cost. Furthermore, the current induced in the wire-shaped electrode requires analog analysis and complicates the electronic circuit, and since it uses a magnetic field, it has problems such as having an adverse effect on peripheral parts, such as magnetic recording media. There is. In order to improve the resolution in the (B) method and (D) method, wire-shaped electrodes,
The density of the LED array and the light-receiving element array must be increased, resulting in problems such as a complicated structure. In methods (C) and (E), the reading accuracy is determined by the accuracy of the surface resistance layer, and when high accuracy is required, non-uniformity of the surface resistance layer becomes a problem, making it difficult to increase the area. In the case of method (E), the electrodes for coordinate detection are flat, and the detected position information becomes inaccurate due to diffusion on the plane.

(課題を解決するための手段)  − 本発明は、座標入力装置において問題となる高分解能化
に伴う構造の複雑化を防ぎ、高精度で、大面積化も可能
な座標入力装置の骨格となる座標入力素子を得んとして
検討した結果到達したものである。すなわち本発明は、
一面上に形成された座標検出用の電極と、直接または該
一面を構成する基板を介して、光を検知して抵抗率等が
変化する材料の層とが積層されてなるものが主構成成分
の光学式座標入力素子において、座標検出用の電極が、
前記一面上に形成され、該一面のXおよびまたはYの方
向の中心軸に対して多数横切る線からなる、一本または
複数の線状体であり、かつ該wa軟体の該中心軸を横切
る位置での各線の間隔が500P11以下であることを
特徴とする光学式座標入力素子である。
(Means for Solving the Problems) - The present invention prevents the complexity of the structure due to high resolution, which is a problem in coordinate input devices, and serves as the framework of a coordinate input device that has high precision and can be made large in area. This is what we arrived at as a result of studying to obtain a coordinate input element. That is, the present invention
The main component is a laminated layer of electrodes for coordinate detection formed on one surface and a layer of material that detects light and changes its resistivity, either directly or through a substrate that forms the surface. In the optical coordinate input device, the electrodes for coordinate detection are
One or more linear bodies formed on the one surface and consisting of many lines that cross the central axis in the X and/or Y directions of the one surface, and the position of the wa soft body that crosses the central axis. This is an optical coordinate input element characterized in that the interval between each line is 500P11 or less.

本発明の一面上に形成される線状電極は、光を検知して
抵抗率等が変化する材料の層の上に直接積層されてもよ
(また、透明または半透明であることが望ましい基板上
に形成されてもよい。また本発明の線状電極は、−而E
のものでもよく、また一面上に形成された該電極が、光
を検知して抵−抗率簿が変化する材料の層をはさんで上
下または左右に配されたものでもよい。
The linear electrode formed on one side of the present invention may be directly laminated on a layer of material that detects light and changes resistivity etc. The linear electrode of the present invention may also be formed on -
Alternatively, the electrodes formed on one surface may be arranged vertically or horizontally with layers of material whose resistivity changes upon detecting light interposed therebetween.

本発明における線状電極は、一面上に形成され、該一面
のXおよびまたはYの方向の中心軸に対して多数横切る
一本または複数の線状体であり、かつ該線状体の該中心
軸を横切る位置での各線の間隔が500F以下であるも
のであり、図面において説明すると、第1図にその例を
示したように、■の基板または面上に第1図〜(1)か
ら(2)に示す形杖で線により構成された各種パターン
の一本または複数本の線状体として形成されたものであ
る。
The linear electrode in the present invention is one or more linear bodies formed on one surface, which intersect in large numbers with respect to the central axis in the X and/or Y directions of the one surface, and the center of the linear body. The distance between each line at the position crossing the axis is 500F or less, and to explain it in the drawings, as shown in Fig. 1, the lines shown in Figs. The rod shown in (2) is formed as one or more linear bodies in various patterns composed of lines.

との線状体パターンは図に示した以外のものでもよいが
、座標入力検知範囲での線の間隔、特にX方向およびま
たはY方向の中心軸を横切る各線の間隔は500μm以
下、好ましくは300u以下さらに好ましくは150μ
■以ドである。
The linear body pattern may be other than that shown in the figure, but the interval between lines in the coordinate input detection range, especially the interval between each line crossing the central axis in the X direction and/or Y direction, is 500 μm or less, preferably 300 μm or less. More preferably 150μ or less
■This is below.

また本発明の線状電極の線状体を形成する線の太さ4t
lO00/jII以下、好tしくは500u以下、さら
に好ましくは250μm以下である。これらの線間隔お
よび線太さ(線幅)は、高精度化、高分解能化のために
上記範囲である必要がある。
Moreover, the thickness of the wire forming the linear body of the linear electrode of the present invention is 4t.
It is lO00/jII or less, preferably 500u or less, more preferably 250μm or less. These line spacing and line thickness (line width) need to be within the above range for high precision and high resolution.

本発明の線状電極は、XまたはYの方向での中心軸を横
切る線数(N)に対して電極端子部の数(n)がNun
であり、好ましくはN>tonlさらに好ましくはN>
2Onである。
In the linear electrode of the present invention, the number of electrode terminal portions (n) is Nun with respect to the number of wires (N) crossing the central axis in the X or Y direction.
, preferably N>tonl, more preferably N>
It is 2On.

本発明における線状電極は、第1図〜(1)また■に示
したように、一本の線状体であるものでもよく、第1図
〜(2)に示したように複数個のブロックに分割された
ものでもよい。本発明の線状電極のすなわち線状体の材
料は特に限定されるものではなく、適当な電導性を有す
るものであればよい。
The linear electrode in the present invention may be a single linear body, as shown in FIGS. 1-(1) and It may be divided into blocks. The material of the linear electrode of the present invention, that is, the material of the linear body, is not particularly limited, and may be any material having appropriate conductivity.

これらの材料が線状電極として形成されたときは、好ま
しくは透明、半透明となるものが好ましく、特に該電極
を入光側に(積層素子の)用いるときは、透明または半
透明となるもの用いる必要がある。本発明の線状電極は
、エツチングや、レジスト技術を利用して、微細なパタ
ーンとして形成でき、高分解能、大面積化が容易となる
When these materials are formed as a linear electrode, it is preferably transparent or semitransparent, and especially when the electrode is used on the light input side (of a laminated element), it is transparent or semitransparent. It is necessary to use it. The linear electrode of the present invention can be formed into a fine pattern using etching or resist technology, and can easily be formed with high resolution and large area.

本発明の光学座標入力素子を用いた光学座標入力装置に
おいては、必要により、入射さす光に変調をかけたり、
装置の受光部に光学フィルターを設けたりして外乱ノイ
ズを低ドさす等してもよい。
In the optical coordinate input device using the optical coordinate input element of the present invention, if necessary, the incident light may be modulated,
An optical filter may be provided in the light receiving section of the device to reduce disturbance noise.

また、電極掃引用回路、出力電流増幅用アンプ、または
その他の処理回路を使用してもよい。
Further, an electrode sweeping circuit, an output current amplification amplifier, or other processing circuit may be used.

さらに必要に応じて、本発明素子と一体化した液晶その
他の表示素子により、入力と同時に表示も可能な装置と
なしてもよい。
Furthermore, if necessary, a device that can simultaneously input and display information may be constructed using a liquid crystal or other display element integrated with the element of the present invention.

(実施例) 本実施例1 ガラス基板上にアモルファスシリコンをCVD法を用い
て堆積させ光検知薄膜を形成した。該薄膜りにAQをス
パッタリング法を用いて蒸着した、このAQ膜をエツチ
ングにより微細パターンとなした。このパターン形状は
、第1図〜(1)、〜■に同様の形状であり、線間隔2
0μ階、線幅80μ屑であった。この線状電極の大きさ
は5 cm X 5 cmでありセンシングエリアとし
て4 cn X 4 cmを利用する。
(Example) Example 1 A photosensitive thin film was formed by depositing amorphous silicon on a glass substrate using the CVD method. AQ was deposited on the thin film using a sputtering method, and this AQ film was formed into a fine pattern by etching. This pattern shape is similar to that shown in Fig. 1 ~(1) and ~■, and the line spacing is 2.
It was a 0μ floor and a line width of 80μ. The size of this linear electrode is 5 cm x 5 cm, and a sensing area of 4 cm x 4 cm is used.

同素r受光部りに、外乱光低減のために赤色フィルター
を配した。この素子の概略は、第2図に示した図から■
のない状態であり、第3図に本発明素子を用いての外部
電子回路を含んだブロック概略図を示す。
A red filter was placed near the allotropic light receiving section to reduce disturbance light. The outline of this element can be seen from the diagram shown in Figure 2.
FIG. 3 shows a block diagram including an external electronic circuit using the device of the present invention.

入射光をガラス基板側から照射し、中心波長が660 
nmの発行ダイオードを使用して、周波数IKHzで変
調をかけた。本実施例の素子により、前記の条件で座標
入力を行なったところ、分解能が0.1■■の高分解能
が得られた。
The incident light is irradiated from the glass substrate side, and the center wavelength is 660.
Modulation was applied at a frequency of IKHz using a nm emission diode. When coordinates were input using the element of this example under the conditions described above, a high resolution of 0.1■■ was obtained.

本実施例2 片面に銀を半透明に蒸着したガラス基板を用い、この銀
薄膜をフォトエツチングすることにより微細な、第1図
〜■に示すようなパターンの下部線状電極となした。こ
の下部電極形成表面にアモルファスシリコンをCVD法
を用いて堆積すせ、さらに該アモルファスシリコン膜上
に、銀をスパッタリング法により膜形成させ、最初の電
極と直交するような形状になるようにフォトエツチング
して上部線状電極となした。
Example 2 A glass substrate on which silver was semitransparently deposited was used, and this silver thin film was photoetched to form a fine lower linear electrode with a pattern as shown in FIGS. Amorphous silicon is deposited on this lower electrode forming surface using the CVD method, and then a silver film is formed on the amorphous silicon film using a sputtering method, and then photo-etched to form a shape perpendicular to the first electrode. Then, the upper linear electrode was formed.

上部線状電極、下部線状電極ともに、線幅は50μ糟、
線間隔は50μ層であり、lOc霞X10c■の線状電
極の大きさであり、80■X 8 cmの内部をセンシ
ングエリアとした。
The line width of both the upper linear electrode and the lower linear electrode is 50 μm.
The line spacing was 50μ layers, the size of the linear electrode was 1Oc×10c×, and the sensing area was 80×8 cm.

入射光は中心波長680 nmの発光ダイオードを使用
し、周波数5 K Hzで変調をかけた。
The incident light was modulated at a frequency of 5 KHz using a light emitting diode with a center wavelength of 680 nm.

前述の素子の受光部上には外乱光低減のために赤色フィ
ルターを配して、第2図に示した概略図のようにした。
A red filter was disposed on the light-receiving part of the above-mentioned element to reduce disturbance light, as shown in the schematic diagram of FIG. 2.

同素子からの出力信号は、ピーク検出回路を通して、座
標データーとしてコンピューターに出力する。第3図に
外部電子回路を含めたブロック図を示す。この素子を用
いての座標入力の分解能は0.05−一であった。
The output signal from the element passes through a peak detection circuit and is output to a computer as coordinate data. FIG. 3 shows a block diagram including external electronic circuits. The resolution of coordinate input using this element was 0.05-1.

(発明の効果) 本発明は、電極となる材料膜をエツチング等の技術で製
作でき、大面積化、高分解能化が得られる。また、電極
間、電極下面、電極−L而に設けられる光を検知して抵
抗率が変化する材料は、光電性であれば制限なく使用で
き材料、製法の選択の余地が大きい。
(Effects of the Invention) According to the present invention, a material film serving as an electrode can be manufactured by techniques such as etching, and a large area and high resolution can be obtained. Further, materials whose resistivity changes upon detecting light provided between the electrodes, on the lower surface of the electrodes, and on the electrode L can be used without any restriction as long as they are photoelectric, and there is a large scope for selection of materials and manufacturing methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜(1)は本発明の線状電極パターン例を示し、
第1図〜■から第1図〜(4)も、本発明の線状電極パ
ターン例を示す。第2図は、本発明の素子の構成例を示
し、第3図は、本発明の素子を用いた、座標入力装置の
構成例である。
1 to (1) show examples of linear electrode patterns of the present invention,
FIGS. 1-(4) also show examples of linear electrode patterns of the present invention. FIG. 2 shows an example of the structure of the element of the present invention, and FIG. 3 shows an example of the structure of a coordinate input device using the element of the invention.

Claims (1)

【特許請求の範囲】[Claims] (1)一面上に形成された座標検出用の電極と、直接ま
たは該一面を構成する基板を介して、光を検知して抵抗
率等が変化する材料の層とが積層されてなるものが主構
成成分の光学式座標入力素子において、座標検出用の電
極が、前記一面上に形成され、該一面のXおよびまたは
Yの方向の中心軸に対して多数横切る線からなる、一本
または複数の線状体であり、かつ該線状体の該中心軸を
横切る位置での線間隔が500μm以下であることを特
徴とする光学式座標入力素子。
(1) A structure in which an electrode for coordinate detection formed on one surface and a layer of a material whose resistivity changes by detecting light, either directly or through a substrate constituting the one surface, are laminated. In the optical coordinate input element as a main component, the electrode for coordinate detection is formed on the one surface and consists of one or more lines that intersect with the central axis of the one surface in the X and/or Y directions. 1. An optical coordinate input element characterized in that it is a linear body, and the line spacing at a position crossing the central axis of the linear body is 500 μm or less.
JP63127338A 1988-05-25 1988-05-25 Optical coordinate input element Pending JPH01296331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63127338A JPH01296331A (en) 1988-05-25 1988-05-25 Optical coordinate input element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63127338A JPH01296331A (en) 1988-05-25 1988-05-25 Optical coordinate input element

Publications (1)

Publication Number Publication Date
JPH01296331A true JPH01296331A (en) 1989-11-29

Family

ID=14957450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63127338A Pending JPH01296331A (en) 1988-05-25 1988-05-25 Optical coordinate input element

Country Status (1)

Country Link
JP (1) JPH01296331A (en)

Similar Documents

Publication Publication Date Title
US10430009B2 (en) Pressure-sensitive touch panel
TWI686594B (en) Pressure sensing module and pressure sensing touch control system
JP3007714B2 (en) Fingerprint detection device
US10254894B2 (en) Pressure-sensitive touch panel
US5847690A (en) Integrated liquid crystal display and digitizer having a black matrix layer adapted for sensing screen touch location
US5113041A (en) Information processing
JPH07174649A (en) Magnetic face-pressure input panel
CN102016768B (en) Touch screen sensor having varying sheet resistance
US4435616A (en) Graphical data entry apparatus
US5079949A (en) Surface pressure distribution detecting element
US4963703A (en) Coordinate determining device using spatial filters
WO1990006568A1 (en) Silicon tactile imaging array and method of making same
US4665283A (en) Electrographic apparatus
US4589041A (en) Differential magnetoresistive sensor for vertical recording
CN109976568B (en) Touch panel, touch display panel and touch display device
JPH01296331A (en) Optical coordinate input element
CN212675540U (en) Electronic device and capacitive touch matrix
JPH01254827A (en) Pressure sensing plate for detecting uneven image pressure distribution
JPS60195519A (en) Display device provided with face input function
JPH02116916A (en) Coordinate input element
JPH01243108A (en) Optical coordinates input element
JPH01297716A (en) Optical coordinate input device
JPH04363607A (en) Two-dimensional light position detector
JPH01298426A (en) Coordinate input element
JP3624454B2 (en) Magnetoelectric converter and position detection device using the same