JPH04361154A - Method and device for performing optoacoustic spectral analysis - Google Patents

Method and device for performing optoacoustic spectral analysis

Info

Publication number
JPH04361154A
JPH04361154A JP3136464A JP13646491A JPH04361154A JP H04361154 A JPH04361154 A JP H04361154A JP 3136464 A JP3136464 A JP 3136464A JP 13646491 A JP13646491 A JP 13646491A JP H04361154 A JPH04361154 A JP H04361154A
Authority
JP
Japan
Prior art keywords
liquid
photoacoustic
concentration
liquid property
photoacoustic signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3136464A
Other languages
Japanese (ja)
Inventor
Tetsuya Matsui
哲也 松井
Tetsuo Fukazawa
深沢 哲生
Mitsuru Maeda
充 前田
Yukio Fujine
藤根 幸雄
Takehiro Kihara
木原 武弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Japan Atomic Energy Agency
Original Assignee
Hitachi Ltd
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Japan Atomic Energy Research Institute filed Critical Hitachi Ltd
Priority to JP3136464A priority Critical patent/JPH04361154A/en
Publication of JPH04361154A publication Critical patent/JPH04361154A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To enable a small of sample to be analyzed by compensating for a change in optoacoustic signal accompanied by a change in a liquid property value of a liquid to be measured. CONSTITUTION:When a value which shows one or more liquid property of a constant-pressure specific heat, an isothermic inflation coefficient, and a sound speed is changed, its liquid property value is directly measured by a liquid property monitor 1 or is obtained by measuring a concentration or a liquid temperature of a coexisting substance. On the other hand, an optoacoustic signal of a sample constituent which is an object to be measured is measured by an optoacoustic analyzer 2, the measurement values are sent to en operation- processing device 3, and a change in the optoacoustic signal according to a change in the liquid property value is compensated by using the changed liquid property value, thus obtaining the concentration of the sample.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、液体中の微量試料濃度
を分析する方法及び装置に係り、特に液性状の値が変化
する液体中の微量試料濃度を分析するのに好適な光音響
分光分析方法及び装置に関する。
[Field of Industrial Application] The present invention relates to a method and apparatus for analyzing the concentration of a trace sample in a liquid, and in particular to a photoacoustic spectrometer suitable for analyzing the concentration of a trace sample in a liquid whose liquid properties change. Related to analytical methods and devices.

【0002】0002

【従来の技術】従来の液体中の試料濃度の光音響分光分
析方法及び装置においては、アナリティカル  ケミス
トリ−,58巻,11号,9月,1986,2275〜
2278頁(Analytical  Chemist
ry,Vol.58,Sept.1986,pp227
5〜2278)に記載されているように、光音響分光分
析を高感度にする技術については検討しているが、測定
しようとする液体の液性状の値が変化する場合について
は記載がない。一般に光音響分光分析方法は、試料をセ
ル内に密閉しておき、適当な周波数で強さが変調されて
いる単色光を照射する。試料による吸収の結果、試料の
周期的な熱膨張が生じ、それが音波となって伝播する。 それをセルに接触して置かれている高感度の音響検出器
で検出し試料濃度を分析する方法である。
[Prior Art] Conventional methods and apparatus for photoacoustic spectroscopic analysis of sample concentration in liquids are described in Analytical Chemistry, Vol. 58, No. 11, September, 1986, 2275-
2278 pages (Analytical Chemist
ry, Vol. 58, Sept. 1986, pp227
As described in 5-2278), a technique for making photoacoustic spectroscopy highly sensitive has been studied, but there is no description of the case where the value of the liquid property of the liquid to be measured changes. Generally, in photoacoustic spectroscopy, a sample is sealed in a cell and irradiated with monochromatic light whose intensity is modulated at an appropriate frequency. Absorption by the sample results in periodic thermal expansion of the sample, which propagates as a sound wave. This method detects this with a highly sensitive acoustic detector placed in contact with the cell and analyzes the sample concentration.

【0003】0003

【発明が解決しようとする課題】従来の液体中の成分濃
度の光音響分光分析方法及び装置にあっては、光音響分
光分析を高感度にする技術については検討しているが、
測定しようとする液体の液性状の値の変化に伴う光音響
信号の変化を補正する点についての考慮がなされておら
ず、液性状の値が変化する系の試料濃度の光音響分光分
析は困難という問題があった。
[Problems to be Solved by the Invention] In the conventional method and apparatus for photoacoustic spectroscopic analysis of the concentration of components in a liquid, techniques for increasing the sensitivity of photoacoustic spectroscopy have been studied;
No consideration has been given to correcting changes in the photoacoustic signal due to changes in the liquid property values of the liquid to be measured, making it difficult to perform photoacoustic spectroscopic analysis of sample concentration in systems where the liquid property values change. There was a problem.

【0004】本発明の目的は、測定しようとする液体の
液性状の値の変化に伴う光音響信号の変化を補正し、微
量な試料濃度を分析する光音響分光分析方法及び装置を
提供することにある。
[0004] An object of the present invention is to provide a photoacoustic spectroscopy method and apparatus that corrects changes in photoacoustic signals caused by changes in liquid properties of a liquid to be measured and analyzes minute sample concentrations. It is in.

【0005】[0005]

【課題を解決するための手段】前記の目的を達成するた
め、本発明に係る光音響分光分析方法は、液体中の試料
濃度を光音響信号により測定する光音響分光分析方法に
おいて、光音響信号を変化させる液体の定圧比熱、等温
膨張係数及び音速の液性状の値のうち少なくとも一つを
測定し、それぞれの液性状の値を用いて光音響信号を補
正する構成とする。
[Means for Solving the Problems] In order to achieve the above object, the photoacoustic spectroscopy method according to the present invention includes a method for measuring a sample concentration in a liquid using a photoacoustic signal. The structure is such that at least one of the liquid property values of constant pressure specific heat, isothermal expansion coefficient, and sonic velocity of the liquid that changes is measured, and the photoacoustic signal is corrected using each liquid property value.

【0006】そして光音響信号は、液体中に共存物質が
ありかつそれぞれの液性状の値が共存物質の濃度により
変化する場合、その濃度を測定するとともに濃度に対応
したそれぞれの液性状の値を用いて補正される構成であ
る。
[0006] When a liquid contains coexisting substances and the value of each liquid property changes depending on the concentration of the coexisting substance, the photoacoustic signal measures the concentration and calculates the value of each liquid property corresponding to the concentration. This is a configuration that is corrected using

【0007】また光音響信号は、それぞれの液性状が液
体の温度により変化する場合、その温度を測定するとと
もに温度で測定したそれぞれの液性状の値を用いて補正
される構成でもよい。
[0007] Furthermore, when the properties of each liquid change depending on the temperature of the liquid, the photoacoustic signal may be configured such that the temperature is measured and the value of each liquid property measured at the temperature is corrected.

【0008】さらに光音響分光分析装置にあっては、液
体中の試料濃度を光音響信号により測定する光音響分光
分析装置において、試料液体の定圧比熱、等温膨張係数
及び音速の液性状の値のうち少なくとも一つを測定する
液性状モニタと、光音響信号を測定する光音響分析器と
、それぞれの液性状の値と光音響信号とを入力し変化し
たそれぞれの液性状の値を用いて光音響信号を補正する
演算処理装置とよりなる構成とする。
Furthermore, in a photoacoustic spectrometer that measures the concentration of a sample in a liquid using a photoacoustic signal, the liquid property values of the constant pressure specific heat, isothermal expansion coefficient, and sound velocity of the sample liquid are measured. A liquid property monitor that measures at least one of them, a photoacoustic analyzer that measures a photoacoustic signal, input the respective liquid property values and the photoacoustic signal, and use the changed liquid property values to perform optical analysis. The configuration includes an arithmetic processing device that corrects the acoustic signal.

【0009】そして液性状モニタは、共存物質の濃度を
測定するモニタである構成とする。
The liquid property monitor is configured to measure the concentration of coexisting substances.

【0010】また液性状モニタは、液体の温度を測定す
るモニタである構成でもよい。
[0010] The liquid property monitor may also be configured to be a monitor that measures the temperature of the liquid.

【0011】[0011]

【作用】本発明の光音響分光分析方法及び装置によれば
、測定する液体はセルに密閉されて液性状モニタに送ら
れ、光音響信号の補正に必要な定圧比熱、等温膨張係数
、及び音速の液性状の値のうち少なくとも一つが測定さ
れ、測定値は演算処理装置に送られる。一方、光音響信
号は光音響分析器で測定され演算処理装置に送られる。 演算処理装置は変化した液性状の測定値を用いて光音響
信号を補正し下記により試料濃度を演算する。液中にお
いて発生する光音響信号強度<P>(N/m2)は、励
起光出力をE(W)とすると、       <P>=k(βV2/Cp)EεC   
                (1)(1)式で表
される。ここで、kは定数、βは等温膨張係数(1/K
)、Cpは定圧比熱(J/(Kg・K))、Vは音速(
m/s)、εは試料のモル吸光係数(m2/mol)、
Cは試料濃度(mol/L)である。(1)式において
光音響信号強度が試料濃度に比例しており、光音響分光
分析による成分濃度の測定が可能なことを示している。 したがって、検量線を作成することによりkを求めると
、試料濃度が下記の(2)式で求められる。
[Operation] According to the photoacoustic spectroscopy method and apparatus of the present invention, the liquid to be measured is sealed in a cell and sent to the liquid property monitor, and the constant pressure specific heat, isothermal expansion coefficient, and sound velocity necessary for correcting the photoacoustic signal are measured. At least one of the liquid property values is measured, and the measured value is sent to an arithmetic processing unit. On the other hand, the photoacoustic signal is measured by a photoacoustic analyzer and sent to a processing unit. The arithmetic processing device corrects the photoacoustic signal using the measured value of the changed liquid properties and calculates the sample concentration as described below. The photoacoustic signal intensity <P> (N/m2) generated in the liquid is expressed as <P>=k(βV2/Cp)EεC, where the excitation light output is E(W).
(1) It is expressed by the formula (1). Here, k is a constant and β is the isothermal expansion coefficient (1/K
), Cp is the specific heat at constant pressure (J/(Kg・K)), and V is the speed of sound (
m/s), ε is the molar extinction coefficient of the sample (m2/mol),
C is the sample concentration (mol/L). In equation (1), the photoacoustic signal intensity is proportional to the sample concentration, indicating that the component concentration can be measured by photoacoustic spectroscopy. Therefore, when k is determined by creating a calibration curve, the sample concentration is determined using the following equation (2).

【0012】       C=<P>/{k(βV2/Cp)Eε}
               (2)しかしながら、
液性状の値を表しているβ,V,Cpが変化することに
よって、光音響信号が変化し、試料濃度の測定値に影響
を与える。また、これらの液性状を示す値は、液体中の
共存物質の濃度や液体の温度によって変化する。たとえ
ば、Cpは共存物質の濃度に依存し、また、βは液体温
度に依存する。したがって、液体中の共存物質の濃度や
液温の変化によって光音響信号が変化することになる。 そこで、これらの値を直接測定するか、あるいは共存物
質の濃度や液温を測定して液性状を示す値を求め、(2
)式に代入し光音響信号強度を補正することにより、正
確な成分濃度が求められる。
C=<P>/{k(βV2/Cp)Eε}
(2) However,
By changing β, V, and Cp, which represent the values of liquid properties, the photoacoustic signal changes, which affects the measured value of sample concentration. Further, these values indicating liquid properties change depending on the concentration of coexisting substances in the liquid and the temperature of the liquid. For example, Cp depends on the concentration of coexisting substances, and β depends on the liquid temperature. Therefore, the photoacoustic signal changes due to changes in the concentration of coexisting substances in the liquid and the liquid temperature. Therefore, either directly measure these values, or measure the concentration of coexisting substances and the liquid temperature to find values that indicate the liquid properties.
) and correcting the photoacoustic signal intensity, accurate component concentrations can be determined.

【0013】[0013]

【実施例】本発明の一実施例を図1を参照しながら説明
する。
[Embodiment] An embodiment of the present invention will be described with reference to FIG.

【0014】図1に示すように、測定する液体はセル5
に密閉されてまず液性状モニタ1に送られる。この液性
状モニタ1では、光音響信号を補正するに必要な定圧比
熱Cp、等温膨張係数β、及び音速Vの液性状の値のう
ち1つ以上の値を直接測定するか、あるいはそれらの値
を求めるため共存物質の濃度や液体温度を測定する。共
存物質の濃度を測定する場合に、吸光光度法や蛍光分析
法などの測定法によりインラインで迅速に測定すること
が可能であり、また、液温についても熱電対などにより
インラインで測定可能である。この液性状モニタ1で測
定した値は液性状信号として演算処理装置3に送られる
As shown in FIG. 1, the liquid to be measured is placed in the cell 5.
The liquid is sealed and first sent to the liquid property monitor 1. This liquid property monitor 1 directly measures one or more of the liquid property values of constant pressure specific heat Cp, isothermal expansion coefficient β, and sound velocity V necessary for correcting the photoacoustic signal, or The concentration of coexisting substances and liquid temperature are measured to determine the When measuring the concentration of coexisting substances, it is possible to quickly measure it in-line using measurement methods such as spectrophotometry and fluorescence analysis, and liquid temperature can also be measured in-line using thermocouples, etc. . The value measured by the liquid property monitor 1 is sent to the arithmetic processing unit 3 as a liquid property signal.

【0015】一方、演算処理装置3に入力される測定対
象の試料濃度の光音響信号は光音響分析器2により測定
する。この光音響分析器2の装置構成の一例を図2に示
す。この図2では光源にパルスYAGレ−ザ4を用いて
おり、レ−ザ光の波長を測定試料の吸収波長に合わせる
ため、波長変調用の色素レ−ザやラマンシフタを組み合
わせている。このパルスYAGレ−ザ4からの光を液体
が入ったセル5に照射し、セル5内に設置された音響検
出器により測定された信号をプリアンプ6で増幅し、ボ
ックスカ−積分器8で検出する。励起光モニタ7はレ−
ザ光の出力変動を補正するために用いる。以上のように
して得られた光音響信号を図1に示す演算処理装置3に
送り、前記(2)式にそれらの測定値を代入して、試料
濃度を求める。
On the other hand, a photoacoustic signal representing the concentration of the sample to be measured, which is input to the arithmetic processing unit 3, is measured by the photoacoustic analyzer 2. An example of the device configuration of this photoacoustic analyzer 2 is shown in FIG. In FIG. 2, a pulsed YAG laser 4 is used as a light source, and a dye laser for wavelength modulation and a Raman shifter are combined in order to match the wavelength of the laser beam to the absorption wavelength of the measurement sample. A cell 5 containing a liquid is irradiated with light from this pulsed YAG laser 4, and a signal measured by an acoustic detector installed in the cell 5 is amplified by a preamplifier 6, and a signal is amplified by a boxcar integrator 8. To detect. The excitation light monitor 7
It is used to correct the output fluctuation of the light. The photoacoustic signal obtained as described above is sent to the arithmetic processing device 3 shown in FIG. 1, and the measured values are substituted into the above equation (2) to determine the sample concentration.

【0016】ここで、本実施例による測定の一例につい
て説明する。この測定では、硝酸溶液中のNpの5価イ
オンの光音響信号を測定した。測定波長はNpの5価イ
オン(Npイオン)の吸収ピ−クである617.0nm
とし、共存物質としてUイオンを添加した。この測定波
長におけるUイオンの吸収はほとんどないため、Uイオ
ンが共存しても光の吸収量は増加せず、Uイオンに基づ
く光音響信号は発生しない。Uイオンが共存する場合と
しない場合のNpイオンの光音響信号の濃度依存性を図
3に示す。この図3から、Uイオンが共存すると光音響
信号強度が大きくなっていることがわかる。これは、図
4に示すように定圧比熱がUイオン濃度が増加するのに
伴い減少しているため、(1)式により光音響信号強度
が大きくなるものである。そこで、液性状モニタとして
、Uイオン濃度を吸光光度法または蛍光分析法により測
定し、その結果から図4を用いて定圧比熱を求め、光音
響信号を補正した結果を図5に示す。この図5は、Np
イオン濃度を一定とし、得られた光音響信号のUイオン
濃度依存性を測定した結果である。この図5から、定圧
比熱の変化の補正をしない場合はUイオンの増加に伴い
光音響信号強度が大きくなっているのに対し、補正した
場合は光音響信号強度がほぼ一定であり、この補正が有
効であることがわかる。図6には定圧比熱の硝酸濃度依
存性を示しており、この図6から、硝酸濃度が変化する
場合は液性状モニタとして硝酸濃度をモニタする必要が
あることがわかる。
An example of measurement according to this embodiment will now be explained. In this measurement, a photoacoustic signal of pentavalent Np ions in a nitric acid solution was measured. The measurement wavelength is 617.0 nm, which is the absorption peak of pentavalent Np ions (Np ions).
and U ions were added as a coexisting substance. Since there is almost no absorption of U ions at this measurement wavelength, the amount of light absorbed does not increase even if U ions coexist, and no photoacoustic signal based on U ions is generated. FIG. 3 shows the concentration dependence of the photoacoustic signal of Np ions when U ions coexist and when they do not. It can be seen from FIG. 3 that the photoacoustic signal intensity increases when U ions coexist. This is because, as shown in FIG. 4, the constant pressure specific heat decreases as the U ion concentration increases, so the photoacoustic signal intensity increases according to equation (1). Therefore, as a liquid property monitor, the U ion concentration was measured by spectrophotometry or fluorescence analysis, and from the results, constant pressure specific heat was determined using FIG. 4, and the photoacoustic signal was corrected. The results are shown in FIG. This figure 5 shows that Np
These are the results of measuring the dependence of the obtained photoacoustic signal on the U ion concentration while keeping the ion concentration constant. From Figure 5, it can be seen that when the change in constant pressure specific heat is not corrected, the photoacoustic signal intensity increases as the number of U ions increases, whereas when it is corrected, the photoacoustic signal intensity is almost constant; is found to be effective. FIG. 6 shows the dependence of the specific heat at constant pressure on the nitric acid concentration, and from this FIG. 6 it can be seen that when the nitric acid concentration changes, it is necessary to monitor the nitric acid concentration as a liquid property monitor.

【0017】以上のように、本実施例によれば、液性状
の値が変化することによる光音響信号の変化を、変化し
た液性状の値を用いて補正し試料濃度を求めることがで
きるという特徴がある。
As described above, according to this embodiment, the sample concentration can be determined by correcting the change in the photoacoustic signal due to the change in the liquid property value using the changed liquid property value. It has characteristics.

【0018】[0018]

【発明の効果】本発明の光音響分光分析方法によれば、
測定しようとする液体の液性状の値の変化に伴う光音響
信号の変化を補正し、微量な試料を分析できるという効
果がある。
[Effect of the invention] According to the photoacoustic spectroscopy method of the present invention,
This has the effect of correcting changes in the photoacoustic signal due to changes in the liquid properties of the liquid to be measured, and allowing analysis of minute amounts of samples.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】図1の光音響分析器の一例を示す図である。FIG. 2 is a diagram showing an example of the photoacoustic analyzer of FIG. 1.

【図3】Npイオンの光音響信号強度の濃度依存性を示
すグラフである。
FIG. 3 is a graph showing the concentration dependence of the photoacoustic signal intensity of Np ions.

【図4】定圧比熱のUイオン濃度依存性を示すグラフで
ある。
FIG. 4 is a graph showing the dependence of specific heat at constant pressure on U ion concentration.

【図5】Npイオン一定における光音響信号強度のUイ
オン濃度依存性を示すグラフである。
FIG. 5 is a graph showing the dependence of photoacoustic signal intensity on U ion concentration when Np ions are constant.

【図6】定圧比熱の硝酸濃度依存性を示すグラフである
FIG. 6 is a graph showing the dependence of specific heat at constant pressure on nitric acid concentration.

【符号の説明】[Explanation of symbols]

1  液性状モニタ 2  光音響分析器 3  演算処理装置 4  パルスYAGレ−ザ5  セル6  プリアンプ
7  励起光モニタ8  ボックスカ−積分器
1 Liquid property monitor 2 Photoacoustic analyzer 3 Arithmetic processing unit 4 Pulsed YAG laser 5 Cell 6 Preamplifier 7 Excitation light monitor 8 Boxcar integrator

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  液体中の試料濃度を光音響信号により
測定する光音響分光分析方法において、前記光音響信号
を変化させる前記液体の定圧比熱、等温膨張係数及び音
速の液性状の値のうち少なくとも一つを測定し、それぞ
れの液性状の値を用いて前記光音響信号を補正すること
を特徴とする光音響分光分析方法。
1. A photoacoustic spectroscopy method for measuring sample concentration in a liquid using a photoacoustic signal, in which at least one of the liquid property values of constant pressure specific heat, isothermal expansion coefficient, and sonic velocity of the liquid that changes the photoacoustic signal is used. A method for photoacoustic spectroscopy, characterized in that the photoacoustic signal is corrected using the values of the respective liquid properties.
【請求項2】  光音響信号は、液体中に共存物質があ
りかつそれぞれの液性状の値が該共存物質の濃度により
変化する場合、その濃度を測定するとともに該濃度に対
応したそれぞれの液性状の値を用いて補正されることを
特徴とする請求項1記載の光音響分光分析方法。
2. When there is a coexisting substance in a liquid and the value of each liquid property changes depending on the concentration of the coexisting substance, the photoacoustic signal is used to measure the concentration and to measure each liquid property corresponding to the concentration. 2. The photoacoustic spectroscopy method according to claim 1, wherein the correction is performed using the value of .
【請求項3】  光音響信号は、それぞれの液性状が液
体の温度により変化する場合、その温度を測定するとと
もに該温度で測定したそれぞれの液性状の値を用いて補
正されることを特徴とする請求項1記載の光音響分光分
析方法。
3. The photoacoustic signal is characterized in that when each liquid property changes depending on the temperature of the liquid, the temperature is measured and the photoacoustic signal is corrected using the value of each liquid property measured at the temperature. The photoacoustic spectroscopy method according to claim 1.
【請求項4】  液体中の試料濃度を光音響信号により
測定する光音響分光分析装置において、前記試料液体の
定圧比熱、等温膨張係数及び音速の液性状の値のうち少
なくとも一つを測定する液性状モニタと、前記光音響信
号を測定する光音響分析器と、それぞれの液性状の値と
前記光音響信号とを入力し変化したそれぞれの液性状の
値を用いて該光音響信号を補正する演算処理装置とより
なることを特徴とする光音響分光分析装置。
4. In a photoacoustic spectrometer that measures the concentration of a sample in a liquid using a photoacoustic signal, a liquid that measures at least one of the liquid property values of constant pressure specific heat, isothermal expansion coefficient, and sonic velocity of the sample liquid. A property monitor, a photoacoustic analyzer that measures the photoacoustic signal, inputting the values of each liquid property and the photoacoustic signal, and correcting the photoacoustic signal using the changed values of each liquid property. A photoacoustic spectrometer characterized by comprising a calculation processing unit.
【請求項5】  液性状モニタは、共存物質の濃度を測
定するモニタであることを特徴とする請求項4記載の光
音響分光分析装置。
5. The photoacoustic spectrometer according to claim 4, wherein the liquid property monitor is a monitor that measures the concentration of coexisting substances.
【請求項6】  液性状モニタは、液体の温度を測定す
るモニタであることを特徴とする請求項4記載の光音響
分光分析装置。
6. The photoacoustic spectrometer according to claim 4, wherein the liquid property monitor is a monitor that measures the temperature of the liquid.
JP3136464A 1991-06-07 1991-06-07 Method and device for performing optoacoustic spectral analysis Pending JPH04361154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3136464A JPH04361154A (en) 1991-06-07 1991-06-07 Method and device for performing optoacoustic spectral analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3136464A JPH04361154A (en) 1991-06-07 1991-06-07 Method and device for performing optoacoustic spectral analysis

Publications (1)

Publication Number Publication Date
JPH04361154A true JPH04361154A (en) 1992-12-14

Family

ID=15175724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3136464A Pending JPH04361154A (en) 1991-06-07 1991-06-07 Method and device for performing optoacoustic spectral analysis

Country Status (1)

Country Link
JP (1) JPH04361154A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052061A1 (en) * 2009-10-29 2011-05-05 キヤノン株式会社 Photo-acoustic device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052061A1 (en) * 2009-10-29 2011-05-05 キヤノン株式会社 Photo-acoustic device
CN102596049A (en) * 2009-10-29 2012-07-18 佳能株式会社 Photo-acoustic device
JPWO2011052061A1 (en) * 2009-10-29 2013-03-14 キヤノン株式会社 Photoacoustic device
US9226662B2 (en) 2009-10-29 2016-01-05 Canon Kabushiki Kaisha Photoacoustic apparatus

Similar Documents

Publication Publication Date Title
JP5452867B2 (en) Heat selective multivariate optical computing
EP2745097B1 (en) Cavity enhanced laser based gas analyzer
JP5624548B2 (en) Method and apparatus for wavelength modulation spectroscopy
US7868296B2 (en) Spectroscopy having correction for broadband distortion for analyzing multi-component samples
JP5603870B2 (en) Calibration method for wavelength modulation spectroscopy apparatus
WO2014106940A1 (en) Gas absorption spectroscopy device and gas absorption spectroscopy method
CN105067564B (en) A kind of optical fiber gas concentration detection method with temperature compensation capability
JPH0523617B2 (en)
EP0404207B1 (en) Infrared spectrophotometric method
US20050062972A1 (en) System and method for cavity ring-down spectroscopy using continuously varying continuous wave excitation
JP4048139B2 (en) Concentration measuring device
JPH04361154A (en) Method and device for performing optoacoustic spectral analysis
Long et al. Error reduction in pulsed laser photothermal deflection spectrometry
WO2021053804A1 (en) Gas absorption spectroscopy device and gas absorption spectroscopy method
RU132548U1 (en) FIRE PHOTOMETER
JPS60205336A (en) System for removing and processing interference spectrum of mixed material in spectrochemical analyzing apparatus
RU2319136C1 (en) Method and device for determining relative concentration of isopolymers of carbon dioxide
US20080093555A1 (en) Method to determine water content in a sample
JP3128163U (en) Spectrophotometer
JPH01197631A (en) Gas concentration measuring method
JPS5957143A (en) Measurement of nox concentration
JP2018105833A (en) Moisture density measurement method, and moisture density measurement device
JPH0377030A (en) Reaction vapor phase monitor device
RU2526795C1 (en) Flame photometer
CN117405619A (en) Multi-component infrared gas analysis method and device based on wavelength modulation technology