JPH04359900A - Microtron - Google Patents

Microtron

Info

Publication number
JPH04359900A
JPH04359900A JP16085591A JP16085591A JPH04359900A JP H04359900 A JPH04359900 A JP H04359900A JP 16085591 A JP16085591 A JP 16085591A JP 16085591 A JP16085591 A JP 16085591A JP H04359900 A JPH04359900 A JP H04359900A
Authority
JP
Japan
Prior art keywords
orbit
magnetic field
microtron
electrons
circular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16085591A
Other languages
Japanese (ja)
Inventor
Keiji Koyanagi
慶二 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP16085591A priority Critical patent/JPH04359900A/en
Publication of JPH04359900A publication Critical patent/JPH04359900A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To provide a magnetron containing a magnetic field such that an electron beams are focused during circular motion so as to reduce electrons such that they collide against incient holes of a cavity resonator and an electron extracting tube due to the thickness growth of the electron beams in the process of accelerating electrons in the microtron. CONSTITUTION:The magnetic pole sectional view of a microtron is formed in a serrate-shaped as shown in Fig.1 magnetic field intensity is set in such a way that respective ideal circular orbits 2 are located in the center between respective vertexes of the serrate-shaped magnetic poles. Then, the magnetic field has a gradient in the radial direction of the circular orbit, so that electrons being deviated from an ideal orbit are focused by adequately selecting the magnitude of the gradient. According to this invention, as the electron beams can be focused on a desired point, electrons, which collide against incient holes of a cavity resonator and an extracting tube, can be reduced so that an accelerating efficiency of the microtron can be increased.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、電子線の加速装置に係
り、特に磁界によって電子線を集束させることによって
、電子線を効率よく容易に取り出すのに好適な加速器の
構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron beam accelerator, and more particularly to an accelerator structure suitable for efficiently and easily extracting electron beams by focusing the electron beams using a magnetic field.

【0002】0002

【従来の技術】「医用画像・放射線機器ハンドブック」
日本放射線機器工業会編p200〜p205(電子計測
出版社,1989.3.10発行)に記載されている如
くマイクロトロンは、図3に示す様に空胴共振器3及び
マイクロ波源5から構成されており、電子を一様磁界中
で円運動させて繰り返し加速する加速器である。すなわ
ち、電子銃から放出された電子線はマイクロ波で励振さ
れた空胴共振器3に導かれ、共振器内部の高周波電界に
よって加速され、一様磁界中で円運動して再び空胴共振
器3に入射して再加速される。マイクロトロンはこの過
程を繰り返すことによって必要なエネルギーまで加速す
る加速器である。この電子線の取り出しは、磁気を遮蔽
する鉄製の取り出しチューブ7を適当な位置に挿入する
ことによって行われる。したがって、この取り出しチュ
ーブを移動させることによって任意の軌道上から任意の
エネルギーの電子線を取り出すことが可能となる。
[Prior Art] "Medical Imaging and Radiology Equipment Handbook"
As described in Japan Radiation Equipment Manufacturers Association, pages 200 to 205 (Densoku Shuppansha, published on March 10, 1989), a microtron is composed of a cavity resonator 3 and a microwave source 5 as shown in FIG. It is an accelerator that repeatedly accelerates electrons by moving them in a circular motion in a uniform magnetic field. That is, the electron beam emitted from the electron gun is guided to the cavity resonator 3 excited by microwaves, accelerated by the high frequency electric field inside the resonator, moves circularly in a uniform magnetic field, and returns to the cavity resonator 3. 3 and is accelerated again. A microtron is an accelerator that accelerates to the required energy by repeating this process. The electron beam is extracted by inserting a magnetism-shielding iron extraction tube 7 into an appropriate position. Therefore, by moving this extraction tube, it becomes possible to extract an electron beam of any energy from any orbit.

【0003】0003

【発明が解決しようとする課題】空胴共振器内の高周波
電界で加速された電子線は空胴共振器3から出射した後
、一様磁界中で円運動して再び共振器に入射しなければ
らないので、電子線の太さは空胴共振器3の入射孔より
太くてはならない。また、電子線を外部に取り出す時に
も鉄製の取り出しチューブ7を用いるため電子線は取り
出しチューブ7の内径より細くなければチューブを通過
することはできない。しかし、空胴共振器3で加速する
ときの位置のずれ等によって、理想的な軌道からずれた
方向に出射する電子があり、そのため電子線の太さは太
くなってしまい、しかもこれを円運動中に集束させるこ
とができないという問題があった。本発明の目的は、上
記問題を解決し、空胴共振器3の入射孔に衝突したり、
取り出しチューブ7を通過することができないことによ
って生ずる電子の損失を少なくしたマイクロトロンを提
供することにある。
[Problem to be solved by the invention] After the electron beam accelerated by the high-frequency electric field within the cavity resonator exits from the cavity resonator 3, it must move circularly in a uniform magnetic field and enter the cavity again. The thickness of the electron beam must not be thicker than the entrance hole of the cavity resonator 3 so that the electron beam does not spread. Further, since the iron extraction tube 7 is used when taking out the electron beam to the outside, the electron beam cannot pass through the tube unless it is thinner than the inner diameter of the extraction tube 7. However, due to positional deviations when accelerating in the cavity resonator 3, some electrons are emitted in a direction that deviates from the ideal trajectory, resulting in an increase in the thickness of the electron beam. There was a problem that it could not be focused inside. The purpose of the present invention is to solve the above-mentioned problem, and to avoid collision with the entrance hole of the cavity resonator 3,
It is an object of the present invention to provide a microtron in which the loss of electrons caused by the inability to pass through the extraction tube 7 is reduced.

【0004】0004

【課題を解決するための手段】上記問題を解決するため
には、電子軌道に対応する磁界強度を理想的な円軌道上
の磁界強度に対し、その円軌道より半径の大きい部分の
磁界強度を弱く、その円軌道より半径の小さい部分の磁
界強度を強くすることにより、理想的な円軌道から外れ
た方向に出射した電子を、その軌道のまわりに適当な周
期で振動させることによって電子線を集束させれば良い
[Means for solving the problem] In order to solve the above problem, the magnetic field strength corresponding to the electron orbit should be set to the magnetic field strength on an ideal circular orbit, and the magnetic field strength at a portion with a larger radius than the circular orbit. By increasing the strength of the magnetic field in the part where the radius is weak and smaller than the circular orbit, the electrons emitted in a direction away from the ideal circular orbit can be made to vibrate at an appropriate period around the orbit, thereby converting the electron beam. All you have to do is focus.

【0005】[0005]

【作用】理想的な円軌道からずれた方向に出射した電子
を、理想的な円軌道の周りに振動させるためには、ベー
タトロン振動の理論(実験物理学講座『加速器』熊谷寛
夫編p313〜p316)によりその円軌道の内側と外
側で磁界強度に勾配を持たせればよい。そして、この磁
界をエネルギー毎に半径の異なるそれぞれの円軌道上に
設ければよい。この時、理想的な軌道の内側を弱く外側
を強くすれば、理想的な軌道より外側にある電子の円運
動の曲率半径は徐々に小さくなり、内側にある電子の円
運動の曲率半径は大きくなるため、半径方向には理想的
な軌道を中心に振動する。
[Operation] In order to make the electrons emitted in a direction deviated from the ideal circular orbit vibrate around the ideal circular orbit, the theory of betatron oscillation (Experimental Physics Course "Accelerator" edited by Hiroo Kumagai p313~ p316), the magnetic field strength may be given a gradient on the inside and outside of the circular orbit. Then, this magnetic field may be provided on each circular orbit having a different radius for each energy. At this time, if we make the inside of the ideal orbit weak and the outside strong, the radius of curvature of the circular motion of the electrons outside the ideal orbit will gradually become smaller, and the radius of curvature of the circular motion of the electrons inside the ideal orbit will become larger. Therefore, it vibrates around an ideal orbit in the radial direction.

【0006】しかしこの場合、軌道面外の磁界は半径方
向の成分を持つので軌道面に垂直な方向には発散する作
用を受けてしまう。この発散を防ぐためには、磁界強度
の勾配の向きが逆であればよく、磁界を軌道の内側が強
く外側が弱くすればよい。この場合、勾配が大きすぎる
と振動することは無いが、適当な大きさの勾配を持たせ
ることで振動が得られる。すなわち、理想的な軌道より
外向きに出射した電子は、曲率半径を増しながら円運動
を行うが、その増加分がわずかで、増加の速さは理想的
な円軌道の中心からの距離の増加より遅ければ、あたか
も、理想的な円軌道と同じ半径の円を横にずらしたかの
ようになり、図4のように理想的な円軌道に戻ることに
なる。理想的な軌道より内側に出射した電子については
逆に曲率半径を小さくしながら円運動を行うが、これも
理想的な円軌道に戻る。また、軌道面に垂直な方向にも
集束する方向の力が働くため、理想的な軌道を中心とし
て振動をすることになる。したがって、このような磁界
の勾配をエネルギーごとに半径の異なる理想的な円軌道
のそれぞれに沿って設ければ、電子を集束することがで
きる。
However, in this case, since the magnetic field outside the raceway plane has a radial component, it is subject to a diverging effect in a direction perpendicular to the raceway plane. In order to prevent this divergence, the direction of the gradient of the magnetic field strength may be reversed, and the magnetic field may be made stronger on the inside of the orbit and weaker on the outside. In this case, if the gradient is too large, no vibration will occur, but by providing an appropriate gradient, vibration can be obtained. In other words, electrons emitted outward from the ideal orbit perform circular motion while increasing the radius of curvature, but the increase is small and the speed of increase is proportional to the increase in distance from the center of the ideal circular orbit. If it is slower, it will be as if a circle with the same radius as the ideal circular orbit is shifted sideways, and it will return to the ideal circular orbit as shown in Figure 4. Electrons emitted inside the ideal orbit perform circular motion while decreasing the radius of curvature, but this also returns to the ideal circular orbit. In addition, since a convergent force acts in a direction perpendicular to the orbital surface, it vibrates around the ideal orbit. Therefore, if such a magnetic field gradient is provided along each ideal circular orbit with a different radius for each energy, electrons can be focused.

【0007】[0007]

【実施例】本発明の一実施例を図1,図2により説明す
る。理想的な各円軌道の位置での磁極間の距離をd0 
とし、磁界強度をB0 としてこれを0.122[T]
、一回毎の加速エネルギーを535[keV]とする。 この時、理想的な円軌道の半径r0 は、例えば第20
軌道では約0.319[m]となり、一周するのに要す
る時間、すなわち回転周期Tは約6.68[ns]とな
る。そして、磁極の断面を図1のように鋸歯状にし、理
想的な各円軌道が鋸歯状磁極の頂点と頂点の間の中央に
位置するように設定する。このようにすると、鋸歯状磁
極の頂点は図2の一点鎖線の位置になる。この時、磁界
強度は磁極間の距離に反比例するので、各軌道上で磁極
間の距離dが(数1)のように円軌道の半径rの関数と
なるような鋸歯状の磁極を設定すれば、磁界強度の勾配
を与えることができ、ベータトロン振動の周期は、電子
の回転周期の2倍、すなわち例えば第20軌道では約1
3.4[ns]となる。 したがって、空胴共振器からの出射方向が理想的な軌道
からずれた電子は再び共振器に入射するときに理想的な
軌道上に戻るので電子線は集束され、電子の損失が少な
くなって、その結果、より多くの電流を得ることができ
る。なお、図2のように磁極の頂点を設けた場合、空胴
共振器部分は鋸歯状である必要は無く、磁極表面は平面
で良い。
[Embodiment] An embodiment of the present invention will be explained with reference to FIGS. 1 and 2. The distance between the magnetic poles at each ideal circular orbit position is d0
Assuming that the magnetic field strength is B0, this is 0.122[T]
, the acceleration energy for each acceleration is 535 [keV]. At this time, the radius r0 of the ideal circular orbit is, for example, the 20th
The orbit is about 0.319 [m], and the time required for one revolution, that is, the rotation period T, is about 6.68 [ns]. Then, the cross section of the magnetic pole is made into a sawtooth shape as shown in FIG. 1, and each ideal circular orbit is set to be located at the center between the vertices of the sawtooth magnetic pole. In this way, the apex of the sawtooth magnetic pole will be at the position indicated by the dashed line in FIG. At this time, since the magnetic field strength is inversely proportional to the distance between the magnetic poles, it is necessary to set sawtooth magnetic poles on each orbit so that the distance d between the magnetic poles is a function of the radius r of the circular orbit as shown in (Equation 1). For example, a gradient of magnetic field strength can be provided, and the period of betatron oscillation is twice the period of rotation of the electron, i.e., about 1 in the 20th orbit.
It becomes 3.4 [ns]. Therefore, the electrons whose emission direction from the cavity resonator deviates from the ideal trajectory return to the ideal trajectory when they enter the cavity again, so the electron beam is focused and the loss of electrons is reduced. As a result, more current can be obtained. Note that when the apex of the magnetic pole is provided as shown in FIG. 2, the cavity resonator portion does not need to be saw-toothed, and the surface of the magnetic pole may be flat.

【0008】以上は、本発明のほんの一実施例を示した
にすぎない。例えば、図2のように電子線の取り出しチ
ューブ入射孔の位置が軌道の中心軸に対して30゜傾い
た線に沿って移動する場合、入射口で電子線が集束する
ようにしたければベータトロン振動の半周期を回転周期
の210゜/360゜すなわち、7/12にすればよく
、この場合、ベータトロン振動の周期を短くする。した
がって、磁界の勾配は空胴共振器で集束させるときより
小さくし、磁極間の距離の変化は(数2)になるように
鋸歯状磁極の2頂点間の曲線を設定すればよい。
The above is just one embodiment of the present invention. For example, if the position of the electron beam extraction tube entrance hole moves along a line inclined at 30 degrees with respect to the central axis of the orbit as shown in Figure 2, if you want the electron beam to be focused at the entrance hole, use the Betatron. The half period of vibration may be set to 210°/360° of the rotation period, that is, 7/12, and in this case, the period of betatron oscillation is shortened. Therefore, the gradient of the magnetic field is made smaller than when focusing using a cavity resonator, and the curve between the two vertices of the sawtooth magnetic poles is set so that the distance between the magnetic poles changes as shown in Equation 2.

【0009】また、取り出す軌道を幾つかに限定すれば
、取り出す軌道にのみ(数2)の曲線を、他の軌道に対
応するところは(数1)の曲線を設定できるので、取り
出しチューブ入射孔と空胴共振器の入射孔の両方で電子
の損失を防ぐことができ、より効率の良い加速ができる
。要は、磁界強度と加速電界強度から決まる理想的な各
軌道のそれぞれに沿って磁極形状に勾配を持たせ、電子
が理想的な軌道を中心に振動するような磁界分布を持っ
ている構造であれば、本発明の本質を損なうものではな
い。また、このような磁界分布を磁極形状から作り出す
だけでなく、磁極表面にコイルを取り付けることによっ
て作り出してもよい。
[0009] Furthermore, if the extraction trajectory is limited to a few, it is possible to set the curve (Equation 2) only for the extraction trajectory and the curve (Equation 1) for the other trajectories, so that the extraction tube entrance hole Electron loss can be prevented both at the entrance hole of the cavity and at the entrance hole of the cavity, and more efficient acceleration can be achieved. In short, it is a structure in which the magnetic pole shape has a gradient along each ideal orbit determined by the magnetic field strength and accelerating electric field strength, and the magnetic field distribution is such that the electrons oscillate around the ideal orbit. If there is, it does not impair the essence of the present invention. Furthermore, such a magnetic field distribution may be created not only from the shape of the magnetic pole, but also by attaching a coil to the surface of the magnetic pole.

【0010】0010

【発明の効果】本発明の構成によれば、電子線を必要な
ところで集束させることができるので、電子が空胴共振
器の入射孔に衝突したり、取り出しチューブを通過でき
ないことによって生ずる電子の損失を少なくさせること
ができる。
[Effects of the Invention] According to the configuration of the present invention, the electron beam can be focused at a necessary point, so that it is possible to prevent electrons from colliding with the entrance hole of the cavity resonator or from being unable to pass through the extraction tube. Loss can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例を示すマイクロトロンの磁極
断面図。
FIG. 1 is a cross-sectional view of a magnetic pole of a microtron showing an embodiment of the present invention.

【図2】本発明の一実施例を示すマイクロトロンの基本
構成図。
FIG. 2 is a basic configuration diagram of a microtron showing an embodiment of the present invention.

【図3】従来のマイクロトロンの基本構成図。FIG. 3 is a basic configuration diagram of a conventional microtron.

【図4】本発明の一実施例での電子軌道を示す概念図。FIG. 4 is a conceptual diagram showing electron orbits in one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1  磁極 2  理想的な電子軌道 3  空胴共振器 4  励磁コイル 5  マイクロ波源 6  鋸歯状磁極の頂点 7  取り出しチューブ 8  理想的な軌道の中心軸 9  取り出しチューブ入射口の移動線10  磁力線 11  電子軌道 1 Magnetic pole 2 Ideal electron orbit 3 Cavity resonator 4 Excitation coil 5 Microwave source 6. Apex of sawtooth magnetic pole 7 Take-out tube 8. Central axis of ideal orbit 9 Line of movement at the entrance of the extraction tube 10 Line of magnetic force 11 Electron orbit

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】空胴共振器内マイクロ波によって電子を加
速した後静磁界中で円運動させることを繰り返して電子
を加速し、金属製チューブで外部に加速電子を取り出す
マイクロトロンにおいて、異なる電子エネルギーを有す
る電子軌道ごとに、その各々の電子軌道で理想的な円軌
道から外れた電子が円軌道を中心に振動しながら円運動
を行なうようにし、前記電子軌道に対応する磁界強度を
円軌道上の磁界強度に対し、円軌道より半径の大きい部
分の磁界強度を弱く、円軌道より半径の小さい部分の磁
界強度を強くしたことを特徴とするマイクロトロン。
Claim 1: In a microtron, the electrons are accelerated by microwaves in a cavity resonator and then repeatedly moved in a circular motion in a static magnetic field, and the accelerated electrons are taken out to the outside using a metal tube. For each electron orbit that has energy, the electrons that deviate from the ideal circular orbit in each electron orbit perform a circular motion while vibrating around the circular orbit, and the magnetic field strength corresponding to the electron orbit is adjusted to the circular orbit. A microtron is characterized by having a weaker magnetic field strength in a portion with a larger radius than a circular orbit, and a stronger magnetic field strength in a portion with a smaller radius than a circular orbit.
【請求項2】前記電子軌道に対応する磁界強度分布を作
る磁極の表面形状を鋸歯状にしたことを特徴とする請求
項1記載のマイクロトロン。
2. The microtron according to claim 1, wherein the surface shape of the magnetic pole that creates a magnetic field intensity distribution corresponding to the electron orbit is serrated.
【請求項3】前記電子軌道に対応する磁界強度分布が、
前記円軌道から外れた電子を前記円軌道を中心に振動し
ながら円運動させることで電子線を集束させるように構
成されていることを特徴とする請求項1または2記載の
マイクロトロン。
3. The magnetic field intensity distribution corresponding to the electron orbit is
3. The microtron according to claim 1, wherein the microtron is configured to focus the electron beam by causing the electrons that have deviated from the circular orbit to move in a circular motion while vibrating around the circular orbit.
【請求項4】前記電子軌道に対応する磁界分布が、前記
円軌道から外れた電子を前記円軌道を中心に振動しなが
ら円運動させることで電子線を取り出すためのチューブ
入射孔で集束させるように構成されていることを特徴と
する請求項1または2記載のマイクロトロン。
4. A magnetic field distribution corresponding to the electron orbit causes the electrons that have deviated from the circular orbit to move in a circular motion while vibrating around the circular orbit, thereby focusing them at a tube entrance hole for taking out the electron beam. 3. The microtron according to claim 1, wherein the microtron is configured as follows.
【請求項5】前記電子軌道に対応する磁界分布が、前記
円軌道から外れた電子を前記円軌道を中心に振動しなが
ら円運動させることで電子線を空胴共振器の入射孔で集
束させるように構成されていることを特徴とする請求項
1または2記載のマイクロトロン。
5. A magnetic field distribution corresponding to the electron orbit focuses the electron beam at the entrance hole of the cavity resonator by causing the electrons that have deviated from the circular orbit to move in a circular motion while vibrating around the circular orbit. The microtron according to claim 1 or 2, characterized in that it is configured as follows.
【請求項6】空胴共振器部分の磁極形状を平面としたこ
とを特徴とする請求項5記載のマイクロトロン。
6. The microtron according to claim 5, wherein the magnetic pole shape of the cavity resonator portion is flat.
JP16085591A 1991-06-06 1991-06-06 Microtron Pending JPH04359900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16085591A JPH04359900A (en) 1991-06-06 1991-06-06 Microtron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16085591A JPH04359900A (en) 1991-06-06 1991-06-06 Microtron

Publications (1)

Publication Number Publication Date
JPH04359900A true JPH04359900A (en) 1992-12-14

Family

ID=15723849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16085591A Pending JPH04359900A (en) 1991-06-06 1991-06-06 Microtron

Country Status (1)

Country Link
JP (1) JPH04359900A (en)

Similar Documents

Publication Publication Date Title
US6060833A (en) Continuous rotating-wave electron beam accelerator
JP3121157B2 (en) Microtron electron accelerator
JPH05198398A (en) Circular accelerator and beam incidence method for circular accelerator
US4621219A (en) Electron beam scrambler
JP3857096B2 (en) Charged particle beam extraction apparatus, circular accelerator, and circular accelerator system
JPH04359900A (en) Microtron
EP0239646B1 (en) Method of introducing charged particles into magnetic resonance type accelerator and magnetic resonance type accelerator based on said method
JP3116737B2 (en) Accelerator, beam extraction method therefor, and medical device
JP3027822B2 (en) Method and apparatus for micro-bunching of charged particle beam
JP4276160B2 (en) Circular charged particle accelerator and method of operating the circular charged particle accelerator
JP3191810B2 (en) Gyrotron device
JPS62139300A (en) Method of taking out emitted light of cynchrotron and electron wave ring employing the method
JP3943579B2 (en) Circular particle accelerator
JPH01204399A (en) Electron accelerator
JP3943578B2 (en) Circular particle accelerator
JP3729645B2 (en) Circular particle accelerator
JP2843689B2 (en) Electron accelerator
JP2892562B2 (en) Circular accelerator and its operation method
JP2600075B2 (en) X-ray generator
SU1343569A1 (en) Method of exciting high-frequency accelerating field in periodic structure of linear ion accelerator
JP2002305100A (en) Microtron electron accelerator
JP3943568B2 (en) Circular particle accelerator
JPH0935899A (en) Take-out method for charged particle beam
USH2010H1 (en) Double cusp gyro gun
JPH06111998A (en) Synchrotron and operation thereof