JPH04363608A - Two-dimensional light position detector - Google Patents

Two-dimensional light position detector

Info

Publication number
JPH04363608A
JPH04363608A JP3137454A JP13745491A JPH04363608A JP H04363608 A JPH04363608 A JP H04363608A JP 3137454 A JP3137454 A JP 3137454A JP 13745491 A JP13745491 A JP 13745491A JP H04363608 A JPH04363608 A JP H04363608A
Authority
JP
Japan
Prior art keywords
layer
position detector
transparent
resistors
optical position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3137454A
Other languages
Japanese (ja)
Inventor
Takahiro Moronaga
諸永 高宏
Hiroyoshi Suzuki
鈴木 尋善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3137454A priority Critical patent/JPH04363608A/en
Publication of JPH04363608A publication Critical patent/JPH04363608A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To obtain a two-dimensional light position detector which enables a position detection accuracy for a light incidence position to be improved. CONSTITUTION:In a two-dimensional light position detector, at least one transparent resistance layer 3 is provided on upper and lower surfaces of a photovoltaic layer 4 and detection electrodes 2a-2d are provided at each resistance layer 3. Each resistance layer 3 is constituted by a number of face-shaped resistances 32 and a thin-wire-shaped resistance 31 connecting between the face-shaped resistances and at least face-shaped resistances are equal at upper and lower portions, thus enabling a position detection accuracy for light incidence position to be improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、光の入射位置を検出
する二次元光位置検出器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-dimensional optical position detector for detecting the incident position of light.

【0002】0002

【従来の技術】今時、高い耐久性、信頼性をもって物体
の直線変位を検出するため、電気的接触を用いる可変抵
抗器を用いた位置センサにかわり、移動体より放射ある
いは移動体で反射、透過される光を抵抗層をそなえた光
位置検出器で受光し、この光位置検出器での受光位置に
より非接触に前記移動体の変位を検出する非接触位置セ
ンサが用いられており、このような物として特開昭61
−271413号公報や特開昭63−32305号公報
のごとく光位置検出器としてアモルファスシリコン半導
体膜を用いるものが提案されている。かかる従来例を以
下に図において説明する。
[Prior Art] Nowadays, in order to detect the linear displacement of an object with high durability and reliability, position sensors using variable resistors that use electrical contact are replaced by position sensors that emit radiation from a moving object or are reflected or transmitted by the moving object. A non-contact position sensor is used in which the displacement of the moving object is detected in a non-contact manner based on the position of the light received by the optical position detector. Unexamined Japanese patent publication 1986
JP-A-271413 and JP-A-63-32305 have proposed optical position detectors using an amorphous silicon semiconductor film. Such a conventional example will be explained below with reference to the drawings.

【0003】図6(a)は従来のアモルファスシリコン
半導体を用いた光位置検出器の概略構成を示し、図6(
b)は、O−O′線に沿ったその断面を示し、図7は従
来の光位置検出器を用いた位置センサである。以下、従
来装置を図6及び図7を用いて説明する。
FIG. 6(a) shows a schematic configuration of a conventional optical position detector using an amorphous silicon semiconductor.
b) shows its cross section along the line O-O', and FIG. 7 shows a position sensor using a conventional optical position detector. The conventional device will be described below with reference to FIGS. 6 and 7.

【0004】図6において、Aは二次元光位置検出器で
あり、1は基板で、ここでは透明ガラスである場合を示
し、3は基板1上の透明抵抗層で酸化インジウムスズ(
ITO)膜あるいは酸化スズ(SnO2 )膜をスパッ
タまたは蒸着にて形成したものである。4はアモルファ
スシリコン半導体(以下、a−Siと称す。)光起電力
層でプラズマCVD法等の蒸着法により透明抵抗層3上
にP層、I層、N層の順に成膜されPIN構造の光起電
力層を形成したものである。3は同じくa−Si起電力
層4上に設けられた透明抵抗層で、酸化インジウムスズ
(ITO)膜あるいは酸化スズ(SnO2 )膜をa−
Si光起電力層4の検出領域の上にスパッタ、または蒸
着にて形成し、2a,2b,2c,2dは検出電極で、
Al等の金属を、検出電極2a,2bは一方の透明抵抗
層3上に、検出電極2c,2dは他方の透明抵抗層3上
に蒸着にて形成した導電層である。
In FIG. 6, A is a two-dimensional optical position detector, 1 is a substrate, which is transparent glass here, and 3 is a transparent resistance layer on the substrate 1 made of indium tin oxide (
An ITO film or a tin oxide (SnO2) film is formed by sputtering or vapor deposition. Reference numeral 4 denotes an amorphous silicon semiconductor (hereinafter referred to as a-Si) photovoltaic layer, which is formed into a P layer, an I layer, and an N layer in this order on the transparent resistance layer 3 by a vapor deposition method such as a plasma CVD method to form a PIN structure. A photovoltaic layer is formed. 3 is a transparent resistance layer provided on the a-Si electromotive force layer 4, which is an indium tin oxide (ITO) film or a tin oxide (SnO2) film.
Formed on the detection area of the Si photovoltaic layer 4 by sputtering or vapor deposition, 2a, 2b, 2c, 2d are detection electrodes,
The detection electrodes 2a and 2b are conductive layers formed on one transparent resistance layer 3 and the detection electrodes 2c and 2d are formed on the other transparent resistance layer 3 by vapor deposition of a metal such as Al.

【0005】次に図7において、7はLED等の光源で
あり、a−Si光起電力層4の受光感度特性より通常可
視光源が用いられ、8はその一部に光を透過させるホー
ル81を有する二次元移動板で、光源7と光位置検出器
Aの間に配置されて光位置検出器A上に二次元的に移動
する。また、6は位置検出回路であり、光位置検出器A
の検出電極2a,2b,2c,2dが各非反転増巾器6
1a,61b,61c,61dの反転入力に接続され、
非反転増巾器62bの出力が位置出力Vy として外部
に出力され、一方非反転増巾器61a,61bの出力の
双方が非反転増巾器63の反転入力に接続され、非反転
増巾器63の出力は比較増巾器64の一方の入力に接続
されるとともに、比較増巾器64の他方の入力に基準電
圧Vref が接続され、比較増巾器64の出力が前記
光源7に接続される。
Next, in FIG. 7, 7 is a light source such as an LED, and a visible light source is usually used due to the light receiving sensitivity characteristics of the a-Si photovoltaic layer 4, and 8 is a hole 81 through which light is transmitted. This is a two-dimensional moving plate having a two-dimensional moving plate, which is disposed between the light source 7 and the optical position detector A, and moves two-dimensionally over the optical position detector A. Further, 6 is a position detection circuit, and an optical position detector A
The detection electrodes 2a, 2b, 2c, 2d are connected to each non-inverting amplifier 6.
Connected to the inverting inputs of 1a, 61b, 61c, 61d,
The output of the non-inverting amplifier 62b is outputted to the outside as a position output Vy, while both the outputs of the non-inverting amplifiers 61a and 61b are connected to the inverting input of the non-inverting amplifier 63. The output of the comparison amplifier 63 is connected to one input of the comparison amplifier 64, the reference voltage Vref is connected to the other input of the comparison amplifier 64, and the output of the comparison amplifier 64 is connected to the light source 7. Ru.

【0006】次に、この従来例の動作につき説明する。 光源7は比較増巾器64により駆動されて発光し、この
光束の一部は二次元移動板8のホール81を透過して光
位置検出器Aに入射する。光位置検出器Aの入射光は基
板1、一方の透明抵抗層3を透過してa−Si光起電力
層4に到達し、この入射光束により光起電力が発生し、
入射光量に応じた光電流Iが発生する。この光電流Iは
透明抵抗層3をその両端に設けた検出電極2a,2bに
分流し、また、透明抵抗層3を両端に設けた検出電極2
c,2dから分流する。この時各分流光電流Ia ,I
b ,Ic ,Id 、検出電極2a,2b及び2c,
2d間の長さ(受光長さ)をLX ,LY 、一方の透
明抵抗層3、他方の透明抵抗層3の全抵抗値Rtx,R
ty、検出電極2b,2dより光入射位置までの距離を
各々x,y、その間の透明抵抗層3の抵抗値Rx 、透
明抵抗層3の抵抗値Ry とすれば、例えばX座標のみ
に着目して示すと、その位置xは下記数1式で与えられ
る。
Next, the operation of this conventional example will be explained. The light source 7 is driven by the comparator amplifier 64 to emit light, and a portion of this light beam passes through the hole 81 of the two-dimensional moving plate 8 and enters the optical position detector A. The incident light of the optical position detector A passes through the substrate 1 and one transparent resistance layer 3 and reaches the a-Si photovoltaic layer 4, and this incident light flux generates a photovoltaic force.
A photocurrent I is generated depending on the amount of incident light. This photocurrent I is shunted to the detection electrodes 2a and 2b provided with the transparent resistance layer 3 at both ends, and is also divided into the detection electrodes 2a and 2b provided with the transparent resistance layer 3 at both ends.
The flow is divided from c and 2d. At this time, each shunt photocurrent Ia, I
b , Ic , Id , detection electrodes 2a, 2b and 2c,
The length between 2d (light receiving length) is LX,LY, and the total resistance value Rtx,R of one transparent resistance layer 3 and the other transparent resistance layer 3
ty, the distances from the detection electrodes 2b and 2d to the light incident position are x and y, respectively, the resistance value Rx of the transparent resistance layer 3 between them, and the resistance value Ry of the transparent resistance layer 3. For example, focusing only on the X coordinate, , the position x is given by the following equation 1.

【0007】[0007]

【数1】[Math 1]

【0008】光電流Ia ,Ib は各々非反転増巾器
61a,61bで負荷抵抗Rで電流電圧変換され、各々
電圧Va ,Vbとなり、電圧Va ,Vb は非反転
増巾器63により加算され、加算値(Va +Vb )
が所定の基準電圧Vref となるよう比較増巾器64
により光源7の発光光量が制御される。
The photocurrents Ia and Ib are converted into voltages by a load resistor R in non-inverting amplifiers 61a and 61b, respectively, and become voltages Va and Vb, respectively, and the voltages Va and Vb are added by a non-inverting amplifier 63, Added value (Va + Vb)
comparison amplifier 64 so that Vref becomes a predetermined reference voltage Vref.
The amount of light emitted from the light source 7 is controlled.

【0009】一方非反転増巾器61aの出力は非反転増
巾器62aにより所定ゲインKが与えられて、電圧Vx
 として出力される。即ち電圧Vxは、下記数2式とな
り、下記数2式より下記数3式が得られる。
On the other hand, the output of the non-inverting amplifier 61a is given a predetermined gain K by the non-inverting amplifier 62a, and the voltage Vx
is output as That is, the voltage Vx becomes the following equation 2, and the following equation 3 is obtained from the following equation 2.

【0010】0010

【数2】[Math 2]

【0011】[0011]

【数3】[Math 3]

【0012】上記数3式となって電圧Vx は光位置検
出器AのX−Y座標のX方向の入射位置に相当する。同
様にして、電圧Vy が光位置検出器AのX−Y座標の
Y方向の入射位置に相当する。したがって、二次元移動
板8を移動させ、そのホール81を透過する光位置検出
器Aへの入射位置を検出することにより、二次元移動板
8のホール81の位置を知ることができる。なお、抵抗
層は両方透明にする必要はなく、入射表面となる抵抗層
のみを透明にしても良い。
The voltage Vx corresponds to the incident position of the optical position detector A in the X direction of the X-Y coordinates. Similarly, the voltage Vy corresponds to the incident position of the optical position detector A in the Y direction of the X-Y coordinates. Therefore, the position of the hole 81 of the two-dimensional moving plate 8 can be known by moving the two-dimensional moving plate 8 and detecting the incident position of the light transmitted through the hole 81 to the position detector A. Note that both of the resistance layers do not need to be transparent, and only the resistance layer serving as the incident surface may be made transparent.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、従来の
二次元光位置検出器において以下のごとき問題点があっ
た。即ち、透明抵抗層3には光電流Iの他に非反転増巾
器61a,61bの入力オフセット電圧ΔVa ,ΔV
b の差による誤差電流ΔIは下記数4式で与えられる
However, the conventional two-dimensional optical position detector has the following problems. That is, in addition to the photocurrent I, the transparent resistance layer 3 receives input offset voltages ΔVa and ΔV of the non-inverting amplifiers 61a and 61b.
The error current ΔI due to the difference in b is given by the following equation (4).

【0014】[0014]

【数4】[Math 4]

【0015】この誤差電流ΔIが流れるため、実際に非
反転増巾器61a,61bの負荷抵抗を流れる電流Ia
 ,Ib は入力オフセット電圧の極性、大きさにより
例えば各々(Ia +ΔI),(Ib −ΔI)となり
、位置出力Vx は下記数5式となって、かかる誤差電
流ΔI、オフセット電圧による位置誤差Δxが生じる。
Since this error current ΔI flows, the current Ia actually flows through the load resistance of the non-inverting amplifiers 61a and 61b.
, Ib are, for example, (Ia + ΔI) and (Ib - ΔI), respectively, depending on the polarity and magnitude of the input offset voltage, and the position output Vx is expressed by the following equation 5, and the error current ΔI and the position error Δx due to the offset voltage are arise.

【0016】[0016]

【数5】[Math 5]

【0017】ところが、従来の光位置検出器AのX座標
方向の透明抵抗層3の抵抗値Rtxは小さいため、光電
流Iに対する誤差電流ΔIの比率が無視できず、位置出
力Vx の誤差Δxが大となり、検出精度が悪いといっ
た問題点があった。この問題点を解決しようとその透明
抵抗層3の厚さを減じて抵抗値Rt を大とすると、光
電流Iに対する誤差電流ΔIの比率は小となるがその透
明抵抗層3の膜厚の一様性が損なわれるため、位置検出
誤差は結局同様に大となる。
However, since the resistance value Rtx of the transparent resistance layer 3 in the X-coordinate direction of the conventional optical position detector A is small, the ratio of the error current ΔI to the photocurrent I cannot be ignored, and the error Δx of the position output Vx is There was a problem that the detection accuracy was low. In order to solve this problem, if the resistance value Rt is increased by reducing the thickness of the transparent resistance layer 3, the ratio of the error current ΔI to the photocurrent I becomes small, but the thickness of the transparent resistance layer 3 decreases. Since the accuracy is impaired, the position detection error ends up being similarly large.

【0018】また、透明抵抗層3を細線状抵抗で形成し
て抵抗値Rtxを上げても同様に誤差電流ΔIは小とな
る。しかし、a−Si光起電力層4の光照射領域の内、
光電流に寄与する領域はa−Si光起電力層4と透明抵
抗層3とが重なりあう部分のみとなり、前記重畳面積が
小さい場合には、入射光量に対する光電流Iもまた小と
なる。結局光電流Iに対する誤差電流ΔIの比率は同様
に大となり、さらにオフセット電圧に対するR(Ia 
+Ib )の比率は逆に小となって、位置検出誤差は大
となる。また、Y座標方向についても同様である。
Furthermore, even if the transparent resistance layer 3 is formed of a thin wire resistor to increase the resistance value Rtx, the error current ΔI will similarly become small. However, within the light irradiation area of the a-Si photovoltaic layer 4,
The region that contributes to photocurrent is only the portion where a-Si photovoltaic layer 4 and transparent resistance layer 3 overlap, and when the overlapping area is small, photocurrent I with respect to the amount of incident light also becomes small. Eventually, the ratio of error current ΔI to photocurrent I becomes similarly large, and furthermore, R(Ia
On the contrary, the ratio of +Ib) becomes small, and the position detection error becomes large. The same applies to the Y coordinate direction.

【0019】この発明は上記のような課題を解決するた
めになされたもので、光入射位置に対する位置検出精度
を向上できる二次元光位置検出器を得ることを目的とす
る。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a two-dimensional optical position detector that can improve the accuracy of position detection with respect to a light incident position.

【0020】[0020]

【課題を解決するための手段】この発明の二次元光位置
検出器は、光起電力層の上下面に少なくとも一方が透明
抵抗層からなる抵抗層を各々設けた二次元光位置検出器
において、各々の抵抗層が多数の面状抵抗と隣接する面
状抵抗間を接続する細線状抵抗で構成されたパターンか
らなるとともに各々の抵抗層パターンの少なくとも面状
抵抗が上下で一致しているものである。
[Means for Solving the Problems] A two-dimensional optical position detector of the present invention is a two-dimensional optical position detector in which a resistive layer, at least one of which is a transparent resistive layer, is provided on the upper and lower surfaces of a photovoltaic layer. Each resistor layer consists of a pattern consisting of a large number of sheet resistors and thin wire resistors connecting adjacent sheet resistors, and at least the sheet resistances of each resistor layer pattern are the same on the upper and lower sides. be.

【0021】[0021]

【作用】この発明の二次元光位置検出器は、光起電力層
に入射した入射光の位置を多数の面状抵抗と隣接する面
状抵抗間を接続する細線状抵抗で構成した各抵抗層を介
して各抵抗層に設けられた検出電極に流入・流出する光
電流により検出する。
[Operation] The two-dimensional optical position detector of the present invention detects the position of incident light incident on a photovoltaic layer by each resistor layer composed of a large number of sheet resistors and thin wire resistors connecting adjacent sheet resistors. Detection is performed using a photocurrent that flows into and out of the detection electrode provided on each resistance layer via the resistive layer.

【0022】[0022]

【実施例】以下、この発明の各実施例を図について説明
する。なお、各図中、同一又は相当部分には同符号を付
してある。図1はこの発明の一実施例による二次元光位
置検出器の構成図で、(a)は斜視図、(b)はO−O
′線に沿ったその断面を示す断面図である。図2は前記
一実施例による二次元光位置検出器の抵抗層のパターン
例を示す図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the drawings. In each figure, the same or equivalent parts are given the same reference numerals. FIG. 1 is a block diagram of a two-dimensional optical position detector according to an embodiment of the present invention, in which (a) is a perspective view, and (b) is an O-O
FIG. FIG. 2 is a diagram showing an example of a pattern of a resistive layer of the two-dimensional optical position detector according to the embodiment.

【0023】この実施例では、二次元光位置検出器Aの
基本的構成は従来と同様であるが、その透明抵抗層3が
異なるものである。図1において、まず、例えば透明ガ
ラス等の基板1上に酸化インジウムスズ(ITO)ある
いは酸化スズ(SnO2 )をスパッタリング等により
数百〜千Åの厚さに成膜して一方の透明抵抗層3を形成
する。
In this embodiment, the basic structure of the two-dimensional optical position detector A is the same as the conventional one, but the transparent resistance layer 3 is different. In FIG. 1, first, indium tin oxide (ITO) or tin oxide (SnO2) is formed into a film with a thickness of several hundred to thousand angstroms by sputtering or the like on a substrate 1 made of, for example, transparent glass. form.

【0024】次に、この上にプラズマCVD等の蒸着法
やスパッタリングにて数千Å程度の厚さのa−Si光起
電力層4をP層,I層,N層の順に一方の透明抵抗層3
の巾より狭い巾で積層する。
Next, an a-Si photovoltaic layer 4 with a thickness of several thousand angstroms is formed on one of the transparent resistors in the order of P layer, I layer, and N layer by vapor deposition such as plasma CVD or sputtering. layer 3
Stack them with a width narrower than the width of the

【0025】さらに、ITOあるいはSnO2 をスパ
ッタリング等により数百〜千Åの厚さに成膜してa−S
i光起電力層4のPIN層の巾より狭くもう一方の透明
抵抗層3を積層する。最後にAl等の検出電極2a,2
b,2c,2dを各透明抵抗層3の両端に直交するよう
に一対ずつ蒸着等で形成して二次元光位置検出器Aを製
造する。この時、前記各透明抵抗層3は多数の面状抵抗
32と隣接する面状抵抗32間を接続する細線状抵抗3
1で構成され、しかも面状抵抗32が上下で一致してい
る。
Furthermore, ITO or SnO2 is formed into a film with a thickness of several hundred to 1,000 Å by sputtering or the like to form an a-S
i The other transparent resistive layer 3 is laminated to a width narrower than the PIN layer of the photovoltaic layer 4. Finally, detection electrodes 2a, 2 made of Al etc.
A two-dimensional optical position detector A is manufactured by forming pairs of layers b, 2c, and 2d perpendicularly to both ends of each transparent resistance layer 3 by vapor deposition or the like. At this time, each of the transparent resistor layers 3 includes a large number of sheet resistors 32 and a thin wire resistor 3 connecting between adjacent sheet resistors 32.
1, and the planar resistors 32 are the same on the upper and lower sides.

【0026】図2にも示すように、a−Si光起電力層
4の上下面に各々設けられた透明抵抗層3は多数の面状
抵抗32と隣接する面状抵抗32間を接続する細線状抵
抗31から構成している。この実施例の場合、面状抵抗
32は、各面が略同寸法の正方形状をなし、マトリック
ス状に配列され、検出電極2a,2b間のX座標の面状
抵抗32は検出電極2a,2bの対向方向であるX軸方
向に各辺の中間部同士を細線状抵抗31により接続され
、また、検出電極2c,2d間のY座標の面状抵抗32
は検出電極2c,2dの対向方向であるY軸方向に同様
に細線状抵抗31により接続されている。また、面状抵
抗32の内で検出電極2a,2b,2c,2dに各々隣
接する面状抵抗32は細線状抵抗31を介して隣接する
検出電極2a,2b,2c,2dに各々重畳接続されて
いる。
As shown in FIG. 2, the transparent resistance layers 3 provided on the upper and lower surfaces of the a-Si photovoltaic layer 4 each include a large number of sheet resistors 32 and thin wires connecting adjacent sheet resistors 32. It is composed of a resistor 31 shaped like a resistor 31. In the case of this embodiment, the sheet resistors 32 have a square shape with each surface having approximately the same size and are arranged in a matrix, and the sheet resistors 32 at the X coordinate between the detection electrodes 2a and 2b are The intermediate portions of each side are connected to each other by thin wire resistors 31 in the X-axis direction, which is the opposing direction of the electrodes 2c and 2d.
are similarly connected by a thin wire resistor 31 in the Y-axis direction, which is the direction in which the detection electrodes 2c and 2d face each other. Further, among the sheet resistors 32, the sheet resistors 32 adjacent to the detection electrodes 2a, 2b, 2c, and 2d are superimposed and connected to the adjacent sensing electrodes 2a, 2b, 2c, and 2d via the thin wire resistors 31, respectively. ing.

【0027】面状抵抗32間の巾(抵抗が形成されてい
ない部分)は、入射光径より小さく設定するのが分解能
上で有利であるが、通常入射光径は、面状抵抗32の面
積程度に設定されるため、極端に小とする必要はない。
It is advantageous in terms of resolution to set the width between the sheet resistors 32 (portions where no resistors are formed) to be smaller than the diameter of the incident light; however, the diameter of the incident light is usually the area of the sheet resistors 32. It is not necessary to set it to an extremely small value.

【0028】透明抵抗層3の面状抵抗32と細線状抵抗
31は次の様にして決定すればよい。即ち、a−Si光
起電力層4に入射する光束面積をS、平均照度をE、光
電流変換効率をkとし、a−Si光起電力層4に対する
透明抵抗層3の重畳面積比をmとすれば、平均光電流I
はI=k・m・S・Eで与えられる。ここで、X座標の
みに注目してみれば、位置検出回路6における電流電圧
変換器61a,61bのオフセット電圧ΔVa ,ΔV
b に対し、前記数5式より平均光電流Iが所定の誤差
許容率α(<<1)を用いて下記数6式となるよう、即
ち下記数7式となるよう前記重畳面積比mを求める。
The sheet resistance 32 and thin wire resistance 31 of the transparent resistance layer 3 may be determined as follows. That is, the area of the luminous flux incident on the a-Si photovoltaic layer 4 is S, the average illuminance is E, the photocurrent conversion efficiency is k, and the overlapping area ratio of the transparent resistance layer 3 to the a-Si photovoltaic layer 4 is m. Then, the average photocurrent I
is given by I=k・m・S・E. Here, if we pay attention only to the X coordinate, the offset voltages ΔVa and ΔV of the current-voltage converters 61a and 61b in the position detection circuit 6
b, the superimposition area ratio m is set so that the average photocurrent I becomes the following equation 6 using the predetermined error tolerance α (<<1), that is, the following equation 7 according to the equation 5. demand.

【0029】[0029]

【数6】[Math 6]

【0030】[0030]

【数7】[Math 7]

【0031】さらに、上記数4式より透明抵抗層3の全
抵抗値Rt が誤差許容差β(<<1)を用いて下記数
8式となるよう、即ち前記数5式において、誤差電流Δ
Iに対してI>>ΔIとなるよう面状抵抗32及び細線
状抵抗31の大きさを決定して、全抵抗値Rt を調整
する。ただし、Y座標のすくなくとも面状抵抗32が前
記X座標の面状抵抗32と表裏一体即ち上下で一致する
ように形成されている。
Further, from the above equation 4, the total resistance value Rt of the transparent resistive layer 3 is expressed as the following equation 8 using the error tolerance β (<<1), that is, in the above equation 5, the error current Δ
The sizes of the sheet resistor 32 and the thin wire resistor 31 are determined so that I>>ΔI with respect to I, and the total resistance value Rt is adjusted. However, at least the sheet resistance 32 on the Y coordinate is formed so as to match the sheet resistance 32 on the X coordinate one front and the other, that is, top and bottom.

【0032】[0032]

【数8】[Math. 8]

【0033】即ち、かかる実施例によれば各透明抵抗層
3の全抵抗層Rt を従来の単面状の抵抗層より約10
〜100倍程度高い値とすることができ、単に抵抗層を
細線として抵抗値Rt を上げた場合と比較し、重畳面
積比mを大きくとれるため、入射光量に対する光電流I
をあまり減少させることなく、誤差電流ΔIに対する光
電流Iの比率を従来の二次元光位置検出器よりも大きく
でき、位置検出精度を大巾に向上できる。
That is, according to this embodiment, the total resistance layer Rt of each transparent resistance layer 3 is approximately 10 times smaller than that of the conventional single-sided resistance layer.
The value can be approximately 100 times higher, and the superimposed area ratio m can be increased compared to the case where the resistance value Rt is simply increased by using a thin wire as the resistance layer, so the photocurrent I with respect to the amount of incident light can be increased.
The ratio of the photocurrent I to the error current ΔI can be made larger than that of a conventional two-dimensional optical position detector without significantly reducing the error current ΔI, and the position detection accuracy can be greatly improved.

【0034】図3乃至図5は透明抵抗層3の他の各パタ
ーン例を示している。図3において、各透明抵抗層3は
、各面が略同寸法の正方形状でマトリックス状に配列さ
れた多数の面状抵抗32と、その対角線上も含めて隣接
する面状抵抗32間をその角部間で接続する細線状抵抗
31から構成されている。
FIGS. 3 to 5 show examples of other patterns of the transparent resistance layer 3. In FIG. 3, each transparent resistor layer 3 includes a large number of square resistors 32 arranged in a matrix with each surface having approximately the same size, and a layer between adjacent resistors 32 including diagonally. It is composed of thin wire resistors 31 connected between the corners.

【0035】図4において、図3のパターンの透明抵抗
層3のみを45°回転させた構成をなしている。
In FIG. 4, only the transparent resistive layer 3 of the pattern shown in FIG. 3 is rotated by 45°.

【0036】図5において、透明抵抗層3は、各面が略
同寸法の六角形状で蜂の巣状に配列された多数の面状抵
抗32と、隣接する面状抵抗32間をその隣接する角部
間で接続する細線状抵抗31で構成されている。この場
合の外周囲の面状抵抗32も、図4の場合と同様に、検
出電極2a,2b,2c,2dに各々直接重畳接続され
たり、細線状抵抗31を介して各々重畳接続されている
In FIG. 5, the transparent resistance layer 3 includes a large number of hexagonal hexagonal resistors 32 arranged in a honeycomb pattern, each side having approximately the same size, and connecting the adjacent corner portions between the adjacent sheet resistors 32. It is composed of a thin wire resistor 31 connected between the two. In this case, the planar resistors 32 on the outer periphery are also directly connected to the detection electrodes 2a, 2b, 2c, and 2d in an overlapping manner, or are connected through the thin wire resistors 31 in an overlapping manner, as in the case of FIG. .

【0037】図3乃至図5のパターン例の場合、面状抵
抗32や細線状抵抗31はa−Si光起電力層4の上下
で一致するように設けられている。
In the case of the pattern examples shown in FIGS. 3 to 5, the sheet resistors 32 and the thin wire resistors 31 are provided so as to coincide above and below the a-Si photovoltaic layer 4.

【0038】他の実施例として、表面が平滑なエポキシ
、ポリイミド等の不透明樹脂の基板上に順に前記実施例
の透明抵抗層のパターンと同じパターンの抵抗層、a−
Si光起電力層、前記抵抗層のパターンと前記a−Si
光起電力層の上下で一致するパターンの透明抵抗層、前
記抵抗層及び前記透明抵抗層の両端に各々直交してなる
各1対の検出電極を積層している。この場合、前記a−
Si光起電力層は前記抵抗層上にN層,I層,P層の順
にPIN構造に成膜される。この実施例においても、図
1の実施例と同等の効果が得られるとともに、前記基板
を樹脂にした場合には基板上に図7に示す二次元光位置
検出器A用の位置検出回路6を実装できる利点がある。 なお前記各実施例において、二次元光位置検出器A等の
動作は、従来例から自明なのでその説明を省略した。
As another embodiment, on a substrate of an opaque resin such as epoxy or polyimide having a smooth surface, a resistive layer having the same pattern as the transparent resistive layer of the above embodiment, a-
a Si photovoltaic layer, a pattern of the resistive layer and the a-Si
A transparent resistive layer having a matching pattern above and below the photovoltaic layer, and a pair of detection electrodes each perpendicular to both ends of the resistive layer and the transparent resistive layer are laminated. In this case, the a-
The Si photovoltaic layer is formed into a PIN structure on the resistive layer in the order of N layer, I layer, and P layer. In this embodiment as well, the same effect as the embodiment of FIG. 1 can be obtained, and when the substrate is made of resin, a position detection circuit 6 for the two-dimensional optical position detector A shown in FIG. 7 is provided on the substrate. There are advantages that can be implemented. In each of the above-mentioned embodiments, the operation of the two-dimensional optical position detector A and the like is obvious from the conventional example, so the explanation thereof is omitted.

【0039】[0039]

【発明の効果】以上のように、この発明によれば、光起
電力層の上下面に少なくとも一方が透明抵抗層からなる
抵抗層を各々設け、前記抵抗層が多数の面状抵抗と隣接
する前記面状抵抗間を結ぶ細線状抵抗で構成され、各抵
抗層の少なくとも面状抵抗が上下で一致するように構成
したので、前記抵抗層の抵抗値と、前記光起電力層と前
記抵抗層の重畳面積比が共に所定値以上となるよう抵抗
層を設定でき、光入射位置に対する位置検出精度を向上
できるという効果がある。
As described above, according to the present invention, a resistive layer, at least one of which is a transparent resistive layer, is provided on the upper and lower surfaces of a photovoltaic layer, and the resistive layer is adjacent to a large number of sheet resistors. It is composed of a thin wire resistor connecting the sheet resistors, and is configured so that at least the sheet resistance of each resistor layer is the same on the upper and lower sides, so that the resistance value of the resistor layer, the photovoltaic layer, and the resistor layer are The resistive layer can be set so that the overlapping area ratios of both of the resistive layers are equal to or higher than a predetermined value, and the position detection accuracy for the light incident position can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明の一実施例に係る二次元光位置検出器
を示す構成図である。
FIG. 1 is a configuration diagram showing a two-dimensional optical position detector according to an embodiment of the present invention.

【図2】前記一実施例の二次元光位置検出器の透明抵抗
層のパターン例を示す図である。
FIG. 2 is a diagram showing an example of a pattern of a transparent resistive layer of the two-dimensional optical position detector of the embodiment.

【図3】他の実施例の透明抵抗層のパターン例を示す図
である。
FIG. 3 is a diagram showing an example of a pattern of a transparent resistive layer in another example.

【図4】他の実施例の透明抵抗層のパターン例を示す図
である。
FIG. 4 is a diagram showing an example of a pattern of a transparent resistive layer in another example.

【図5】他の実施例の透明抵抗層のパターン例を示す図
である。
FIG. 5 is a diagram showing an example of a pattern of a transparent resistive layer in another example.

【図6】従来の二次元光位置検出器を示す構成図である
FIG. 6 is a configuration diagram showing a conventional two-dimensional optical position detector.

【図7】二次元光位置検出器を用いた位置センサの構成
図である。
FIG. 7 is a configuration diagram of a position sensor using a two-dimensional optical position detector.

【符号の説明】 1  基板 2a,2b,2c,2d  検出電極 3  透明抵抗層 4  a−Si光起電力層(光起電力層)31  細線
状抵抗 32  面状抵抗
[Explanation of symbols] 1 Substrates 2a, 2b, 2c, 2d Detection electrode 3 Transparent resistance layer 4 a-Si photovoltaic layer (photovoltaic layer) 31 Thin wire resistor 32 Planar resistor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  光起電力層の上下面に少なくとも一方
が透明抵抗層からなる抵抗層を各々設け、前記抵抗層の
各々に検出電極を設け、前記透明抵抗層を介して前記光
起電力層に入射した入射光の位置を前記各検出電極に流
入・流出する光電流により検出する二次元光位置検出器
において、前記各々の抵抗層が多数の面状抵抗と隣接す
る各前記面状抵抗間を接続する細線状抵抗で構成された
パターンからなるとともに前記各々の抵抗層パターンの
少なくとも前記面状抵抗が上下で一致している事を特徴
とする二次元光位置検出器。
1. A resistive layer, at least one of which is a transparent resistive layer, is provided on the upper and lower surfaces of the photovoltaic layer, a detection electrode is provided on each of the resistive layers, and the photovoltaic layer is connected to the photovoltaic layer through the transparent resistive layer. In a two-dimensional optical position detector that detects the position of incident light incident on the detection electrode by photocurrent flowing into and out of each of the detection electrodes, each of the resistance layers has a plurality of planar resistors and a plurality of planar resistors adjacent to each other. 2. A two-dimensional optical position detector, characterized in that the two-dimensional optical position detector is comprised of a pattern made up of thin wire-shaped resistors that connect the resistive layer patterns, and that at least the planar resistors of each of the resistive layer patterns are the same on the upper and lower sides.
JP3137454A 1991-06-10 1991-06-10 Two-dimensional light position detector Pending JPH04363608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3137454A JPH04363608A (en) 1991-06-10 1991-06-10 Two-dimensional light position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3137454A JPH04363608A (en) 1991-06-10 1991-06-10 Two-dimensional light position detector

Publications (1)

Publication Number Publication Date
JPH04363608A true JPH04363608A (en) 1992-12-16

Family

ID=15198988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3137454A Pending JPH04363608A (en) 1991-06-10 1991-06-10 Two-dimensional light position detector

Country Status (1)

Country Link
JP (1) JPH04363608A (en)

Similar Documents

Publication Publication Date Title
US20120113003A1 (en) Display surface and control device combined therewith for a data processing system
JP2007225565A (en) Optical ranging sensor
JP2511208B2 (en) Two-dimensional optical position detector
JPH04363608A (en) Two-dimensional light position detector
JPH04340773A (en) One-dimensional optical position detector
JPH04343276A (en) Light position detector
JPS61180104A (en) Measuring instrument for position displacement
JPS6332305A (en) Optical position detecting element
JPS6262075B2 (en)
JPS63137319A (en) Position detector
JPS5868611A (en) Attitude detecting device
JP2771709B2 (en) Optical position detector
JPS63164281A (en) Position detecting device
JP3123172B2 (en) A device that detects the position and intensity of light
JPH0555010U (en) Semiconductor optical position detector
JPS629841B2 (en)
JPH04355305A (en) Light position detector
JP3066509B2 (en) Displacement gauge
JPS63164280A (en) Position detecting device
JPS61129509A (en) Semiconductor optical position detector
JP2000261028A (en) Semiconductor position detector and distance measuring device using the same
JPH06302851A (en) Beam-position detector
JPS63137321A (en) Position detector
JPS63137320A (en) Position detector
JPS6249680A (en) Semiconductor position detector