JPH04362240A - Air-fuel ratio controlling device for internal combustion engine - Google Patents

Air-fuel ratio controlling device for internal combustion engine

Info

Publication number
JPH04362240A
JPH04362240A JP13800091A JP13800091A JPH04362240A JP H04362240 A JPH04362240 A JP H04362240A JP 13800091 A JP13800091 A JP 13800091A JP 13800091 A JP13800091 A JP 13800091A JP H04362240 A JPH04362240 A JP H04362240A
Authority
JP
Japan
Prior art keywords
throttle opening
intake air
prediction
threshold value
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13800091A
Other languages
Japanese (ja)
Inventor
Kiyoshi Asada
浅田 潔
Koji Endo
浩二 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP13800091A priority Critical patent/JPH04362240A/en
Publication of JPH04362240A publication Critical patent/JPH04362240A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To restrict disturbance in an air-fuel ratio in a transition period by controlling a fuel injection quantity with a transition determining means, a predicting means, a computation means, and a prediction prohibiting means. CONSTITUTION:A transition determining means M1 determines if a time is in a transition period in which a throttle opening is changed quickly or not. A predicting means M2 predicts a suction air quantity in the transition period based on the throttle opening and an engine rotation number, and a computation means M3 computes and controls a fuel injection quantity using a suction air quantity detected at a time other than the transition period, or a predicted suction air quantity instead of the detected suction air quantity in the transition period. A prediction prohibiting means M5 compares the first threshold value, which becomes larger as the rotation number is larger, and the second threshold value of a predetermined small value with the throttle opening, and prohibits prediction of the suction air quantity when the throttle opening exceeds the first threshold value, or when it is the second threshold value or less. At the time of prohibition, the computation means M3 computes the fuel injection quantity, thereby disturbance in air-fuel ration control by difference between the predicted and the actual suction air quantity can be restricted.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は内燃機関の空燃比制御装
置に関し、内燃機関の運転状態に応じて燃料噴射量を演
算して空燃比を制御する内燃機関の燃料噴射制御装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control device for an internal combustion engine, and more particularly to a fuel injection control device for an internal combustion engine that controls the air-fuel ratio by calculating a fuel injection amount according to the operating state of the internal combustion engine.

【0002】0002

【従来の技術】従来より、特開昭63−215848号
公報に記載の如く、実際の吸気管圧力の変化に対して応
答遅れのないスロットル開度を用いて実際の吸気管圧力
を予測することにより、機関が実際に要求する燃料噴射
量を求め、加速及び減速の過渡時の空燃比を適正な値に
制御する空燃比制御装置がある。
2. Description of the Related Art Conventionally, as described in Japanese Unexamined Patent Publication No. 63-215848, it has been possible to predict actual intake pipe pressure using a throttle opening without delay in response to changes in actual intake pipe pressure. Accordingly, there is an air-fuel ratio control device that determines the fuel injection amount actually required by the engine and controls the air-fuel ratio during transitions of acceleration and deceleration to an appropriate value.

【0003】0003

【発明が解決しようとする課題】ここで、吸気管圧力を
検出する代りにエアフローメータを用いて吸入空気量を
検出する内燃機関でも同様にスロットル開度を用いて実
際の吸入空気量を予測することが考えられる。
[Problem to be Solved by the Invention] Here, in an internal combustion engine that uses an air flow meter to detect the amount of intake air instead of detecting the intake pipe pressure, it is necessary to predict the actual amount of intake air using the throttle opening. It is possible that

【0004】この場合、吸入空気量の予測は機種毎に特
定の機関の回転数とスロットル開度とを夫々可変して吸
入空気量を実測したマップを用いて行なう。
In this case, the intake air amount is predicted using a map obtained by actually measuring the intake air amount while varying the rotational speed and throttle opening of a specific engine for each model.

【0005】しかし、機関の運転条件や機関毎の機差に
より、回転数とスロットル開度に対する実際の吸入空気
量はバラツキがあり、例えば図7に示す如く実線Iに示
す予測した吸入空気量QNTAと実線IIに示すエアフ
ローメータで検出した吸入空気量QNとは加速の過渡期
間が終了した後でも誤差dを生じてしまう。
However, the actual intake air amount with respect to the rotation speed and throttle opening varies depending on engine operating conditions and machine differences between engines. For example, as shown in FIG. 7, the predicted intake air amount QNTA shown by the solid line I An error d occurs between the intake air amount QN detected by the air flow meter and the solid line II even after the acceleration transition period ends.

【0006】ここで、図8に示す如く、スロットル開度
の変化に対する吸入空気量の変化はスロットル開度が小
さいときに大きく、スロットル開度が大きいときは吸入
空気量の変化が微小となり、この吸入空気量の変化が微
小となるスロットル開度は回転数NEが小さい程小さな
値となる。このようにスロットル開度が大きな状態では
吸入空気量の変化は微小であるため、過渡時にマップを
用いて吸入空気量を予測すると誤差dの影響が大きく空
燃比制御が乱れてしまう。
Here, as shown in FIG. 8, the change in the intake air amount with respect to the change in the throttle opening is large when the throttle opening is small, and when the throttle opening is large, the change in the intake air amount is minute. The throttle opening degree at which the change in the amount of intake air becomes minute becomes smaller as the rotational speed NE becomes smaller. In such a state where the throttle opening is large, the change in the intake air amount is minute, so if the map is used to predict the intake air amount during a transient period, the influence of the error d will be large and the air-fuel ratio control will be disturbed.

【0007】まだ、スロットル開度が非常に小さい状態
では吸入空気量が少ないため、過渡時にマップを用いて
吸入空気量を予測すると誤差dの影響が大きく空燃比制
御が乱れてしまう問題があった。
[0007] Still, since the amount of intake air is small when the throttle opening is very small, there is a problem that if the map is used to predict the amount of intake air during a transient period, the influence of the error d is large and the air-fuel ratio control is disturbed. .

【0008】本発明は上記の点に鑑みなされたもので、
過渡時にスロットル開度が第1の閾値を越えるか第2の
閾値未満であれば検出した吸入空気量を用いて燃料噴射
量を制御することにより、過渡時の空燃比制御の乱れを
抑える内燃機関の燃料噴射量制御装置を提供することを
目的とする。
[0008] The present invention has been made in view of the above points.
An internal combustion engine that suppresses disturbances in air-fuel ratio control during a transient period by controlling the fuel injection amount using the detected intake air amount if the throttle opening exceeds a first threshold value or is less than a second threshold value during a transient period. The purpose of the present invention is to provide a fuel injection amount control device.

【0009】[0009]

【課題を解決するための手段】図1は本発明の原理図を
示す。同図中、過渡判定手段M1はスロットル開度が急
変する過渡時かどうかを判定する。
Means for Solving the Problems FIG. 1 shows a diagram of the principle of the present invention. In the figure, a transient determining means M1 determines whether or not the throttle opening is in a transient state where the throttle opening changes suddenly.

【0010】予測手段M2は過渡時にスロットル開度と
機関回転数とに基づいて吸入空気量を予測する。
The prediction means M2 predicts the intake air amount based on the throttle opening degree and the engine speed during a transient period.

【0011】演算手段M3は過渡時ではないときに検出
した吸入空気量を用い、また過渡時に検出した吸入空気
量の代りに予測した吸入空気量を用いて燃料噴射量を演
算して内燃機関M4の燃料噴射量を制御する。
The calculation means M3 calculates the fuel injection amount using the intake air amount detected when the transition is not occurring, and also uses the predicted intake air amount instead of the intake air amount detected during the transition, and calculates the fuel injection amount to control the internal combustion engine M4. control the fuel injection amount.

【0012】予測禁止手段M5は、回転数が大なる大き
な値となる第1の閾値及び所定の小さな値の第2の閾値
夫々とスロットル開度とを比較してスロットル開度が第
1の閾値を越えるか、又は第2の閾値未満のとき前記吸
入空気量の予測を禁止する。予測禁止手段M5による予
測の禁止時には演算手段M3は検出した吸入空気量を用
いて燃料噴射量を演算する。
[0012] The prediction prohibition means M5 compares the throttle opening with a first threshold at which the rotational speed becomes a large value and a second threshold at a predetermined small value, and determines whether the throttle opening is at the first threshold. or is less than a second threshold, prediction of the intake air amount is prohibited. When prediction is prohibited by the prediction prohibition means M5, the calculation means M3 calculates the fuel injection amount using the detected intake air amount.

【0013】[0013]

【作用】本発明においては、スロットル開度が第1の閾
値を越え過渡時の吸入空気量の変化が微小な場合、及び
スロットル開度が第2の閾値未満で吸入空気量が少ない
場合は過渡時のスロットル開度と回転数とによる吸入空
気量の予測が禁止され、検出した吸入空気量を用いて燃
料噴射量の演算が行なわれるため、予測した吸入空気量
と実際の吸入空気量との誤差による空燃比制御の乱れが
抑えられる。
[Operation] In the present invention, when the throttle opening exceeds the first threshold value and the change in the intake air amount during the transition is minute, and when the throttle opening is less than the second threshold and the intake air amount is small, the transition occurs. Prediction of intake air amount based on the throttle opening and rotational speed is prohibited, and the fuel injection amount is calculated using the detected intake air amount, so the predicted intake air amount and the actual intake air amount are Disturbances in air-fuel ratio control due to errors can be suppressed.

【0014】[0014]

【実施例】図2は本発明装置を適用した内燃機関の一実
施例の構成図を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 2 shows a block diagram of an embodiment of an internal combustion engine to which the device of the present invention is applied.

【0015】同図中、1はガソリンエンジン本体,2は
ピストン,3は点火プラグ,4は排気マニホールド,5
は吸気マニホールドであり、6は吸入空気の脈動を吸収
するサージタンク,7は吸入空気量を調節するスロット
ルバルブ,8は吸入空気量を測定するエアフローメータ
である。排気マニホールド4には排気ガス中の残存酸素
濃度を検出する酸素センサ9が設けられ、吸気マニホー
ルド5にはガソリンエンジン本体1の吸入空気中に燃料
を噴射する燃料噴射弁10が設けられている。吸気温セ
ンサ11は吸入空気の温度を検出し、スロットルセンサ
12はスロットルバルブ7の開度TAを検出し、水温セ
ンサ13は冷却水の水温を検出する。
In the figure, 1 is a gasoline engine body, 2 is a piston, 3 is a spark plug, 4 is an exhaust manifold, and 5 is a gasoline engine body.
is an intake manifold, 6 is a surge tank that absorbs the pulsation of intake air, 7 is a throttle valve that adjusts the amount of intake air, and 8 is an air flow meter that measures the amount of intake air. The exhaust manifold 4 is provided with an oxygen sensor 9 that detects the residual oxygen concentration in the exhaust gas, and the intake manifold 5 is provided with a fuel injection valve 10 that injects fuel into the intake air of the gasoline engine body 1. The intake air temperature sensor 11 detects the temperature of intake air, the throttle sensor 12 detects the opening degree TA of the throttle valve 7, and the water temperature sensor 13 detects the temperature of cooling water.

【0016】また、イグナイタ16は点火に必要な高電
圧を発生してディストリビュータ17に供給し、ディス
トリビュータ17はクランクシャフト(図示せず)の回
転に連動して上記高電圧を各気筒の点火プラグに分配供
給する。回転角センサ18はディストリビュータ17の
1回転即ちクランクシャフト2回転に24パルスの回角
信号を出力し、気筒判別センサ19はディストリビュー
タ17の1回転に1パルスの回転検出信号Gを出力する
Further, the igniter 16 generates a high voltage necessary for ignition and supplies it to the distributor 17, and the distributor 17, in conjunction with the rotation of the crankshaft (not shown), applies the high voltage to the spark plugs of each cylinder. Distribute and supply. The rotation angle sensor 18 outputs a rotation angle signal of 24 pulses per one revolution of the distributor 17, that is, two revolutions of the crankshaft, and the cylinder discrimination sensor 19 outputs a rotation detection signal G of 1 pulse per one revolution of the distributor 17.

【0017】電子制御回路20は図3に示す構成で、中
央処理装置(CPU)30と、処理プログラムを格納し
たリードオンリメモリ(ROM)31と、作業領域とし
て使用されるランダムアクセスメモリ(RAM)32と
通電停止後もデータを保持するバックアップRAM33
と、マルチプレクサ機能を持つA/D変換器34と、バ
ッファ機能を持つI/Oインタフェース35と、バック
アップ制御を行なうバックアップ回路36とよりなり、
これらの間はバスライン37で相互に接続されている。
The electronic control circuit 20 has a configuration shown in FIG. 3, and includes a central processing unit (CPU) 30, a read-only memory (ROM) 31 that stores processing programs, and a random access memory (RAM) used as a work area. 32 and a backup RAM 33 that retains data even after power is turned off.
, an A/D converter 34 with a multiplexer function, an I/O interface 35 with a buffer function, and a backup circuit 36 that performs backup control.
These are interconnected by a bus line 37.

【0018】A/D変換器34はエアフローメータ8よ
りの空気流量信号と、吸気温センサ11よりの吸気温度
信号と、スロットルセンサ12よりのスロットル開度信
号と、水温センサ13よりの水温信号とを供給されて、
各信号のディジタル化を行ない、これらのディジタル信
号はCPU30により読み取られる。またI/Oインタ
フェース35には酸素センサ9、回転角センサ18、気
筒判別センサ19夫々よりの信号が入来し、各信号はC
PU30により読み取られ、回転角センサ18の信号に
基づき機関回転数NEを演算する。
The A/D converter 34 receives an air flow rate signal from the air flow meter 8, an intake air temperature signal from the intake air temperature sensor 11, a throttle opening signal from the throttle sensor 12, and a water temperature signal from the water temperature sensor 13. supplied with
Each signal is digitized and these digital signals are read by the CPU 30. Further, signals from the oxygen sensor 9, rotation angle sensor 18, and cylinder discrimination sensor 19 are input to the I/O interface 35, and each signal is connected to the C
The engine rotation speed NE is read by the PU 30 and calculated based on the signal from the rotation angle sensor 18.

【0019】CPU30は各センサ検出データに基づい
て点火タイミング、燃料噴射量夫々を算出し、得られた
点火信号、燃料噴射信号がI/Oインタフェース35を
通してイグナイタ16、燃料噴射弁10夫々に供給され
る。
The CPU 30 calculates the ignition timing and fuel injection amount based on the sensor detection data, and the obtained ignition signal and fuel injection signal are supplied to the igniter 16 and the fuel injection valve 10 through the I/O interface 35. Ru.

【0020】次に本発明装置の一実施例の制御プログラ
ムについて説明する。
Next, a control program for an embodiment of the apparatus of the present invention will be explained.

【0021】図4は燃料噴射量制御処理の一実施例のフ
ローチャートを示す。このルーチンは例えば8msec
の所定時間毎に実行される。
FIG. 4 shows a flowchart of one embodiment of the fuel injection amount control process. This routine takes, for example, 8 msec.
is executed at predetermined intervals.

【0022】ステップ50ではスロットル開度TA及び
機関回転数NEを取り込む。ステップ51では今回取り
込んだスロットル開度TAから前回取り込んだスロット
ル開度TAOを減算して、この差の絶対値を増分とする
。ステップ52では増分DTAを所定値αと比較して過
渡時かどうかの判定を行なう。
At step 50, the throttle opening TA and engine speed NE are taken in. In step 51, the throttle opening degree TAO taken in last time is subtracted from the throttle opening degree TA taken in this time, and the absolute value of this difference is set as an increment. In step 52, the increment DTA is compared with a predetermined value α to determine whether or not a transition is occurring.

【0023】増分DTAが所定値αを越える過渡時には
ステップ53でスロットル開度TA及び回転数NEが図
5に示すマップの実線III の第1の閾値を越えるス
ロットル開度TAの斜線で示す領域にあるかどうかを判
別し、スロットル開度TAが実線III 以下の場合は
ステップ54でスロットル開度TAが図5の実線IVで
示す第2の閾値である所定値β未満の斜線で示す領域に
あるかどうかを判別する。
When the increment DTA exceeds the predetermined value α, in step 53, the throttle opening TA and the rotation speed NE exceed the first threshold of the solid line III on the map shown in FIG. If the throttle opening TA is equal to or less than the solid line III, the process proceeds to step 54, where the throttle opening TA is in the diagonally shaded region below a predetermined value β, which is the second threshold shown by the solid line IV in FIG. Determine whether or not.

【0024】スロットル開度が実線III の第1の閾
値を越える領域は過渡時であっても吸入空気量の変化が
小さい領域である。この実線III は回転数NEが小
さい程スロットル開度が小さいところから吸入空気量の
変化が微小となることに対応した曲線とされている。ま
た、スロットル開度が実線IVの第2の閾値未満の領域
は吸入空気量が少ない領域である。
The region where the throttle opening exceeds the first threshold indicated by the solid line III is a region where the change in the amount of intake air is small even during a transient period. This solid line III is a curve corresponding to the fact that the smaller the engine speed NE is, the smaller the throttle opening is, and the smaller the change in the amount of intake air is. Further, a region where the throttle opening degree is less than the second threshold value indicated by the solid line IV is a region where the amount of intake air is small.

【0025】ステップ52で増分DTAが所定値α以下
の通常時には通常制御のためステップ55へ進み、また
過渡時であってもスロットル開度TAが実線III を
越える領域にある場合、又は、実線IV未満の領域にあ
る場合は過渡制御を禁止して通常制御のためステップ5
5に進む。ステップ55ではエアフローメータ8よりの
吸入空気量Qを取り込んで回転数NEで割算することに
より機関1回転当りの吸入空気量QNを求めステップ5
7に進む。
In step 52, when the increment DTA is less than the predetermined value α, the process proceeds to step 55 for normal control, and even in a transient state, when the throttle opening TA is in a region exceeding the solid line III, or when the throttle opening degree TA is in a region exceeding the solid line IV, If it is in the range below, prohibit transient control and proceed to step 5 for normal control.
Proceed to step 5. Step 55 takes in the intake air amount Q from the air flow meter 8 and divides it by the rotational speed NE to determine the intake air amount QN per engine revolution.Step 5
Proceed to step 7.

【0026】また過渡時であり、スロットル開度TAが
実線III 以下で、かつ実線IVを越える場合には過
渡制御のためステップ56に進み、ここでスロット開度
TA及び回転数NEで図6に示す如きマップを参照して
予測吸入空気量QNTAを求め、この予測吸入空気量Q
NTAを吸入空気量QNとしてステップ57に進む。図
6は回転数NEが2000rpmのときのマップを示し
、各回転数毎に別々のマップを参照する。
If the throttle opening TA is below the solid line III and exceeds the solid line IV during a transient period, the process proceeds to step 56 for transient control, where the slot opening TA and the rotational speed NE are determined as shown in FIG. Determine the predicted intake air amount QNTA by referring to the map shown in the figure, and calculate the predicted intake air amount QNTA.
The process proceeds to step 57 by setting NTA as the intake air amount QN. FIG. 6 shows a map when the rotational speed NE is 2000 rpm, and a separate map is referred to for each rotational speed.

【0027】ステップ57ではステップ56又は57で
求めた吸入空気量QNから基本噴射量TPを求め、この
基本噴射量TPに吸気温や冷却水の水温等で定まる補正
係数及び空燃比フィードバック補正係数を乗算して燃料
噴射量TAUを演算する。この後ステップ58で今回取
り込んだスロットル開度TAを前回のスロットル開度T
AOにセットして処理を終了する。
In step 57, a basic injection amount TP is obtained from the intake air amount QN obtained in step 56 or 57, and a correction coefficient determined by the intake air temperature, cooling water temperature, etc. and an air-fuel ratio feedback correction coefficient are added to this basic injection amount TP. The fuel injection amount TAU is calculated by multiplying. After this, in step 58, the throttle opening degree TA taken this time is changed to the previous throttle opening degree T.
Set to AO and end the process.

【0028】そして、図示しない制御ルーチンで所定ク
ランク角になったときに燃料噴射量TAUに相当する時
間、燃料噴射弁10を開弁して燃料噴射を実行する。
Then, in a control routine (not shown), when a predetermined crank angle is reached, the fuel injection valve 10 is opened for a time corresponding to the fuel injection amount TAU to execute fuel injection.

【0029】このように、スロットル開度TAが第1の
閾値を越え過渡時の吸入空気量の変化が微小な場合、及
びスロットル開度が第2の閾値未満で吸入空気量が少な
い場合は過渡時のスロットル開度TAと回転数NEとに
よる吸入空気量の予測が禁止され、検出した吸入空気量
QNを用いて燃料噴射量の演算が行なわれるため、予測
した吸入空気量QNTAを実際の吸入空気量との誤差に
よる空燃比制御の乱れが抑えられる。
In this way, if the throttle opening degree TA exceeds the first threshold value and the change in the intake air amount during the transition is minute, or if the throttle opening degree is less than the second threshold value and the intake air amount is small, the transition occurs. Prediction of the intake air amount based on the throttle opening TA and rotational speed NE is prohibited, and the fuel injection amount is calculated using the detected intake air amount QN. Disturbances in air-fuel ratio control due to errors with the air amount can be suppressed.

【0030】[0030]

【発明の効果】上述の如く、本発明の内燃機関の空燃比
制御装置によれば、過渡時の空燃比制御の乱れを抑える
ことができ、実用上きわめて有用である。
As described above, the air-fuel ratio control device for an internal combustion engine of the present invention can suppress disturbances in air-fuel ratio control during transient periods, and is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の原理図である。FIG. 1 is a diagram showing the principle of the present invention.

【図2】本発明装置を適用した内燃機関の一実施例の構
成図である。
FIG. 2 is a configuration diagram of an embodiment of an internal combustion engine to which the device of the present invention is applied.

【図3】電子制御回路のブロック図である。FIG. 3 is a block diagram of an electronic control circuit.

【図4】燃料噴射制御処理のフローチャートである。FIG. 4 is a flowchart of fuel injection control processing.

【図5】予測禁止の領域を示すマップである。FIG. 5 is a map showing areas where prediction is prohibited.

【図6】予測マップを示す図である。FIG. 6 is a diagram showing a prediction map.

【図7】吸入空気量の誤差を示す図である。FIG. 7 is a diagram showing errors in intake air amount.

【図8】スロットル開度と吸入空気量の関係を示す図で
ある。
FIG. 8 is a diagram showing the relationship between throttle opening and intake air amount.

【符号の説明】[Explanation of symbols]

M1  過渡判定手段 M2  予測手段 M3  演算手段 M4  内燃機関 M5  予測禁止手段 8  エアフローメータ 10  燃料噴射弁 12  スロットルセンサ 18  回転角センサ M1 Transient determination means M2 Prediction means M3 calculation means M4 Internal combustion engine M5 Prediction inhibition means 8 Air flow meter 10 Fuel injection valve 12 Throttle sensor 18 Rotation angle sensor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  スロットル開度が急変する過渡時に該
スロットル開度と機関回転数とに基づいて吸入空気量を
予測し、検出した吸入空気量の代わりに予測した吸入空
気量を用いて燃料噴射量を演算して空燃比を制御する内
燃機関の空燃比制御装置において、回転数が大なる程大
きな値となる第1の閾値及び所定の小さな値の第2の閾
値夫々とスロットル開度とを比較してスロットル開度が
該第1の閾値を越えるか、又は第2の閾値未満のとき前
記吸入空気量の予測を禁止する予測禁止手段を有し、該
予測禁止手段による予測の禁止時には検出した吸入空気
量を用いて燃料噴射量を演算することを特徴とする内燃
機関の空燃比制御装置。
Claim 1: Predicting the amount of intake air based on the throttle opening and engine speed during a transient period when the throttle opening suddenly changes, and injecting fuel using the predicted intake air amount instead of the detected intake air amount. In an air-fuel ratio control device for an internal combustion engine that controls an air-fuel ratio by calculating a quantity, a first threshold value that becomes a larger value as the rotation speed increases, a second threshold value that is a predetermined small value, and a throttle opening degree are respectively set. and a prediction inhibiting means for prohibiting prediction of the intake air amount when the throttle opening exceeds the first threshold value or is less than the second threshold value, and detects when prediction by the prediction inhibiting means is prohibited. An air-fuel ratio control device for an internal combustion engine, characterized in that a fuel injection amount is calculated using an intake air amount.
JP13800091A 1991-06-10 1991-06-10 Air-fuel ratio controlling device for internal combustion engine Pending JPH04362240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13800091A JPH04362240A (en) 1991-06-10 1991-06-10 Air-fuel ratio controlling device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13800091A JPH04362240A (en) 1991-06-10 1991-06-10 Air-fuel ratio controlling device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH04362240A true JPH04362240A (en) 1992-12-15

Family

ID=15211726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13800091A Pending JPH04362240A (en) 1991-06-10 1991-06-10 Air-fuel ratio controlling device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH04362240A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152722A (en) * 2013-02-12 2014-08-25 Suzuki Motor Corp Fuel injection amount control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152722A (en) * 2013-02-12 2014-08-25 Suzuki Motor Corp Fuel injection amount control device

Similar Documents

Publication Publication Date Title
RU2230931C2 (en) Internal combustion engine knocking elimination method
US4886030A (en) Method of and system for controlling fuel injection rate in an internal combustion engine
US4469072A (en) Method and apparatus for controlling the fuel-feeding rate of an internal combustion engine
US6672284B2 (en) Fuel supply amount control apparatus for internal combustion engine
US5003955A (en) Method of controlling air-fuel ratio
JPS6255431A (en) Fuel injection controller of internal combustion engine
JP2917600B2 (en) Fuel injection control device for internal combustion engine
JPH01211633A (en) Fuel injection amount control device for internal combustion engine
JPH0316498B2 (en)
JPH04362240A (en) Air-fuel ratio controlling device for internal combustion engine
JPS5963330A (en) Method of controlling electrically controlled internal- combustion engine
JPS61116051A (en) Method for processing engine control signal
JP2564810B2 (en) Fuel injection amount control device for internal combustion engine
JP2934253B2 (en) Knocking control device for internal combustion engine
JPH0584383B2 (en)
JPH057546B2 (en)
JP2847910B2 (en) Fuel injection amount control device for internal combustion engine
JP3017298B2 (en) Engine fuel control device
JPS60261947A (en) Accelerative correction of fuel injector
JPH04259639A (en) Air-fuel ratio control device for internal combustion engine
JPS61123727A (en) Fuel injection quantity controller for internal-combusion engine
JP2811852B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0323330A (en) Fuel injection amount control device for internal combustion engine
JPS61226541A (en) Modifying device of corrective control functioning transiently in control of internal-combustion engine
JPH04134143A (en) Fuel injection quantity controller for internal combustion engine