JPH04363118A - Method for removing nitrogen oxide in exhaust gas - Google Patents

Method for removing nitrogen oxide in exhaust gas

Info

Publication number
JPH04363118A
JPH04363118A JP3137902A JP13790291A JPH04363118A JP H04363118 A JPH04363118 A JP H04363118A JP 3137902 A JP3137902 A JP 3137902A JP 13790291 A JP13790291 A JP 13790291A JP H04363118 A JPH04363118 A JP H04363118A
Authority
JP
Japan
Prior art keywords
nox
exhaust gas
catalyst
oxides
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3137902A
Other languages
Japanese (ja)
Inventor
Yoshiaki Obayashi
良昭 尾林
Kozo Iida
耕三 飯田
Shigeru Nojima
繁 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3137902A priority Critical patent/JPH04363118A/en
Publication of JPH04363118A publication Critical patent/JPH04363118A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To remove NOx such as NO, NO2 and N2O in exhaust gas. CONSTITUTION:Exhaust gas contg. NOx such as NO, NO2 and N2O is brought into contact with a catalyst at 400-700 deg.C in a state in which the NOx has a prescribed lattice plane interval (d) in the powder X-ray diffraction and is dehydrated to remove the NOx by decomposition into N2 and water with ammonia. The catalyst used is obtd. by incorporating Cu ions into crystalline silicate represented by a chemical formula (1.0+ or -0.8)R2O.[aM2O3.bAl2O3].ySiO2 (where R is an alkali metal ion and/or an H ion, M is ions of one or more kinds of elements selected from among group VIII metals, rare earth metals, Ti, V, Cr, Nb, Sb and Ga, a+b=1, a>=0, b>=0 and y=20-1,000) when expressed by molar ratio among oxides.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はボイラ排ガス等の燃焼排
ガス中の一酸化窒素、二酸化窒素(以下NOxと略称す
る)および亜酸化窒素(以下N2 Oと略称する)等の
窒素酸化物を除去する方法に関する。
[Industrial Application Field] The present invention removes nitrogen oxides such as nitrogen monoxide, nitrogen dioxide (hereinafter abbreviated as NOx), and nitrous oxide (hereinafter abbreviated as N2O) in combustion exhaust gas such as boiler exhaust gas. Regarding how to.

【0002】0002

【従来の技術】重油や石炭焚ボイラ、各種化学装置に付
設する燃焼炉、製鉄プラント、ディーゼルエンジンやタ
ービンの如き、内燃機関から排出される排ガス中の窒素
酸化物はNOを主体とするもので、その無害化処理とし
てはアンモニアを還元剤とした接触分解法が有効な手段
として工業化されており、現在ではこの方式を採用した
数多くのプラントが稼動している。
[Prior Art] Nitrogen oxides in the exhaust gas emitted from internal combustion engines such as heavy oil and coal-fired boilers, combustion furnaces attached to various chemical equipment, steel plants, diesel engines and turbines are mainly composed of NO. As a detoxification treatment, the catalytic cracking method using ammonia as a reducing agent has been industrialized as an effective means, and many plants employing this method are currently in operation.

【0003】この方法に用いる触媒としては、酸化チタ
ンの担体に酸化バナジウムおよび酸化タングステンを担
持した触媒が一般的に知られている。しかし、近年石炭
焚ボイラの発電効率を上昇させる目的で、流動床ボイラ
が建設され、稼動を始めている。流動床ボイラの稼動に
伴い、その排ガス中の窒素酸化物の挙動を調査したとこ
ろ、NOxと共に、通常のボイラ排ガスにはほとんど存
在しないN2 Oが数百ppm とNOxと同程度の濃
度で存在していることが明らかとなった。
As a catalyst used in this method, a catalyst in which vanadium oxide and tungsten oxide are supported on a titanium oxide carrier is generally known. However, in recent years, fluidized bed boilers have been constructed and put into operation for the purpose of increasing the power generation efficiency of coal-fired boilers. When we investigated the behavior of nitrogen oxides in the flue gas during operation of a fluidized bed boiler, we found that along with NOx, N2O, which is hardly present in normal boiler flue gas, was present at several hundred ppm, the same concentration as NOx. It became clear that

【0004】従来のチタニア系触媒では前記排ガス中に
含まれるN2 Oは除去できないという欠点がある。従
って、流動床ボイラ等では地球温室効果ガスとして上げ
られているN2 Oを除去できずに大気中に放出してい
ることから、環境保全の立場からその除去触媒の開発が
望まれている。
[0004] Conventional titania-based catalysts have a drawback in that they cannot remove N2O contained in the exhaust gas. Therefore, since fluidized bed boilers and the like cannot remove N2O, which is listed as a global greenhouse gas, and emit it into the atmosphere, it is desired to develop a catalyst for removing it from the standpoint of environmental conservation.

【0005】[0005]

【発明が解決しようとする課題】酸化チタン−酸化バナ
ジウム−酸化タングステン触媒を用いた石炭焚流動床ボ
イラの実機脱硝装置において、排ガス発生源に含有され
るN2 OとNOxの挙動を調査したところ、NOxは
脱硝装置入口で400ppm であったものが、触媒で
還元分解され、脱硝装置出口では20ppm まで低下
した。一方、N2 Oについては脱硝装置入口、出口で
約100ppm と一定で従来のチタニア系触媒では除
去できないことが明らかとなった。
[Problems to be Solved by the Invention] When we investigated the behavior of N2 O and NOx contained in the exhaust gas generation source in an actual denitrification device for a coal-fired fluidized bed boiler using a titanium oxide-vanadium oxide-tungsten oxide catalyst, we found that: NOx was 400 ppm at the inlet of the denitrification equipment, but was reduced to 20 ppm at the exit of the denitrification equipment after being reduced and decomposed by the catalyst. On the other hand, it was revealed that N2O was constant at about 100 ppm at the inlet and outlet of the denitration equipment, and could not be removed by conventional titania-based catalysts.

【0006】本発明は従来のNOx除去触媒では除去で
きなかったN2 Oの除去を可能とすると共に、NOx
の除去においても高い除去率を示すことを可能にした排
ガス中の窒素酸化物の除去方法を提供するものである。
[0006] The present invention makes it possible to remove N2O, which could not be removed with conventional NOx removal catalysts, and also
The object of the present invention is to provide a method for removing nitrogen oxides from exhaust gas, which makes it possible to exhibit a high removal rate even in the removal of nitrogen oxides.

【0007】[0007]

【課題を解決するための手段】本発明者らはNOxとN
2 Oを同時に除去できる触媒の探索を行い、担持でき
る金属イオンと担体の組み合わせにおいて、金属イオン
交換結晶性シリケートの基礎物性についての研究と理論
的考察を積み重ね、銅イオンを含有し、かつ特定の結晶
構造を有する結晶性シリケートがNOxおよびN2 O
の除去触媒として高い定常活性を示すことを見い出した
[Means for Solving the Problems] The present inventors have determined that NOx and N
We searched for catalysts that can simultaneously remove 2 O, and accumulated research and theoretical considerations on the basic physical properties of metal ion-exchanged crystalline silicates in combinations of supported metal ions and supports. Crystalline silicates with a crystalline structure are NOx and N2O
was found to exhibit high steady-state activity as a removal catalyst.

【0008】すなわち、本発明は排ガスの一酸化窒素、
二酸化窒素及び亜酸化窒素等の窒素酸化物を400〜7
00℃の条件下で、下記表1に示す粉末X線回折におけ
る格子面間隔(d値)を有し、かつ脱水された状態にお
いて、酸化物のモル比で(1.0±0.8)R2 O・
〔aM2 O3 ・bAl2 O3 〕・ySiO2 
(上記式中、Rはアルカリ金属イオン及び/又は水素イ
オン、MはVIII族金属、希土類金属、チタン、バナ
ジウム、クロム、ニオブ、アンチモン、ガリウムからな
る群から選ばれた1種以上の元素のイオン、a+b=1
,a≧0,b≧0,y=20〜1000)の化学式を有
する結晶性シリケートに銅イオンを含有してなる触媒と
接触させ、該窒素酸化物をアンモニアにより窒素と水に
分解すること特徴とする排ガス中の窒素酸化物の除去方
法である。
That is, the present invention provides nitrogen monoxide in exhaust gas,
Nitrogen oxides such as nitrogen dioxide and nitrous oxide 400 to 7
Under conditions of 00°C, the lattice spacing (d value) in powder X-ray diffraction shown in Table 1 below, and in a dehydrated state, the molar ratio of oxide is (1.0 ± 0.8). R2 O・
[aM2 O3 ・bAl2 O3 ]・ySiO2
(In the above formula, R is an alkali metal ion and/or hydrogen ion, M is an ion of one or more elements selected from the group consisting of Group VIII metals, rare earth metals, titanium, vanadium, chromium, niobium, antimony, and gallium. , a+b=1
, a≧0, b≧0, y=20-1000) is brought into contact with a catalyst containing copper ions, and the nitrogen oxides are decomposed into nitrogen and water by ammonia. This is a method for removing nitrogen oxides from exhaust gas.

【表1】 W:弱                照射は銅のK
α線M:中級              I0 は最
も強いピーク強度でS:強             
   I/I0 は相対強度VS:非常に強
[Table 1] W: Weak Irradiation is K of copper
α ray M: Intermediate I0 is the strongest peak intensity S: Strong
I/I0 is relative strength VS: very strong

【0009】[0009]

【作用】本発明によるアンモニアを還元剤とする選択的
接触還元法における窒素酸化物の還元反応は、下記の(
1),(2)式に示す従来触媒のNOx還元反応に加え
、(3)式に示すN2 O還元反応が同時に効率良く進
行するものである。     4NO+4NH3 +O2   →  4N2
 +6H2 O  ・・・・(1)    NO+NO
2 +2NH3   →  2N2 +3H2 O  
・・・・(2)    3NO2 +2NH3   →
  4N2 +3H2 O  ・・・・・・(3)
[Operation] The reduction reaction of nitrogen oxides in the selective catalytic reduction method using ammonia as a reducing agent according to the present invention is as follows (
In addition to the NOx reduction reactions of conventional catalysts shown in equations 1) and (2), the N2O reduction reaction shown in equation (3) proceeds simultaneously and efficiently. 4NO+4NH3 +O2 → 4N2
+6H2 O...(1) NO+NO
2 +2NH3 → 2N2 +3H2 O
...(2) 3NO2 +2NH3 →
4N2 +3H2 O ・・・・・・(3)

【0
010】本発明は特異的な結晶構造をもつ結晶性シリケ
ートに銅を含有させた触媒を使用することにより達成さ
れる。
0
The present invention is achieved by using a catalyst containing copper in a crystalline silicate having a specific crystal structure.

【0011】なお、本発明で使用する上記結晶性シリケ
ートは、シリカの給源、VIII族元素、希土類元素、
チタン、バナジウム、クロム、ニオブ、アンチモン、ガ
リウムの酸化物の給源、アルミナの給源、アルカリの給
源、水及び有機窒素含有化合物を含有する反応混合物を
つくり、この混合物が結晶性シリケートが生成するのに
至る時間及び温度で加熱することにより合成することに
よって得られる。
The crystalline silicate used in the present invention contains a source of silica, a group VIII element, a rare earth element,
A reaction mixture containing a source of oxides of titanium, vanadium, chromium, niobium, antimony, and gallium, a source of alumina, a source of alkali, water, and an organic nitrogen-containing compound is prepared, and this mixture is used to form a crystalline silicate. It can be obtained by synthesis by heating at a time and temperature ranging from

【0012】さらに本発明で使用する結晶性シリケート
は、SiO2 /Al2 O3 比が20〜1000の
高シリカ結晶性シリケートまたは、従来のゼオライトの
構造中のAlの一部が、VIII族元素、希土類元素、
チタン、バナジウム、クロム、ニオブ、アンチモン、ガ
リウムに置きかわったものであり、さらにSiO2 /
(M2 O3+Al2 O3 )比が20〜1000で
あることを特徴としており、(この比が20未満ではN
2 O未満ではN2 Oの分解効果が少なく、1000
を越えるとシリカライトと呼ばれる物質に近づき触媒と
しての効果がなくなる)下記のモル組成の反応混合物か
ら製造される。 SiO2 /(M2 O3 +Al2 O3 ):20
〜1000(好ましくは、20〜200) OH− /SiO2 :0〜1.0(好ましくは、0.
2〜0.8) H2 O/SiO2 :2〜1000(好ましくは、1
0〜200) 有機窒素含有化合物/(M2 O3 +Al2 O3 
):5〜100(好ましくは5〜50)
Furthermore, the crystalline silicate used in the present invention is a high-silica crystalline silicate with a SiO2 /Al2O3 ratio of 20 to 1000, or a part of Al in the structure of conventional zeolite is a group VIII element or a rare earth element. ,
It replaces titanium, vanadium, chromium, niobium, antimony, and gallium, and also SiO2 /
(M2 O3 + Al2 O3) ratio is 20 to 1000, (if this ratio is less than 20, N
If it is less than 2 O, the decomposition effect of N2 O is small;
(If it exceeds this amount, it approaches a substance called silicalite and loses its effectiveness as a catalyst.) It is produced from a reaction mixture with the following molar composition. SiO2/(M2O3 +Al2O3): 20
~1000 (preferably 20-200) OH-/SiO2: 0-1.0 (preferably 0.
2-0.8) H2O/SiO2: 2-1000 (preferably 1
0-200) Organic nitrogen-containing compound/(M2O3 +Al2O3
): 5-100 (preferably 5-50)

【0013】また、本発明で使用する結晶性シリケート
よりなる担体に担持される銅の含有量は、担体1g当り
0.05〜3mmol、好ましくは0.2〜2mmol
である。
[0013] Further, the content of copper supported on the carrier made of crystalline silicate used in the present invention is 0.05 to 3 mmol, preferably 0.2 to 2 mmol per 1 g of the carrier.
It is.

【0014】本発明で使用される触媒の工業的使用に際
しては、適当な形に成形して使用することが望ましい。 例えば、シリカ、アルミナ等の無機酸化物または粘土を
バインダーとし、場合により有機物の成型助剤を使用し
て球状、柱状、ハニカム状に成形する。銅イオンで交換
する前の結晶性シリケートをあらかじめ成形し、その成
形体を銅イオン交換したものでも本発明で使用する触媒
とみなすことができる。成形体の大きさは特に制限され
ない。
For industrial use of the catalyst used in the present invention, it is desirable to form it into a suitable shape. For example, using an inorganic oxide such as silica or alumina or clay as a binder, and optionally using an organic molding aid, it is molded into a spherical, columnar, or honeycomb shape. A crystalline silicate that has been preformed before being exchanged with copper ions and the molded body subjected to copper ion exchange can also be considered as the catalyst used in the present invention. The size of the molded body is not particularly limited.

【0015】[0015]

【実施例】結晶性シリケートを次のようにして合成した
。水ガラス、硫酸第二鉄、硫酸アルミニウム、水をNa
2 O・(0.1Fe2 O3 ・0.9Al2 O3
 )・30SiO2 ・1600H2 Oのモル比にな
るように調合し、これに硫酸を適当量添加し、上記混合
物のpHが9前後になるようにした後、有機窒素含有化
合物としてプロピルアミン、臭化プロピルをFe2 O
3 ,Al2 O3 の合計のモル数の20倍加えてよ
く混合し、500ccのステンレス製オートクレーブに
はり込んだ。
EXAMPLE A crystalline silicate was synthesized as follows. Water glass, ferric sulfate, aluminum sulfate, water with Na
2 O・(0.1Fe2O3 ・0.9Al2O3
)・30SiO2・1600H2O, then add an appropriate amount of sulfuric acid to make the pH of the mixture around 9, and then add propylamine and propyl bromide as organic nitrogen-containing compounds. Fe2O
3, 20 times the total number of moles of Al2O3 was added, mixed well, and placed in a 500cc stainless steel autoclave.

【0016】上記混合物を約500rpm にて攪拌し
ながら160℃で3日間反応させた。冷却後、固形分を
ろ過し、洗浄水のpHが約8になるまで充分水洗し、1
10℃で12時間乾燥して550℃で3時間焼成した。
The above mixture was reacted at 160° C. for 3 days while stirring at about 500 rpm. After cooling, filter the solid content and wash thoroughly with water until the pH of the washing water becomes approximately 8.
It was dried at 10°C for 12 hours and fired at 550°C for 3 hours.

【0017】この生成物の結晶粒径は1μ前後であり、
酸化物のモル比で表わした組成は脱水の形態で表わして
、(H,Na)2 O・(0.1Fe2 O3 ・0.
9Al2 O3 )・30SiO2 であった。これを
結晶性シリケート1と称する。
[0017] The crystal grain size of this product is around 1μ,
The composition expressed in molar ratio of oxides is expressed in dehydrated form as follows: (H,Na)2O.(0.1Fe2O3.0.1Fe2O3.0.
9Al2O3).30SiO2. This is called crystalline silicate 1.

【0018】この結晶性シリケート1を合成する場合、
原料の中で硫酸の代わりに塩酸などを用いても、又、硫
酸第二鉄の代わりに塩化第二鉄を用いても、又水ガラス
の代わりにシリカゾルを用いても同様のシリケートが得
られた。
When synthesizing this crystalline silicate 1,
The same silicate can be obtained even if hydrochloric acid is used instead of sulfuric acid among the raw materials, ferric chloride is used instead of ferric sulfate, or silica sol is used instead of water glass. Ta.

【0019】又、水熱合成条件として160℃で3日間
反応させる代わりに170℃または180℃で2日間反
応させても同様のシリケートが得られた。
A similar silicate was also obtained by reacting at 170°C or 180°C for 2 days instead of 160°C for 3 days as the hydrothermal synthesis conditions.

【0020】結晶性シリケート1の原料調合時の硫酸第
二鉄と硫酸アルミニウムの添加量をFe2 O3 とA
l2 O3 のモル比に換算して下記のように変えた以
外は、結晶性シリケート1の場合と同じ操作を繰り返し
て結晶性シリケート2〜4を調製した。
[0020] The amounts of ferric sulfate and aluminum sulfate added when preparing the raw materials for crystalline silicate 1 were changed to Fe2 O3 and A.
Crystalline silicates 2 to 4 were prepared by repeating the same operation as in the case of crystalline silicate 1, except that the molar ratio of l2O3 was changed as shown below.

【0021】結晶性シリケート1の調合時において、硫
酸の代わりに塩酸を用い、また硫酸第二鉄の代わりに、
塩化コバルト、塩化ルテニウム、塩化ロジウム、塩化ラ
ンタン、塩化セリウム、塩化チタン、塩化バナジウム、
塩化クロム、塩化アンチモン、塩化ガリウムを各々酸化
物換算でFe2 O3 と同じモル数だけ添加した以外
は結晶性シリケート1と同じ操作を繰返して結晶性シリ
ケート5〜14を調製した。
When preparing crystalline silicate 1, hydrochloric acid was used instead of sulfuric acid, and instead of ferric sulfate,
cobalt chloride, ruthenium chloride, rhodium chloride, lanthanum chloride, cerium chloride, titanium chloride, vanadium chloride,
Crystalline silicates 5 to 14 were prepared by repeating the same procedure as for crystalline silicate 1, except that chromium chloride, antimony chloride, and gallium chloride were each added in the same number of moles as Fe2O3 in terms of oxides.

【0022】これらの結晶性シリケートの有機窒素含有
化合物を除外した組成は、酸化物のモル比(脱水の形態
)で表して、(H,Na)2 O・(0.1M2 O3
 ・0.9Al2 O3 )・30SiO2 であった
。ここでMはCo,Ru,Rh,La,Ce,Ti,V
,Cr,Sb,Ga(結晶性シリケート5〜14の番号
順)である。
The composition of these crystalline silicates excluding organic nitrogen-containing compounds is expressed as the molar ratio of oxides (dehydrated form): (H,Na)2O.(0.1M2O3
・0.9Al2O3)・30SiO2. Here, M is Co, Ru, Rh, La, Ce, Ti, V
, Cr, Sb, Ga (in numerical order of crystalline silicates 5 to 14).

【0023】また結晶性シリケート1において調合時の
SiO2 /(0.1Fe2 O3 +0.9Al2 
O3 )比を20,80とした以外は結晶性シリケート
1と同じ操作を繰り返して各々結晶性シリケート15,
16を調製した。
Furthermore, in crystalline silicate 1, SiO2 /(0.1Fe2O3 +0.9Al2
O3) The same operation as for crystalline silicate 1 was repeated except that the ratio was changed to 20 and 80 to obtain crystalline silicate 15 and 15, respectively.
16 was prepared.

【0024】以上の結晶性シリケート1〜16の粉末X
線回折パターンは前記表1に示すパターンを示すことが
確認された。
Powder X of the above crystalline silicates 1 to 16
It was confirmed that the line diffraction pattern showed the pattern shown in Table 1 above.

【0025】以上の結晶性シリケート1〜16のそれぞ
れ10gを酢酸銅1gを500ccの水に溶解した水溶
液の中に入れ、室温にて12時間攪拌するイオン交換操
作を3回繰り返し行った後、水洗し、100℃で12時
間乾燥し、触媒1〜16(結晶性シリケートの番号に対
応)を調製した。
10 g of each of the above crystalline silicates 1 to 16 were placed in an aqueous solution of 1 g of copper acetate dissolved in 500 cc of water, and the ion exchange operation of stirring at room temperature for 12 hours was repeated three times, followed by washing with water. and dried at 100° C. for 12 hours to prepare catalysts 1 to 16 (corresponding to the number of crystalline silicate).

【0026】触媒1〜16を16〜32メッシュに整粒
し、触媒0.5gを常圧固定床流通式反応器に充填し、
次の反応条件下で活性評価試験を行った。その結果を表
2に示す。
[0026] Catalysts 1 to 16 were sized to 16 to 32 mesh, and 0.5 g of the catalyst was packed into an atmospheric pressure fixed bed flow reactor.
An activity evaluation test was conducted under the following reaction conditions. The results are shown in Table 2.

【0027】○  ガス組成 N2 O=200ppm NO=200ppm NH3 =400ppm O2 =5% He=バランス ○  ガス量=300Nl/hr ○  温度=500℃,600℃○ Gas composition N2 O=200ppm NO=200ppm NH3 = 400ppm O2 = 5% He=balance ○ Gas amount = 300Nl/hr ○ Temperature = 500℃, 600℃

【0028】(比較例)アンモニアを還元剤としたNO
xの接触分解触媒として用いられている酸化チタン−酸
化タングステン及び酸化チタン−酸化タングステン−酸
化バナジウム系触媒を実施例と同一条件で活性試験を実
施した。その結果を表2に併せて示す。
(Comparative example) NO using ammonia as a reducing agent
Activity tests were conducted on the titanium oxide-tungsten oxide and titanium oxide-tungsten oxide-vanadium oxide catalysts used as the catalytic cracking catalysts under the same conditions as in the examples. The results are also shown in Table 2.

【表2】[Table 2]

【0029】以上のように本発明で使用される触媒は、
400℃〜700℃、特に500℃〜600℃の温度に
おいて、NOxと共にN2 Oに対しても高い除去性能
を示すことが判った。
As mentioned above, the catalyst used in the present invention is
It was found that at temperatures of 400°C to 700°C, particularly 500°C to 600°C, high removal performance was exhibited for both NOx and N2O.

【0030】[0030]

【発明の効果】以上、実施例に示したように、本発明に
おいて、特定の結晶構造と特定の組成を有する結晶性シ
リケートに銅を含有させた触媒を用いることにより、従
来法では除去できなかったN2 Oの除去が可能となり
、排ガス中のN2 OおよびNOxを同時に低減させる
ことが可能となった。なお、本発明の実施例では触媒を
粒状にて活性試験を行っているが、ムライト等のハニカ
ム基材に本発明における触媒をコーティングしたハニカ
ム形状においても有効に作用することは言うまでもない
Effects of the Invention As shown in the examples above, in the present invention, by using a catalyst containing copper in crystalline silicate having a specific crystal structure and a specific composition, it is possible to remove copper that cannot be removed by conventional methods. This makes it possible to remove N2 O and simultaneously reduce N2 O and NOx in the exhaust gas. In the Examples of the present invention, the activity test was carried out using the catalyst in the form of particles, but it goes without saying that the catalyst in the form of a honeycomb formed by coating a honeycomb base material such as mullite with the catalyst of the present invention is also effective.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  排ガスの一酸化窒素、二酸化窒素及び
亜酸化窒素等の窒素酸化物を400〜700℃の条件下
で、本文に掲げた表1に示す粉末X線回折における格子
面間隔(d値)を有し、かつ脱水された状態において、
酸化物のモル比で(1.0±0.8)R2 O・〔aM
2 O3 ・bAl2 O3 〕・ySiO2 (上記
式中、Rはアルカリ金属イオン及び/又は水素イオン、
MはVIII族金属、希土類金属、チタン、バナジウム
、クロム、ニオブ、アンチモン、ガリウムからなる群か
ら選ばれた1種以上の元素のイオン、a+b=1,a≧
0,b≧0,y=20〜1000)の化学式を有する結
晶性シリケートに銅イオンを含有してなる触媒と接触さ
せ、該窒素酸化物をアンモニアにより窒素と水に分解す
ることを特徴とする排ガス中の窒素酸化物の除去方法。
Claim 1: The lattice spacing (d value) and in a dehydrated state,
The molar ratio of oxides is (1.0±0.8)R2O・[aM
2 O3 ・bAl2 O3 ]・ySiO2 (In the above formula, R is an alkali metal ion and/or a hydrogen ion,
M is an ion of one or more elements selected from the group consisting of Group VIII metals, rare earth metals, titanium, vanadium, chromium, niobium, antimony, and gallium, a+b=1, a≧
0, b≧0, y=20 to 1000) is brought into contact with a catalyst containing copper ions, and the nitrogen oxides are decomposed into nitrogen and water by ammonia. Method for removing nitrogen oxides from exhaust gas.
JP3137902A 1991-06-10 1991-06-10 Method for removing nitrogen oxide in exhaust gas Withdrawn JPH04363118A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3137902A JPH04363118A (en) 1991-06-10 1991-06-10 Method for removing nitrogen oxide in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3137902A JPH04363118A (en) 1991-06-10 1991-06-10 Method for removing nitrogen oxide in exhaust gas

Publications (1)

Publication Number Publication Date
JPH04363118A true JPH04363118A (en) 1992-12-16

Family

ID=15209353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3137902A Withdrawn JPH04363118A (en) 1991-06-10 1991-06-10 Method for removing nitrogen oxide in exhaust gas

Country Status (1)

Country Link
JP (1) JPH04363118A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998046334A1 (en) * 1997-04-16 1998-10-22 Ebara Corporation Method for removing nitrogen oxides in exhaust gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998046334A1 (en) * 1997-04-16 1998-10-22 Ebara Corporation Method for removing nitrogen oxides in exhaust gas

Similar Documents

Publication Publication Date Title
JP5750701B2 (en) Copper-containing levite molecular sieve for selective reduction of NOx
JP5261189B2 (en) Zeolite catalyst with improved NOx selective catalytic reduction efficiency
JP4957176B2 (en) Nitrogen oxide purification catalyst and nitrogen oxide purification method
EP0462598B1 (en) Transition metal-containing zeolite having high hydrothermal stability, production method thereof and method of using same
AU775254B2 (en) Removal of laughing gas in nitric acid production
CN114206495A (en) Denitration catalyst and denitration method using same
JPH0938464A (en) Catalyst for purification of exhaust gas and purifying method of exhaust gas
US5254515A (en) Catalyst for decomposing nitrogen oxides and a method of purifying a waste gas containing nitrogen oxides
JPH04363118A (en) Method for removing nitrogen oxide in exhaust gas
JPH07328437A (en) Ammonia decomposition catalyst
JP3229136B2 (en) Ammonia decomposition method
JPH04363145A (en) Catalyst for direct catalytic decomposition of nitrous oxide
JP2659840B2 (en) Purification method of exhaust gas containing nitrogen oxides
JPH044045A (en) Catalyst for processing exhaust gas
JP3241166B2 (en) Ammonia decomposition method
JP3332652B2 (en) Ammonia decomposition removal method
JP3229117B2 (en) Ammonia decomposition method
JPH03127629A (en) Direct catalytic cracking catalyst for nitrogen oxides
JP3453172B2 (en) DeNOx method
JPH04193347A (en) Catalyst for purification of exhaust gas
JPH03143547A (en) Catalyst for decomposition of nitrogen oxide
JPH05154386A (en) Direct decomposition catalyst for nitrous oxide
JP2695668B2 (en) Purification method of exhaust gas containing nitrogen oxides
JP3286996B2 (en) Exhaust gas purification catalyst
JPH0386213A (en) Method for catalytically decomposing nitrogen oxide

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980903