JPH04360518A - Manufacture of photovoltaic device - Google Patents

Manufacture of photovoltaic device

Info

Publication number
JPH04360518A
JPH04360518A JP3136655A JP13665591A JPH04360518A JP H04360518 A JPH04360518 A JP H04360518A JP 3136655 A JP3136655 A JP 3136655A JP 13665591 A JP13665591 A JP 13665591A JP H04360518 A JPH04360518 A JP H04360518A
Authority
JP
Japan
Prior art keywords
silicon layer
amorphous silicon
layer
photovoltaic device
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3136655A
Other languages
Japanese (ja)
Inventor
Shigeru Noguchi
繁 能口
Hiroshi Iwata
浩志 岩多
Keiichi Sano
景一 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP3136655A priority Critical patent/JPH04360518A/en
Publication of JPH04360518A publication Critical patent/JPH04360518A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Abstract

PURPOSE:To prevent the generation of undesired unevenness on the formation surface of an amorphous silicon layer which is crystallized afterward, and manufacture a photovoltaic device provided with polycrystalline silicon of high quality. CONSTITUTION:The following are provided; a process for forming an amorphous silicon layer 2 on a substarte 1, and a process wherein, after silicon nitride or silicon oxide 3 is dispersed and arranged on the amorphous silicon layer 2, said layer 2 is crystallized by heat treatment, and a polycrystalline silicon layer 4 is formed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、多結晶の光起電力装置
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a polycrystalline photovoltaic device.

【0002】0002

【従来の技術】ガラス、ステンレス等の基板上に非晶質
半導体、例えば、非晶質シリコン層を形成してなる光起
電力装置は、その製造が簡単で安価である反面、光電変
換効率が低いという問題があった。
[Prior Art] A photovoltaic device formed by forming an amorphous semiconductor, such as an amorphous silicon layer, on a substrate made of glass, stainless steel, etc. is easy and inexpensive to manufacture, but has low photoelectric conversion efficiency. The problem was that it was low.

【0003】そこで、基板上に形成した非晶質シリコン
層に対し、アニールまたはエネルギービーム照射等によ
る熱処理を施すことにより、非晶質シリコン層を結晶化
させて光起電力装置を製造することが成されている。
[0003] Therefore, it is possible to produce a photovoltaic device by crystallizing the amorphous silicon layer by subjecting the amorphous silicon layer formed on the substrate to heat treatment such as annealing or energy beam irradiation. has been completed.

【0004】斯る非晶質シリコン層の結晶化の方法とし
ては、特開平1−46278号公報に示されているよう
に、碁盤目状に金属導電層を形成した絶縁基板上に非晶
質シリコン層を形成し、この非晶質シリコン層を熱処理
して結晶化する方法がある。
As a method for crystallizing such an amorphous silicon layer, as shown in Japanese Unexamined Patent Publication No. 1-46278, an amorphous silicon layer is formed on an insulating substrate on which a metal conductive layer is formed in a checkerboard pattern. There is a method in which a silicon layer is formed and this amorphous silicon layer is crystallized by heat treatment.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記方
法によれば、絶縁基板上に形成された金属導電層によっ
て基板上に不所望な凹凸が生じ、この上に形成され、後
に結晶化される非晶質半導体層を均一な膜厚で形成する
のが困難であった。
[Problems to be Solved by the Invention] However, according to the above method, the metal conductive layer formed on the insulating substrate causes undesired unevenness on the substrate, and the non-conductive layer formed on the substrate and later crystallized. It has been difficult to form a crystalline semiconductor layer with a uniform thickness.

【0006】また、上述の方法において、十分に高品質
な多結晶シリコンを形成するには、至っていない。
Furthermore, the above-mentioned methods have not yet been able to form polycrystalline silicon of sufficiently high quality.

【0007】そこで、本発明は、結晶化される非晶質シ
リコン層の形成表面に、不所望な凹凸が発生するのを防
止すると共に、高品質の多結晶シリコンを備えた光起電
力装置を製造するものである。
Therefore, the present invention aims to prevent the formation of undesirable irregularities on the surface of an amorphous silicon layer to be crystallized, and to provide a photovoltaic device equipped with high quality polycrystalline silicon. It is manufactured.

【0008】[0008]

【課題を解決するための手段】本発明の光起電力装置の
製造方法は、基板上に非晶質シリコン層を形成する工程
と、この非晶質シリコン層上に窒化シリコンまたは酸化
シリコンを分散配置した後、上記非晶質シリコン層を熱
処理して結晶化させる工程と、を備えたことを特徴とす
る。
[Means for Solving the Problems] The method for manufacturing a photovoltaic device of the present invention includes a step of forming an amorphous silicon layer on a substrate, and dispersing silicon nitride or silicon oxide on the amorphous silicon layer. The method is characterized by comprising the step of heat-treating the amorphous silicon layer to crystallize it after the amorphous silicon layer is placed.

【0009】[0009]

【作用】本発明によれば、非晶質シリコン層上に形成さ
れた窒化シリコンまたは酸化シリコンが、非晶質シリコ
ン層の結晶化に際して結晶核として作用し、結晶粒径が
適宜に制御された多結晶シリコンが形成される。
[Operation] According to the present invention, silicon nitride or silicon oxide formed on the amorphous silicon layer acts as a crystal nucleus during crystallization of the amorphous silicon layer, and the crystal grain size is appropriately controlled. Polycrystalline silicon is formed.

【0010】0010

【実施例】図1は、本発明製造方法の第1実施例を工程
順に示す断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a cross-sectional view showing a first embodiment of the manufacturing method of the present invention in order of steps.

【0011】まず、図1(A)に示す工程において、ス
テンレス等の金属板からなる基板1上に、非晶質シリコ
ン2を形成する。この非晶質シリコン層2は、周知のプ
ラズマCVD法、熱CVD法またはスパッタリング法を
用い、リン(P)(またはボロン(B))等の不純物を
若干ドープしてn−型(またはp−型)にした状態で形
成する。なお、基板1としては、金属板に限らず、ガラ
ス等の透明板の表面に、酸化インジウム錫(ITO)、
酸化錫(SnO2)、酸化亜鉛(ZnO)等の透明電極
層を形成したものを用いてもよい。
First, in a step shown in FIG. 1A, amorphous silicon 2 is formed on a substrate 1 made of a metal plate such as stainless steel. This amorphous silicon layer 2 is formed by slightly doping an impurity such as phosphorus (P) (or boron (B)) using a well-known plasma CVD method, thermal CVD method, or sputtering method to form an n-type (or p-type) Form it in a mold). Note that the substrate 1 is not limited to a metal plate, but can also be made of indium tin oxide (ITO), etc. on the surface of a transparent plate such as glass.
A transparent electrode layer formed of tin oxide (SnO2), zinc oxide (ZnO), or the like may be used.

【0012】その後、非晶質シリコン層2上に、後工程
の非晶質シリコン層2の熱処理による結晶化工程におい
て、結晶核となる窒化シリコン3を分散配置するべく、
島状または線状に形成する。この窒化シリコン3は、周
知のプラズマCVD法等により、一旦非晶質シリコン層
2上の略全面に形成した後、フォトリソグラフ法を用い
て、島状または線状にパターニングして形成する。ここ
で、窒化シリコン3の径(または線幅)及び配置間隔と
しては、0.01μm以下では粒径が小さすぎて、後の
非晶質シリコン層2の熱処理における結晶化工程におい
て、大きな結晶粒径が得られず、一方、10μm以上で
は、窒化シリコン3以外の部分に結晶核が形成されてし
まい、これまた、大きな結晶粒径が得られなくなる。従
って、窒化シリコン3の径(または線幅)及び配置間隔
は、0.01〜10μmが好ましい。
[0012] Thereafter, silicon nitride 3 is dispersed on the amorphous silicon layer 2 to serve as crystal nuclei in a subsequent crystallization process by heat treatment of the amorphous silicon layer 2.
Form into islands or lines. This silicon nitride 3 is once formed on substantially the entire surface of the amorphous silicon layer 2 by a well-known plasma CVD method or the like, and then patterned into an island shape or a line shape using a photolithography method. Here, as for the diameter (or line width) and arrangement interval of silicon nitride 3, if the grain size is 0.01 μm or less, the grain size is too small, and large crystal grains will be On the other hand, if it is 10 μm or more, crystal nuclei will be formed in areas other than the silicon nitride 3, and a large crystal grain size will also not be obtained. Therefore, the diameter (or line width) and arrangement interval of silicon nitride 3 are preferably 0.01 to 10 μm.

【0013】次に、図1(B)に示す工程において、非
晶質シリコン層2を500〜700℃の温度でアニール
するか、または非晶質シリコン層2表面にレーザビーム
、電子ビーム等のエネルギービームを照射することによ
り、非晶質シリコン層2を熱処理し、非晶質シリコン層
2の結晶化を行い、n−型(またはp−型)の多結晶シ
リコン層4を形成する。斯る多結晶シリコン層4は、非
晶質シリコン層2の結晶化が、非晶質シリコン層2と窒
化シリコン3との界面に生じる結晶核を中心として、非
晶質シリコン層2の内部に進んでいくことによって形成
される。即ち、上記界面を成長核として、大きな粒径の
結晶粒を有する多結晶シリコン層4が形成される。
Next, in the step shown in FIG. 1B, the amorphous silicon layer 2 is annealed at a temperature of 500 to 700° C., or the surface of the amorphous silicon layer 2 is exposed to a laser beam, an electron beam, etc. By irradiating the energy beam, the amorphous silicon layer 2 is heat-treated to crystallize the amorphous silicon layer 2 and form an n-type (or p-type) polycrystalline silicon layer 4. Such a polycrystalline silicon layer 4 is formed by crystallization of the amorphous silicon layer 2, with crystal nuclei generated at the interface between the amorphous silicon layer 2 and silicon nitride 3 being centered inside the amorphous silicon layer 2. It is formed by progress. That is, a polycrystalline silicon layer 4 having large crystal grains is formed using the interface as a growth nucleus.

【0014】最後に、図1(C)に示す工程において、
結晶化された多結晶シリコン層4の表面に、p+型(ま
たはn+型)の非晶質シリコン層5を形成する。なお、
非晶質シリコン層5に代えて、微結晶または多結晶のシ
リコン層を形成してもよい。その後、非晶質シリコン層
5上にITO、SnO2、ZnO等の透明電極層6を形
成する。但し、基板1が、上述の如く、透明板表面にI
TO、SnO2、ZnOを形成したものであれば、透明
電極層6に代えて、アルミニウム(Al)、銀(Ag)
等の金属電極層を形成する。
Finally, in the step shown in FIG. 1(C),
A p+ type (or n+ type) amorphous silicon layer 5 is formed on the surface of the crystallized polycrystalline silicon layer 4. In addition,
Instead of the amorphous silicon layer 5, a microcrystalline or polycrystalline silicon layer may be formed. Thereafter, a transparent electrode layer 6 made of ITO, SnO2, ZnO, etc. is formed on the amorphous silicon layer 5. However, as mentioned above, if the substrate 1 is
If TO, SnO2, or ZnO is formed, aluminum (Al) or silver (Ag) can be used instead of the transparent electrode layer 6.
Form a metal electrode layer such as

【0015】以上の工程により、光起電力装置が完成す
る。
[0015] Through the above steps, a photovoltaic device is completed.

【0016】ところで、上述の工程において、非晶質シ
リコン層2上に形成された窒化シリコン3は、非晶質シ
リコン層2を好適に結晶化するためのものであり、多結
晶シリコン層4を形成した後は、全くの不要物であり、
更に、図1(C)に示す非晶質シリコン層5及び透明電
極層6の形成表面である多結晶シリコン層4の表面に不
所望な凹凸を生じさせる。
By the way, in the above process, the silicon nitride 3 formed on the amorphous silicon layer 2 is for suitably crystallizing the amorphous silicon layer 2, and the polycrystalline silicon layer 4 is After forming, it is completely unnecessary,
Furthermore, undesired unevenness is caused on the surface of the polycrystalline silicon layer 4, which is the surface on which the amorphous silicon layer 5 and transparent electrode layer 6 shown in FIG. 1(C) are formed.

【0017】そこで、非晶質シリコン層2の多結晶化(
即ち、多結晶シリコン層4の形成)後に、窒化シリコン
3を除去するのが好ましい。斯る窒化シリコン3の除去
によって、不所望な凹凸がなくなり、非晶質シリコン層
5及び透明電極層6の形成が容易となる。
Therefore, polycrystalization of the amorphous silicon layer 2 (
That is, it is preferable to remove the silicon nitride 3 after forming the polycrystalline silicon layer 4. By removing silicon nitride 3 in this way, undesired unevenness is eliminated and formation of amorphous silicon layer 5 and transparent electrode layer 6 becomes easier.

【0018】一方、図2は本発明の製造方法の第2実施
例を工程順に示す断面図である。
On the other hand, FIG. 2 is a cross-sectional view showing a second embodiment of the manufacturing method of the present invention in the order of steps.

【0019】図2(A)に示す工程において、図1(A
)に示す工程と同様にして、ガラス等の透明板表面に、
ITO、SnO2、ZnO等の透明電極層を形成した透
明な基板11上に、n−型の非晶質シリコン層12と、
島状または線状の窒化シリコン13とを形成する。
In the process shown in FIG. 2(A), FIG.
) on the surface of a transparent plate such as glass,
On a transparent substrate 11 on which a transparent electrode layer of ITO, SnO2, ZnO, etc. is formed, an n-type amorphous silicon layer 12,
An island-like or linear silicon nitride 13 is formed.

【0020】次に、図2(B)に示す工程において、非
晶質シリコン層12上に、Al電極層14を形成する。
Next, in a step shown in FIG. 2B, an Al electrode layer 14 is formed on the amorphous silicon layer 12.

【0021】最後に、図2(C)に示す工程において、
非晶質シリコン層12を500〜700℃の温度でアニ
ールするか、またはAl電極層14上にレーザビーム、
電子ビーム等のエネルギービームを照射して、非晶質シ
リコン層12を熱処理することにより、非晶質シリコン
層12の結晶化を行い、n−型(またはp−型)の多結
晶シリコン層15を形成する。斯る多結晶シリコン層1
5は、非晶質シリコン層12の結晶化が、非晶質シリコ
ン層12と窒化シリコン13との界面に生じる結晶核を
中心として、非晶質シリコン層12の内部に進んでいく
ことによって形成される。
Finally, in the step shown in FIG. 2(C),
The amorphous silicon layer 12 is annealed at a temperature of 500 to 700°C, or a laser beam is applied onto the Al electrode layer 14.
By irradiating the amorphous silicon layer 12 with an energy beam such as an electron beam and heat-treating the amorphous silicon layer 12, the amorphous silicon layer 12 is crystallized, and an n-type (or p-type) polycrystalline silicon layer 15 is formed. form. Such polycrystalline silicon layer 1
5 is formed by crystallization of the amorphous silicon layer 12 progressing into the inside of the amorphous silicon layer 12 centering on crystal nuclei generated at the interface between the amorphous silicon layer 12 and silicon nitride 13. be done.

【0022】この結晶化時に、Al電極層14中のAl
が多結晶シリコン層15内に拡散し、多結晶シリコン層
15の表面領域に、p型の多結晶シリコン層16が自動
的に形成される。
During this crystallization, Al in the Al electrode layer 14
diffuses into the polycrystalline silicon layer 15, and a p-type polycrystalline silicon layer 16 is automatically formed in the surface region of the polycrystalline silicon layer 15.

【0023】こうして、pn接合を備えた多結晶シリコ
ンからなる光起電力装置が製造される。
In this way, a photovoltaic device made of polycrystalline silicon and having a pn junction is manufactured.

【0024】なお、以上の2つの実施例においては、窒
化シリコン3、13を用いた場合について説明したが、
窒化シリコンに代えて酸化シリコンを用いることができ
、この場合も上述と全く同様にして、光起電力装置が製
造される。
In the above two embodiments, the case where silicon nitride 3 and silicon nitride 13 were used was explained.
Silicon oxide can be used instead of silicon nitride, and the photovoltaic device is manufactured in exactly the same manner as described above.

【0025】[0025]

【発明の効果】本発明によれば、基板上に非晶質シリコ
ン層を形成する工程と、この非晶質シリコン層上に窒化
シリコンまたは酸化シリコンを分散配置した後、上記非
晶質シリコン層を熱処理して結晶化させる工程と、を備
えているので、後に結晶化される非晶質シリコン層の形
成表面に、不所望な凹凸が生じることがなく、更に、高
品質の多結晶シリコン層を形成することができる。
According to the present invention, after forming an amorphous silicon layer on a substrate and dispersing silicon nitride or silicon oxide on the amorphous silicon layer, Since the process includes a step of heat-treating and crystallizing the amorphous silicon layer, there is no undesirable unevenness on the surface of the amorphous silicon layer that will be crystallized later, and a high-quality polycrystalline silicon layer can be formed. can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の製造方法の第1実施例を工程順に示す
断面図である。
FIG. 1 is a cross-sectional view showing a first embodiment of the manufacturing method of the present invention in order of steps.

【図2】本発明の製造方法の第2実施例を工程順に示す
断面図である。
FIG. 2 is a cross-sectional view showing a second embodiment of the manufacturing method of the present invention in order of steps.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  基板上に非晶質シリコン層を形成する
工程と、この非晶質シリコン層上に窒化シリコンまたは
酸化シリコンを分散配置した後、上記非晶質シリコン層
を熱処理して結晶化させる工程と、を備えたことを特徴
とする光起電力装置の製造方法。
1. A step of forming an amorphous silicon layer on a substrate, dispersing silicon nitride or silicon oxide on the amorphous silicon layer, and then heat-treating the amorphous silicon layer to crystallize it. A method for manufacturing a photovoltaic device, comprising the steps of:
【請求項2】  非晶質シリコン層を結晶化させる工程
後に、上記窒化シリコンまたは酸化シリコンを除去する
工程を備えたことを特徴とする請求項1記載の光起電力
装置の製造方法。
2. The method of manufacturing a photovoltaic device according to claim 1, further comprising the step of removing the silicon nitride or silicon oxide after the step of crystallizing the amorphous silicon layer.
【請求項3】  非晶質シリコン層を結晶化させる工程
前に、上記非晶質シリコン層上にAl電極層を形成する
工程を備えたことを特徴とする請求項1記載の光起電力
装置の製造方法。
3. The photovoltaic device according to claim 1, further comprising the step of forming an Al electrode layer on the amorphous silicon layer before the step of crystallizing the amorphous silicon layer. manufacturing method.
JP3136655A 1991-06-07 1991-06-07 Manufacture of photovoltaic device Pending JPH04360518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3136655A JPH04360518A (en) 1991-06-07 1991-06-07 Manufacture of photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3136655A JPH04360518A (en) 1991-06-07 1991-06-07 Manufacture of photovoltaic device

Publications (1)

Publication Number Publication Date
JPH04360518A true JPH04360518A (en) 1992-12-14

Family

ID=15180408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3136655A Pending JPH04360518A (en) 1991-06-07 1991-06-07 Manufacture of photovoltaic device

Country Status (1)

Country Link
JP (1) JPH04360518A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7075002B1 (en) 1995-03-27 2006-07-11 Semiconductor Energy Laboratory Company, Ltd. Thin-film photoelectric conversion device and a method of manufacturing the same
JP2016531426A (en) * 2013-07-24 2016-10-06 リラス ゲーエムベーハーLilas Gmbh Method for producing solar cells, in particular silicon thin film solar cells

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7075002B1 (en) 1995-03-27 2006-07-11 Semiconductor Energy Laboratory Company, Ltd. Thin-film photoelectric conversion device and a method of manufacturing the same
JP2016531426A (en) * 2013-07-24 2016-10-06 リラス ゲーエムベーハーLilas Gmbh Method for producing solar cells, in particular silicon thin film solar cells

Similar Documents

Publication Publication Date Title
JP3174486B2 (en) Solar cell and method of manufacturing the same
JP3389022B2 (en) Semiconductor device
KR100440602B1 (en) Semiconductor device and method for fabricating the device
JP2917392B2 (en) Method for manufacturing semiconductor device
JPH08124852A (en) Formation method of polycrystalline semiconductor thin film
JPH113860A (en) Manufacture of thin film transistor
JPH0794756A (en) Method of fabricating semiconductor device
JP2917388B2 (en) Method for manufacturing semiconductor device
JPH04360518A (en) Manufacture of photovoltaic device
JP2707654B2 (en) Method for manufacturing thin film transistor
JPH01270310A (en) Manufacture of semiconductor
JPH04340725A (en) Manufacture of thin film transistor
JP2874271B2 (en) Method for manufacturing semiconductor device
JPH04340724A (en) Manufacture of thin film transistor
KR100796607B1 (en) Poly silicon crystallization method and fabricating method for thin film transistor using the same
JP3090847B2 (en) Method for manufacturing semiconductor substrate and method for manufacturing semiconductor device
JPH07288227A (en) Polycrystalline semiconductor film, semiconductor device and solar battery using film thereof and manufacture thereof
JP2001326177A (en) Crystalline silicon semiconductor device and method of manufacturing
JP3460962B2 (en) Method for manufacturing semiconductor device
JPH08139331A (en) Method of manufacturing thin film transistor
JP2002280560A (en) Manufacturing method for semiconductor element, semiconductor element manufactured by the same manufacturing method, and semiconductor device
JP2501451B2 (en) Thin film transistor and manufacturing method thereof
JP2867402B2 (en) Method for manufacturing semiconductor device
JP3467571B2 (en) Method for manufacturing thin film transistor
JPH05275333A (en) Manufacture of polycrystalline silicon thin film