JPH04360521A - Growth method of polycrystalline silicon - Google Patents

Growth method of polycrystalline silicon

Info

Publication number
JPH04360521A
JPH04360521A JP13637291A JP13637291A JPH04360521A JP H04360521 A JPH04360521 A JP H04360521A JP 13637291 A JP13637291 A JP 13637291A JP 13637291 A JP13637291 A JP 13637291A JP H04360521 A JPH04360521 A JP H04360521A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
core tube
furnace core
semiconductor substrate
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13637291A
Other languages
Japanese (ja)
Inventor
Tsuneji Nakatani
中谷 恒司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP13637291A priority Critical patent/JPH04360521A/en
Publication of JPH04360521A publication Critical patent/JPH04360521A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a polycrystalline silicon growth method wherein the formation of an oxide film on the interface between a semiconductor substrate and polycrystalline silicon in the conventional polycrystalline silicon growth process is prevented and contact resistance is reduced, when electric contact between the semiconductor substrate and the polycrystalline silicon is formed. CONSTITUTION:A polycrystalline silicon growth equipment is equipped with introducing pipes of HF gas and H2O gas. In polycrystalline silicon growth process, mixed gas of N2, H2O and HF is introduced after a semiconductor substrate 4 is put in a furnace core tube 2 and before the polycrystalline silicon is grown. Hence an oxide film formed when the semiconductor substrate 4 was put in the furnace core tube 2 is eliminated, and the polycrystalline silicon is grown. Thereby contact resistance is reduced.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は半導体装置の製造方法に
関し、特に、半導体基板上への多結晶シリコンの成長方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for growing polycrystalline silicon on a semiconductor substrate.

【0002】0002

【従来の技術】従来、半導体基板上への多結晶シリコン
の成長は以下のような方法で行なわれている。図3は従
来の成長手法において使用される、減圧CVDタイプの
多結晶シリコン成長装置の構成図である。
2. Description of the Related Art Conventionally, polycrystalline silicon has been grown on a semiconductor substrate by the following method. FIG. 3 is a block diagram of a low pressure CVD type polycrystalline silicon growth apparatus used in the conventional growth method.

【0003】図3において、炉芯管2の周囲はヒータ3
が具備されており、炉芯管内の温度を任意に制御、保持
することが可能である。炉芯管の一端(図示右端)には
、炉芯管内にN2 ガスを供給するためのガス導入配管
5と、炉芯管内の圧力を減圧、制御するための真空ポン
プ12を接続している。また炉芯管の他端(図示左端)
には多結晶シリコン成長ガスとしてのSiH4 ガスと
N2 ガスのガス導入配管6,7が接続されている。又
ドア1は炉芯管一端(左端)開口部を任意に密閉,開放
するものである。
In FIG. 3, the area around the furnace core tube 2 is a heater 3.
It is possible to arbitrarily control and maintain the temperature inside the furnace core tube. A gas introduction pipe 5 for supplying N2 gas into the furnace core tube and a vacuum pump 12 for reducing and controlling the pressure inside the furnace core tube are connected to one end of the furnace core tube (the right end in the figure). Also, the other end of the furnace core tube (left end in the illustration)
Gas introduction pipes 6 and 7 for SiH4 gas and N2 gas as polycrystalline silicon growth gases are connected to. The door 1 is used to optionally close or open the opening at one end (left end) of the furnace core tube.

【0004】この構成の装置において、従来は以下に記
すように多結晶シリコンを成長していた。
Conventionally, in an apparatus having this configuration, polycrystalline silicon has been grown as described below.

【0005】即ち、先ずドア1を開放した状態でガス導
入配管5よりN2 ガスを炉芯管内へ導入し、かつ炉芯
管内の温度を600℃から700℃に制御する。その上
で、半導体基板4を保持したボート11を炉芯管の左端
開口部側より、石英棒などで押し込んで炉芯管内へ入炉
させる。入炉終了後  、ドア1を閉め、N2 ガスの
供給を止め、炉芯管内の圧力が0.001Torr以下
になるように、真空ポンプ12により炉芯管内を真空排
気する。次いで、ガス導入配管7より炉芯管内にN2 
ガスを供給し、かつ、真空ポンプにより炉芯管内の圧力
を0.1から0.5Torrに制御する。炉芯管内の圧
力が安定した後、炉芯管内の圧力を0.1から0.5T
orrに制御しながらガス導入配管6よりSiH4 ガ
スを炉芯管内へ供給するとSiH4 ガスは分解し、多
結晶シリコンが半導体基板上に成長される。所定時間の
多結晶シリコンの成長後SiH4 ガスの供給をストッ
プし、再び炉芯管内の圧力が0.001Torr以下に
なるように炉芯管内を真空ポンプにより真空排気する。 しかる上で、ガス導入配管6より微量のN2 ガスを炉
芯管内に導入して炉芯管内圧力を大気圧に戻す。大気圧
に戻った時点でドアを開き半導体基板を保持したボート
を引き出し、多結晶シリコン成長工程が終了する。
That is, first, with the door 1 open, N2 gas is introduced into the furnace core tube through the gas introduction pipe 5, and the temperature inside the furnace core tube is controlled from 600.degree. C. to 700.degree. Then, the boat 11 holding the semiconductor substrate 4 is pushed into the furnace core tube from the left end opening side of the furnace core tube using a quartz rod or the like. After entering the furnace, the door 1 is closed, the supply of N2 gas is stopped, and the inside of the furnace core tube is evacuated using the vacuum pump 12 so that the pressure inside the furnace core tube becomes 0.001 Torr or less. Next, N2 is introduced into the furnace core tube from the gas introduction pipe 7.
Gas is supplied, and the pressure inside the furnace core tube is controlled at 0.1 to 0.5 Torr using a vacuum pump. After the pressure inside the furnace core tube stabilizes, increase the pressure inside the furnace core tube from 0.1 to 0.5T.
When SiH4 gas is supplied into the furnace core tube from the gas introduction pipe 6 while controlling the SiH4 gas to decompose, polycrystalline silicon is grown on the semiconductor substrate. After the growth of polycrystalline silicon for a predetermined period of time, the supply of SiH4 gas is stopped, and the inside of the furnace core tube is evacuated by a vacuum pump so that the pressure inside the furnace core tube becomes 0.001 Torr or less again. Then, a small amount of N2 gas is introduced into the furnace core tube through the gas introduction pipe 6 to return the pressure inside the furnace core tube to atmospheric pressure. Once atmospheric pressure returns, the door is opened and the boat holding the semiconductor substrate is pulled out, completing the polycrystalline silicon growth process.

【0006】[0006]

【発明が解決しようとする課題】上述した従来の多結晶
シリコン成長方法では、成長される多結晶シリコンと半
導体基板の間に酸化膜が形成されるという問題がある。
The conventional polycrystalline silicon growth method described above has a problem in that an oxide film is formed between the grown polycrystalline silicon and the semiconductor substrate.

【0007】即ち、半導体基板を高温の炉芯管内へ入炉
する時には、炉芯管端部は大気に開放されているため、
炉芯管内へN2 ガスを導入しても、炉芯管内への大気
の浸入を抑えることは難しい。このため、炉芯管内に浸
入した大気中の酸素が半導体基板との間で熱反応を起こ
し、半導体基板上に酸化膜が形成されて、その酸化膜上
に多結晶シリコンが成長される。
That is, when a semiconductor substrate is placed into a high-temperature furnace core tube, since the end of the furnace core tube is open to the atmosphere,
Even if N2 gas is introduced into the furnace core tube, it is difficult to prevent atmospheric air from entering the furnace core tube. Therefore, oxygen in the atmosphere that has entered the furnace core tube causes a thermal reaction with the semiconductor substrate, and an oxide film is formed on the semiconductor substrate, and polycrystalline silicon is grown on the oxide film.

【0008】この酸化膜は、成長する多結晶シリコンが
、酸化膜上などの絶縁物の上に成長される場合には特に
問題とはならないが、多結晶シリコンが導電体あるいは
、半導体などの上に成長される場合、即ち、多結晶シリ
コンと多結晶シリコン下層との電気的コンタクトを必要
とする場合には、この界面に形成される酸化膜により多
結晶シリコンと多結晶シリコン下層との間のコンタクト
抵抗が大きくなる。特に近年の半導体装置の大集積化に
より、この種のコンタクト孔の面積は非常に小さくなっ
てきており、この多結晶シリコン界面に形成される酸化
膜によるコンタクト抵抗の増大は無視できなくなってき
ている。
This oxide film does not pose a particular problem when the polycrystalline silicon is grown on an insulator such as an oxide film, but when polycrystalline silicon is grown on a conductor or semiconductor, etc. In other words, when electrical contact between polycrystalline silicon and the polycrystalline silicon underlayer is required, the oxide film formed at this interface makes the connection between the polycrystalline silicon and the polycrystalline silicon underlayer Contact resistance increases. In particular, due to the large scale integration of semiconductor devices in recent years, the area of this type of contact hole has become extremely small, and the increase in contact resistance due to the oxide film formed at the polycrystalline silicon interface has become impossible to ignore. .

【0009】[0009]

【課題を解決するための手段】本発明の多結晶シリコン
の成長方法は、半導体基板の炉芯管内への入炉後、多結
晶シリコン成長前に、炉芯管内へ、N2 ,H2 O及
びHFの混合ガスを導入し、半導体基板上の二酸化シリ
コン膜をエッチングしている。
[Means for Solving the Problems] The method for growing polycrystalline silicon of the present invention includes introducing N2, H2O, and HF into the furnace core tube after a semiconductor substrate is placed in the furnace core tube and before growing polycrystalline silicon. A mixed gas is introduced to etch the silicon dioxide film on the semiconductor substrate.

【0010】0010

【実施例】次に、本発明を図面を参照して説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be explained with reference to the drawings.

【0011】図1は、本発明の多結晶シリコンの成長方
法に使用される、多結晶シリコン成長装置の構成図であ
る。本装置は従来装置に、H2 O及びHFのガスを導
入する、ガス導入配管8,9を付加した構成となってい
る。
FIG. 1 is a block diagram of a polycrystalline silicon growth apparatus used in the polycrystalline silicon growth method of the present invention. This apparatus has a configuration in which gas introduction pipes 8 and 9 for introducing H2O and HF gases are added to the conventional apparatus.

【0012】上記構成の多結晶シリコン成長装置におい
て、本発明の多結晶シリコン成長は以下のように行なわ
れる。
In the polycrystalline silicon growth apparatus having the above structure, the polycrystalline silicon growth of the present invention is carried out as follows.

【0013】まず、ドア1を開放した状態でガス導入配
管5よりN2 ガスを炉芯管内へ導入し、かつ炉芯管内
の温度を600℃から700℃に制御する。次いで半導
体基板4を保持したボート11を石英棒等を用いて炉芯
管左端開口部側より炉芯管2内へ押し込む。半導体基板
の入炉終了後、ドア1を閉め、N2 ガスの供給を止め
、炉芯管内の圧力が0.001Torr以下になるよう
に真空ポンプ12により、炉芯管内を真空排気する。次
いで、ガス導入配管7,9よりN2 ガスを1l/mi
n,H2 Oガスを200cc/min炉芯管内に供給
し、かつ、真空ポンプ12により炉芯管内の圧力を1か
ら2Torrに制御する。次いでガス導入配管8よりH
Fガスを10cc/min炉芯管内に1分から5分間供
給する。この時、半導体基板上の二酸化シリコン膜(S
iO2 )はHFとH2 Oとの反応により、SiF4
 となり除去される。なお、本条件による二酸化シリコ
ン膜の除去量は、nmからnmで十分であり、この処理
によって、半導体基板の入炉時に半導体基板上に形成さ
れた酸化膜は除去される。次いで炉芯管内に供給してい
た、N2 ,H2 O2 及びHFガスを止め、炉芯管
内の圧力が0.001Torr以下になるように炉芯管
内を真空排気する。次いで、ガス導入配管7より炉芯管
内にN2 ガスを供給し、かつ真空ポンプにより炉芯管
内の圧力を0.1から0.5Torrに制御する。次い
で、炉芯管内の圧力を0.1から0.5Torrに制御
しつつ、ガス導入配管6より20%SiH4 ガス(N
2 ベース)を1l/min導入し多結晶シリコン膜を
半導体基板上に成長させる。これ以後の工程は、従来方
法と同様に行うことにより、多結晶シリコンの成長工程
が終了する。
First, with the door 1 open, N2 gas is introduced into the furnace core tube through the gas introduction pipe 5, and the temperature inside the furnace core tube is controlled from 600.degree. C. to 700.degree. Next, the boat 11 holding the semiconductor substrate 4 is pushed into the furnace core tube 2 from the left end opening side of the furnace core tube using a quartz rod or the like. After the semiconductor substrates are placed in the furnace, the door 1 is closed, the supply of N2 gas is stopped, and the inside of the furnace core tube is evacuated using the vacuum pump 12 so that the pressure inside the furnace core tube becomes 0.001 Torr or less. Next, N2 gas was supplied at 1 l/mi from the gas introduction pipes 7 and 9.
N,H2O gas is supplied into the furnace core tube at 200 cc/min, and the pressure inside the furnace core tube is controlled at 1 to 2 Torr by the vacuum pump 12. Next, from the gas introduction pipe 8
F gas is supplied into the furnace core tube at 10 cc/min for 1 to 5 minutes. At this time, a silicon dioxide film (S
iO2) is converted into SiF4 by the reaction of HF and H2O.
and will be removed. Note that the removal amount of the silicon dioxide film under these conditions is sufficient to be from nm to nm, and by this treatment, the oxide film formed on the semiconductor substrate when the semiconductor substrate is placed in the furnace is removed. Next, the N2, H2 O2, and HF gases that were being supplied into the furnace core tube are stopped, and the inside of the furnace core tube is evacuated so that the pressure inside the furnace core tube becomes 0.001 Torr or less. Next, N2 gas is supplied into the furnace core tube from the gas introduction pipe 7, and the pressure inside the furnace core tube is controlled to 0.1 to 0.5 Torr using a vacuum pump. Next, 20% SiH4 gas (N
2 base) at 1 l/min to grow a polycrystalline silicon film on the semiconductor substrate. The subsequent steps are performed in the same manner as in the conventional method, thereby completing the polycrystalline silicon growth step.

【0014】以上説明したように、多結晶シリコンの成
長方法において、半導体基板の炉芯管内への入炉後、炉
芯管内へ、N2 ,H2 O及びHFの混合ガスを導入
することにより半導体基板の炉内への入炉時に半導体基
板表面に形成された酸化膜の除去がなされ、多結晶シリ
コンと多結晶シリコン下層との間でのコンタクトを必要
とする部分の界面に従来存在していた二酸化シリコン膜
をなくすることが可能となりコンタクト抵抗に実質的に
悪影響を及ぼさないようにできる。
As explained above, in the method for growing polycrystalline silicon, the semiconductor substrate is grown by introducing a mixed gas of N2, H2O, and HF into the furnace core tube after the semiconductor substrate is placed in the furnace core tube. The oxide film formed on the surface of the semiconductor substrate when it enters the furnace is removed, and the dioxide that previously existed at the interface between the polycrystalline silicon and the polycrystalline underlying layer where contact is required is removed. It becomes possible to eliminate the silicon film, and it is possible to substantially avoid adverse effects on contact resistance.

【0015】図2にN型シリコン上に、多結晶シリコン
を成長した場合のコンタクト面積とコンタクト抵抗の関
係を示す。ここで曲線aは従来の方法で多結晶シリコン
を成長した場合のコンタクト抵抗であり、また曲線bは
本発明の方法で多結晶シリコンを成長した場合のコンタ
クト抵抗である。
FIG. 2 shows the relationship between contact area and contact resistance when polycrystalline silicon is grown on N-type silicon. Here, curve a is the contact resistance when polycrystalline silicon is grown using the conventional method, and curve b is the contact resistance when polycrystalline silicon is grown using the method of the present invention.

【0016】この図から判るように、本発明の方法で多
結晶シリコンを成長した場合のコンタクト抵抗は、従来
の方法の場合のコンタクト抵抗に比較して非常に小さく
なる。特にこのコンタクト抵抗の差は、コンタクト面積
が小さいほど大きくなり、半導体装置が微細化されれば
されるほど本発明の効果は高くなる。
As can be seen from this figure, the contact resistance when polycrystalline silicon is grown using the method of the present invention is much smaller than the contact resistance when using the conventional method. In particular, this difference in contact resistance becomes larger as the contact area becomes smaller, and the smaller the semiconductor device is, the more effective the present invention becomes.

【0017】[0017]

【発明の効果】以上説明したように本発明は、半導体基
板の炉芯管内への入炉後、多結晶シリコン成長前に炉芯
管内へ、N2 ,H2 O及びHFの混合ガスを導入し
、半導体基板上の二酸化シリコン膜をエッチングするこ
とにより、半導体基板と多結晶シリコンのコンタクト抵
抗を低減できる効果がある。
[Effects of the Invention] As explained above, the present invention introduces a mixed gas of N2, H2O and HF into the furnace core tube after the semiconductor substrate is placed in the furnace core tube and before polycrystalline silicon growth. Etching the silicon dioxide film on the semiconductor substrate has the effect of reducing the contact resistance between the semiconductor substrate and polycrystalline silicon.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の多結晶シリコンの成長方法に使用する
多結晶シリコン成長装置の構成図。
FIG. 1 is a configuration diagram of a polycrystalline silicon growth apparatus used in the polycrystalline silicon growth method of the present invention.

【図2】従来方法と本発明方法によりN型シリコン上に
多結晶シリコンを成長した場合のコンタクト面積とコン
タクト抵抗の関係を示すグラフ。
FIG. 2 is a graph showing the relationship between contact area and contact resistance when polycrystalline silicon is grown on N-type silicon using the conventional method and the method of the present invention.

【図3】従来の多結晶シリコンの成長に使用する、多結
晶シリコン成長装置の構成図。
FIG. 3 is a configuration diagram of a conventional polycrystalline silicon growth apparatus used for growing polycrystalline silicon.

【符号の説明】[Explanation of symbols]

1    ドア 2    炉芯管 3    ヒータ 4    半導体基板 5,7    N2 ガス導入配管 6    SiH4 ガス導入配管 8    HFガス導入配管 9    H2 Oガス導入配管 11    ボード 12    真空ポンプ 1 Door 2 Furnace core tube 3 Heater 4 Semiconductor substrate 5, 7 N2 gas introduction piping 6    SiH4 Gas introduction piping 8 HF gas introduction piping 9 H2 O gas introduction piping 11 Board 12 Vacuum pump

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  減圧CVD法による、半導体基板上へ
の多結晶シリコンの成長方法において、前記半導体基板
の炉芯管への入炉後、多結晶シリコン成長開始前に、炉
芯管内へ、N2 ,H2 O及びHFの混合ガスを導入
し、半導体基板上の二酸化シリコン膜をエッチングする
ことを特徴とする、多結晶シリコンの成長方法。
1. In a method of growing polycrystalline silicon on a semiconductor substrate by low pressure CVD, after the semiconductor substrate is placed in the furnace core tube and before the start of polycrystalline silicon growth, N2 is added into the furnace core tube. , H2O, and HF to etch a silicon dioxide film on a semiconductor substrate.
JP13637291A 1991-06-07 1991-06-07 Growth method of polycrystalline silicon Pending JPH04360521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13637291A JPH04360521A (en) 1991-06-07 1991-06-07 Growth method of polycrystalline silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13637291A JPH04360521A (en) 1991-06-07 1991-06-07 Growth method of polycrystalline silicon

Publications (1)

Publication Number Publication Date
JPH04360521A true JPH04360521A (en) 1992-12-14

Family

ID=15173626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13637291A Pending JPH04360521A (en) 1991-06-07 1991-06-07 Growth method of polycrystalline silicon

Country Status (1)

Country Link
JP (1) JPH04360521A (en)

Similar Documents

Publication Publication Date Title
KR100442167B1 (en) Method of removing native oxide film
US4764248A (en) Rapid thermal nitridized oxide locos process
US20020022347A1 (en) Selective epitaxial growth method in semiconductor device
US5876796A (en) Process for selectively depositing a refractory metal silicide on silicon, and silicon wafer metallized using this process
Yew et al. Selective silicon epitaxial growth at 800° C by ultralow‐pressure chemical vapor deposition using SiH4 and SiH4/H2
JPH04226017A (en) Manufacture of low defect polysilicon integrated circuit
JPH05259091A (en) Manufacture of semiconductor device
JPH04360521A (en) Growth method of polycrystalline silicon
JPH10511507A (en) Fabrication of a semiconductor device having selectively deposited semiconductor regions
US6821874B2 (en) Method for depositing tungsten silicide film and method for preparing gate electrode/wiring
JPH10270434A (en) Semiconductor wafer cleaning method for oxide film forming method
JP2647927B2 (en) Selective epitaxial growth method
JPH09235189A (en) Production of semiconductor single crystal thin film
JPH07221034A (en) Manufacture of semiconductor device
JP2961188B2 (en) Method for manufacturing SOI substrate
JPS61256732A (en) Method for selective epitaxial growth
JPH05182925A (en) Manufacturing method and device of semiconductor device
JPH01191413A (en) Growing method for polycrystalline silicon
JPH04258115A (en) Manufacture of semiconductor substrate
JPH11219907A (en) Wafer treatment apparatus and treatment method therefor
JP2898320B2 (en) Method for manufacturing semiconductor device
Hsieh et al. Selective epitaxial growth with oxide‐polycrystalline silicon‐oxide masks by rapid thermal processing chemical vapor deposition
JPH05234919A (en) Manufacture of semiconductor device
JPH02191319A (en) Method of forming soi structure
JP2880993B1 (en) Method of forming semiconductor oxide film