JP3729645B2 - Circular particle accelerator - Google Patents

Circular particle accelerator Download PDF

Info

Publication number
JP3729645B2
JP3729645B2 JP18756098A JP18756098A JP3729645B2 JP 3729645 B2 JP3729645 B2 JP 3729645B2 JP 18756098 A JP18756098 A JP 18756098A JP 18756098 A JP18756098 A JP 18756098A JP 3729645 B2 JP3729645 B2 JP 3729645B2
Authority
JP
Japan
Prior art keywords
particle beam
cavity
particle
orbit
circular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18756098A
Other languages
Japanese (ja)
Other versions
JP2000021600A (en
Inventor
禎浩 石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18756098A priority Critical patent/JP3729645B2/en
Publication of JP2000021600A publication Critical patent/JP2000021600A/en
Application granted granted Critical
Publication of JP3729645B2 publication Critical patent/JP3729645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Particle Accelerators (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、円形粒子加速器に関するものである。
【0002】
【従来の技術】
一般的な円形粒子加速器は、図のように構成されている。図において、1は粒子ビームが入射される入射ダクト、2は入射された粒子ビームを周回方向に曲げる入射セプタム、3は粒子ビームが周回する粒子ビーム周回軌道、4は四極電磁石、5は粒子ビーム軌道の曲部に配置され粒子ビームを周回方向に曲げる偏向電磁石、6は粒子ビームを加速する加速空洞、7は高次モード空洞、8は加速された粒子ビームを出射ダクトに導く出射セプタム、9は六極電磁石、10は加速された粒子を出射する出射ダクトである。
【0003】
に示すような円形粒子加速器から粒子ビームを取り出す方法には大きく分けて低エネルギーの粒子ビームを取り出す“早い取り出し”と、高エネルギーの粒子ビームを取り出す“遅い取り出し”と呼ばれる2つの方法があり、この発明は“遅い取り出し”に関するものである。
【0004】
粒子ビーム周回軌道を周回する粒子ビームのセパラトリクスと呼ばれる安定領域と不安定領域の境界が形成されている場合、セパラトリクスの外側すなわち不安定領域に動かす方法としては、セパラトリクスを徐々に小さくする方法と、セパラトリクスは動かさずに安定領域にいた粒子ビームに高周波電場で振動を加えてセパラトリクスまでエミッタンスを増加させる方法があり、後者の方法がrfノックアウトを用いた遅い取り出しと呼ばれる。
【0005】
従来の円形粒子加速器から粒子ビームを取り出すrfノックアウトを用いた取り出しは、例えば特公平5−198397号公報に開示された方法がある。図に粒子ビームの粒子ビーム周回軌道の直線部にrfノックアウト電極が挿入された状態の模式図を示す。図において、11は粒子ビーム周回軌道、12はrfノックアウト電極、13は高周波電源、14は出射セプタム、15はデフレクターである。
【0006】
円形粒子加速器では、リング状の粒子ビーム周回軌道11の中を周回する粒子ビームは粒子ビーム周回軌道11の水平方向と垂直方向に微小振動して周回している。この微小振動をベータトロン振動と呼び、リング状の粒子ビーム周回軌道11の1周当たりの振動数をベータトロンチューンまたは単にチューン呼んでいる。このチューンは粒子ビームが安定に周回するように選ばれるが、粒子ビームの取り出しには不安定になるチューンを選んで行われる。例えばチューンを1/3整数に選び、六極電磁石により粒子ビームに動を与えて位相空間上にセパラトリクスを形成した場合、セパラトリクスの外側すなわち不安定領域に出た粒子ビームが粒子ビーム周回軌道11を周回する毎に振幅が大きくなり、最終的に取り出し用に設置された出射セプタム14に到達し、出射セプタム14に形成されている静的な電場または磁場により外側に蹴り出されて下流に設置されたデフレクター15により出射ダクトに導かれる。
【0007】
rfノックアウト電極12は一対の平行平板からなり、この間に周波数Frfの高周波電圧が加えられる。この周波数Frfはベータトロンチューンの小数部分をn、周回周波数をFrev、任意の整数をmとすると、(式1)で表される。
【0008】
【数1】

Figure 0003729645
【0009】
rfノックアウト電極12の間の電場により蹴られる角度θは(式2)の関係になる。
【0010】
【数2】
Figure 0003729645
【0011】
ここでそれぞれのパラメータの値が次の表1の場合について電場を求める。
【0012】
【表1】
Figure 0003729645
【0013】
この条件において、電極間のギャップが100mmの場合、高周波電圧は10kVを加える必要がある。このように電場による運動量pが10GeV/cを越えるような領域では、必要な高周波電圧は10kVよりも高くなり、非常に高い値が必要となる。この電圧を印加するためには、発生させる高周波電源およびrfノックアウト電極は高電圧に耐える絶縁構成となり、寸法が大きくなり、装置構成として大きくなる。
【0014】
【発明が解決しようとする課題】
上記のように、従来の円形加速器のrfノックアウト電極の高周波電場を用いた粒子ビームの取り出し方法は、低エネルギーでの取り出しには適した方法であるが、高エネルギーの粒子の取り出しを行う場合には、必要とする高周波電圧が高くなり、rfノックアウト電極および高周波電源の絶縁構成が難しく、装置として非現実的な大がかりな構成となる問題点があった。
【0015】
【課題を解決するための手段】
この発明の請求項1に係る円形粒子加速器は、粒子ビームのベータトロン振動振幅を増幅するベータトロン振動振幅増幅手段を、粒子ビーム周回軌道に直列に配置された空洞に電磁波を導入して、粒子ビームに垂直な磁場成分を持つTM110モードを励振した高周波空洞で形成したものである。
【0016】
【発明の実施の形態】
実施の形態1.
実施の形態1は、粒子ビームの振動振幅を増幅するベータトロン振動振幅増幅手段を磁場でキックする構成としたものである。粒子ビームを磁場でキックする場合のキック角θは(式3)で与えられる。
【0017】
【数3】
Figure 0003729645
【0018】
式3のキック角θを満足する磁場Bは、B=3.6×10−4Tである。
【0019】
実施の形態1のベータトロン振動振幅増幅手段は、空洞を粒子ビームの周回軌道に直列に配置し、空洞に電磁波を導入してTM110モードを励振し、粒子ビームの中心軸に対して垂直方向の磁場を形成する高周波空洞で構成としたものである。高周波空洞は、Higher Order Mode(HOM)を利用するという意味で以下HOM空洞と呼称する。図1にHOM空洞を粒子ビーム周回軌道11に装着した状態を模式的に示した構成を示す。
【0020】
図1において、粒子ビーム軌道11、出射セプタム14、デフレクタ15は、従来の粒子ビーム周回軌道にrfノックアウト電極を配置した構成の図の対応する部分と同一である。31は電磁波を導入してTM110モード励振し、粒子ビームの中心軸に対して垂直方向に磁場を生成するHOM空洞、33は高周波電源である。
【0021】
図2はHOM空洞31の部分拡大断面図である。図2の35は電磁波を導入する導波管、36はTM110モードを励振するループカプラーである。HOM空洞31に電磁波を導入すると粒子ビームの中心軸に対して直角方向に磁場を生成し、粒子ビームと平行に電場を生成する。粒子ビームが高速で通過すると横方向にキックを受け、徐々に振幅を増幅して行き、従来技術欄で説明した電場でキックする場合と同様にセパラトリクスに到達した粒子ビームがさらに共鳴(この場合は3次共鳴)して振幅を増し出射セプタム14到達する。出射セプタム14では一様で静的な電場または磁場により、外側に蹴り出され、下流に設置されたデフレクタ15により、出射ダクトに導かれる。
【0022】
このように、粒子ビーム周回軌道11の直線部にHOM空洞31を装着し、このHOM空洞31に導波管35より電磁波を導入し、ループカプラー36によりカップルしてTM110モードを励振することにより、粒子ビームの中心軸に対して直角方向に磁場を生成し、高エネルギーの粒子ビームの遅い取り出しが可能となる。HOM空洞31に導入する電磁波は、通常の加速空洞等に使用されている高周波電源より供給でき、HOM空洞31は軽量に構成できるので、円形粒子加速器を軽量に構成できる。以上は円形粒子加速器について説明したが粒子ビーム周回軌道が同じ構成の粒子蓄積リングにも同様の構成が適用できる。
【0023】
【発明の効果】
この発明の請求項1に係る円形粒子加速器は、粒子ビームのベータトロン振動振幅を増幅するベータトロン振動振幅増幅手段を、粒子ビーム周回軌道に直列に配置された空洞に電磁波を導入して、粒子ビームに垂直な磁場成分を持つTM110モードを励振した高周波空洞で形成したので、円形粒子加速器を軽量に構成することができる。
【図面の簡単な説明】
【図1】 実施の形態1のベータトロン振動振幅増幅手段の構成を模式的に示した構成図である。
【図2】 図1のHOM空洞のビームと磁場の関係を示す断面図である。
【図3】 従来の粒子加速器の構成図である。
【図4】 従来の粒子ビームのベータトロン振動振幅を増幅する増幅手段の構成を模式的に示した構成図である。
【符号の説明】
11 粒子ビーム周回軌道、14 出射セプタム、15 デフレクター、
31 HOM空洞、33 高周波電源、35 導波管、36 ループカプラー。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a circular particle accelerator.
[0002]
[Prior art]
General circular particle accelerator is configured as shown in Figure 3. In FIG. 3 , 1 is an incident duct into which a particle beam is incident, 2 is an incident septum that bends the incident particle beam in a circumferential direction, 3 is a particle beam orbit around the particle beam, 4 is a quadrupole electromagnet, and 5 is a particle A deflecting electromagnet arranged at a curved portion of the beam trajectory and bending the particle beam in a circumferential direction; 6 an acceleration cavity for accelerating the particle beam; 7 a higher-order mode cavity; 8 an exit septum for guiding the accelerated particle beam to the exit duct; Reference numeral 9 denotes a hexapole electromagnet, and 10 denotes an exit duct that emits accelerated particles.
[0003]
There are two main methods for extracting a particle beam from a circular particle accelerator as shown in FIG. 3 , called “fast extraction” for extracting a low energy particle beam and “slow extraction” for extracting a high energy particle beam. Yes, this invention relates to "slow retrieval".
[0004]
When the boundary between the stable region and the unstable region called the separatrix of the particle beam orbiting the particle beam orbit is formed, as a method of moving outside the separatrix, that is, the unstable region, a method of gradually reducing the separatrix, There is a method of increasing the emittance to the separatrix by applying vibrations to the particle beam in a stable region without moving the separatrix with a high-frequency electric field, and the latter method is called slow extraction using rf knockout.
[0005]
Extraction using an rf knockout for extracting a particle beam from a conventional circular particle accelerator is, for example, a method disclosed in Japanese Patent Publication No. 5-198397. FIG. 4 is a schematic view showing a state in which the rf knockout electrode is inserted in the linear portion of the particle beam orbit of the particle beam. In the figure, 11 is a particle beam orbit, 12 is an rf knockout electrode, 13 is a high-frequency power source, 14 is an exit septum, and 15 is a deflector.
[0006]
In the circular particle accelerator, the particle beam that circulates in the ring-shaped particle beam orbit 11 is oscillated with a slight vibration in the horizontal and vertical directions of the particle beam orbit 11. This minute vibration is referred to as betatron vibration, and the vibration frequency per round of the ring-shaped particle beam orbit 11 is called betatron tune or simply tune. This tune is selected so that the particle beam circulates stably, but it is selected by selecting a tune that becomes unstable for taking out the particle beam. For example to select the tune 1/3 to the integer, the case of forming the separatrix in phase space given the dynamic vibration particle beam by sextupole electromagnets, outer or particle beam enters the unstable region is particles separatrix beam orbit 11 Each time it circulates, the amplitude increases, eventually reaches the exit septum 14 installed for removal, and is kicked outward by a static electric or magnetic field formed on the exit septum 14 and installed downstream. The deflector 15 is guided to the exit duct.
[0007]
The rf knockout electrode 12 is composed of a pair of parallel plates, and a high frequency voltage having a frequency Frf is applied therebetween. This frequency Frf is expressed by (Equation 1) where n is the decimal part of the betatron tune, Frev is the circulation frequency, and m is an arbitrary integer.
[0008]
[Expression 1]
Figure 0003729645
[0009]
The angle θ kicked by the electric field between the rf knockout electrodes 12 has the relationship of (Equation 2).
[0010]
[Expression 2]
Figure 0003729645
[0011]
Here, the electric field is obtained for each parameter value shown in Table 1 below.
[0012]
[Table 1]
Figure 0003729645
[0013]
Under this condition, when the gap between the electrodes is 100 mm, it is necessary to apply 10 kV as the high frequency voltage. Thus, in the region where the momentum p due to the electric field exceeds 10 GeV / c, the necessary high-frequency voltage is higher than 10 kV, and a very high value is required. In order to apply this voltage, the generated high-frequency power source and the rf knockout electrode have an insulating configuration that can withstand high voltage, and the size increases and the device configuration increases.
[0014]
[Problems to be solved by the invention]
As described above, the particle beam extraction method using the high-frequency electric field of the rf knockout electrode of the conventional circular accelerator is a method suitable for extraction with low energy, but when extracting high energy particles. However, the required high-frequency voltage is high, the insulation configuration of the rf knockout electrode and the high-frequency power supply is difficult, and there is a problem that the device becomes an unrealistic large-scale configuration.
[0015]
[Means for Solving the Problems]
A circular particle accelerator according to claim 1 of the present invention introduces a betatron vibration amplitude amplifying means for amplifying the betatron vibration amplitude of a particle beam into a cavity arranged in series with the particle beam orbit, and It is formed of a high-frequency cavity in which a TM110 mode having a magnetic field component perpendicular to the beam is excited.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
In the first embodiment, a betatron vibration amplitude amplifying means for amplifying the vibration amplitude of a particle beam is configured to kick with a magnetic field. The kick angle θ when kicking the particle beam with a magnetic field is given by (Equation 3).
[0017]
[Equation 3]
Figure 0003729645
[0018]
The magnetic field B that satisfies the kick angle θ of Equation 3 is B = 3.6 × 10 −4 T.
[0019]
In the betatron vibration amplitude amplifying means of the first embodiment, the cavity is arranged in series with the orbit of the particle beam, the electromagnetic wave is introduced into the cavity to excite the TM110 mode, and the vertical direction is perpendicular to the central axis of the particle beam. It is composed of a high-frequency cavity that forms a magnetic field. The high frequency cavity is hereinafter referred to as a HOM cavity in the sense that it uses a Higher Order Mode (HOM). FIG. 1 schematically shows a configuration in which the HOM cavity is mounted on the particle beam orbit 11.
[0020]
In FIG. 1, the particle beam trajectory 11, the exit septum 14, and the deflector 15 are the same as the corresponding parts in FIG. 8 in which the rf knockout electrode is arranged in the conventional particle beam orbit. 31 to excite the TM110 mode by introducing an electromagnetic wave, HOM cavity for generating a magnetic field in a direction perpendicular to the central axis of the particle beam, 33 is a high frequency power source.
[0021]
FIG. 2 is a partially enlarged cross-sectional view of the HOM cavity 31. In FIG. 2, 35 is a waveguide for introducing electromagnetic waves, and 36 is a loop coupler for exciting the TM110 mode. When electromagnetic waves are introduced into the HOM cavity 31, a magnetic field is generated in a direction perpendicular to the central axis of the particle beam, and an electric field is generated parallel to the particle beam. When the particle beam passes at high speed, it receives a kick in the lateral direction, gradually amplifies the amplitude, and the particle beam that has reached the separatrix further resonates (in this case, as in the case of kicking with the electric field described in the prior art column) (3rd order resonance) and the amplitude is increased to reach the exit septum 14. The exit septum 14 is kicked outward by a uniform static electric or magnetic field and guided to the exit duct by a deflector 15 installed downstream.
[0022]
In this way, by mounting the HOM cavity 31 on the linear part of the particle beam orbit 11, the electromagnetic wave is introduced into the HOM cavity 31 from the waveguide 35, and coupled with the loop coupler 36 to excite the TM110 mode. A magnetic field is generated in a direction perpendicular to the central axis of the particle beam, and a high-energy particle beam can be slowly extracted. The electromagnetic wave introduced into the HOM cavity 31 can be supplied from a high-frequency power source used in a normal acceleration cavity or the like. Since the HOM cavity 31 can be configured to be lightweight, the circular particle accelerator can be configured to be lightweight. The circular particle accelerator has been described above, but the same configuration can be applied to a particle storage ring having the same particle beam orbit.
[0023]
【The invention's effect】
A circular particle accelerator according to claim 1 of the present invention introduces a betatron vibration amplitude amplifying means for amplifying the betatron vibration amplitude of a particle beam into a cavity arranged in series with the particle beam orbit, and Since the TM110 mode having a magnetic field component perpendicular to the beam is used to excite the high-frequency cavity, the circular particle accelerator can be made lightweight.
[Brief description of the drawings]
FIG. 1 is a configuration diagram schematically showing the configuration of a betatron vibration amplitude amplifying unit according to a first embodiment.
2 is a cross-sectional view showing the relationship between the beam of the HOM cavity of FIG. 1 and a magnetic field.
FIG. 3 is a configuration diagram of a conventional particle accelerator.
FIG. 4 is a configuration diagram schematically showing the configuration of a conventional amplifying means for amplifying the betatron oscillation amplitude of a conventional particle beam.
[Explanation of symbols]
11 particle beam orbit, 14 exit septum, 15 deflector,
31 HOM cavity, 33 high frequency power supply, 35 waveguide, 36 loop coupler.

Claims (1)

粒子ビーム周回軌道、粒子ビーム周回軌道に配置され、粒子ビームを粒子ビーム周回軌道に沿って周回させる四極電磁石、偏向電磁石および粒子ビームを加速させる加速空洞、粒子ビームのベータトロン振動振幅を増幅するベータトロン振動振幅増幅手段および粒子ビームを粒子ビーム周回軌道から取り出す出射セプタムを備えた円形粒子加速器において、ベータトロン振動振幅増幅手段が、粒子ビーム周回軌道に直列に配置された空洞に電磁波を導入して、粒子ビーム中心軸に対して垂直な磁場成分を持つTM110モードを励振した高周波空洞で構成されていることを特徴とする円形粒子加速器。  A particle beam orbit, a quadrupole electromagnet arranged in the particle beam orbit, orbiting the particle beam along the particle beam orbit, an accelerating cavity for accelerating the particle beam, and a beta for amplifying the betatron oscillation amplitude of the particle beam In a circular particle accelerator equipped with a tron oscillation amplitude amplifying means and an exit septum for extracting the particle beam from the particle beam orbit, the betatron oscillation amplitude amplifying means introduces electromagnetic waves into a cavity arranged in series with the particle beam orbit. A circular particle accelerator comprising a high-frequency cavity excited by a TM110 mode having a magnetic field component perpendicular to the particle beam central axis.
JP18756098A 1998-07-02 1998-07-02 Circular particle accelerator Expired - Fee Related JP3729645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18756098A JP3729645B2 (en) 1998-07-02 1998-07-02 Circular particle accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18756098A JP3729645B2 (en) 1998-07-02 1998-07-02 Circular particle accelerator

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP2004343363A Division JP3943568B2 (en) 2004-11-29 2004-11-29 Circular particle accelerator
JP2005246958A Division JP3943578B2 (en) 2005-08-29 2005-08-29 Circular particle accelerator
JP2005247022A Division JP3943579B2 (en) 2005-08-29 2005-08-29 Circular particle accelerator

Publications (2)

Publication Number Publication Date
JP2000021600A JP2000021600A (en) 2000-01-21
JP3729645B2 true JP3729645B2 (en) 2005-12-21

Family

ID=16208230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18756098A Expired - Fee Related JP3729645B2 (en) 1998-07-02 1998-07-02 Circular particle accelerator

Country Status (1)

Country Link
JP (1) JP3729645B2 (en)

Also Published As

Publication number Publication date
JP2000021600A (en) 2000-01-21

Similar Documents

Publication Publication Date Title
Thumm Progress on gyrotrons for ITER and future thermonuclear fusion reactors
JPH07263200A (en) Accelerator, medical device, and radiation emission method
JP6169254B2 (en) Circular accelerator, operation method of circular accelerator, and particle beam therapy system
JP3093553B2 (en) Variable energy high frequency quadrupole linac
JPH08279400A (en) Microwave distribution device and plasma generator
JP3736343B2 (en) DC electron beam accelerator and DC electron beam acceleration method thereof
JP2020135958A (en) Ionization source, circular accelerator using them, and particle beam therapy system
US3450931A (en) Cyclotron motion linear accelerator
JP3729645B2 (en) Circular particle accelerator
CA2110067C (en) Electron accelerator having a coaxial cavity
JP3943579B2 (en) Circular particle accelerator
JPS63274098A (en) Standing wave linear accelerator
JP3943578B2 (en) Circular particle accelerator
JPH07111199A (en) Accelerator, beam radiation method, and medical device
Malik Energy gain by an electron in the fundamental mode of a rectangular waveguide by microwave radiation
JP3943568B2 (en) Circular particle accelerator
Malik Energy gain by an electron in the fundamental mode of a rectangular waveguide by microwave radiation
JP2001085198A (en) Linear accelerator, controlling method for linear accelerator, and recording medium on which control program of linear accelerator is recorded
Akimov et al. High-power X-band pulse magnicon
JP2002305100A (en) Microtron electron accelerator
US11810763B2 (en) Distributed ground single antenna ion source
JP7485593B2 (en) Accelerators and particle beam therapy equipment
JP3381577B2 (en) Accelerator and its operation method
JP3650354B2 (en) Electron accelerator
JP2022109715A (en) Circular accelerator, and particle beam treatment system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees