JPS63274098A - Standing wave linear accelerator - Google Patents

Standing wave linear accelerator

Info

Publication number
JPS63274098A
JPS63274098A JP10634487A JP10634487A JPS63274098A JP S63274098 A JPS63274098 A JP S63274098A JP 10634487 A JP10634487 A JP 10634487A JP 10634487 A JP10634487 A JP 10634487A JP S63274098 A JPS63274098 A JP S63274098A
Authority
JP
Japan
Prior art keywords
cavities
acceleration
cavity
energy
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10634487A
Other languages
Japanese (ja)
Inventor
Hiroshi Yonezawa
米澤 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10634487A priority Critical patent/JPS63274098A/en
Publication of JPS63274098A publication Critical patent/JPS63274098A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the continuous energy value over a wide range by resonating side-coupled cavities with the same resonance frequency as accelerating cavities and in the different resonance modes and providing frequency fine tuning tuners on the side-coupled cavities. CONSTITUTION:In a standing wave linear accelerator provided with multiple accelerating cavities 1, 2 and side-coupled cavities 9, 10 coupling the electromagnetic energy between the adjacent accelerating cavities among the multiple accelerating cavities 1, 2, the side-coupled cavities 9, 10 are resonated with the same resonance frequency as the accelerating cavities 1, 2 and in the different resonance modes, and frequency fine tuning tuners 16, 15 are provided on the side-coupled cavities 9, 10. The continuous energy value can be thereby obtained over a wide range from the low energy practically equal to 0 to the maximum energy using the whole length of an accelerating tube as the effective acceleration length.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は定在波形線形加速器に係り、特に大強度でエ
ネルギー可変なX線発生用の定在波形線形加速器に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a standing waveform linear accelerator, and particularly to a standing waveform linear accelerator for generating X-rays with high intensity and variable energy.

(従来の技術) 一般に、数10M)−1zから数100100Oまでの
一定周波数の高周波を使って、荷電粒子を真直ぐに加速
する装置として、線形加速器がある。
(Prior Art) Generally, there is a linear accelerator as a device that accelerates charged particles in a straight line using a high frequency with a constant frequency from several 10M)-1z to several 100100O.

この種の線形加速器のうち、定在波形線形加速器は従来
第4図に示すように構成され、図中の1.2は加速器本
体11内に形成された複数のリング状加速空胴であり、
3は電界を遮断し電子流を通過させるドリフト管、4は
複数の加速空調のうちの隣接する加速空胴を結合させる
リング状側結合空胴、5は加速空胴1.2と側結合空胴
4とを結合させている結合孔、6は粒子線を入射させる
入射空胴、7は粒子線を取出す出力空胴、8は粒子線発
生部、9.10は隣接する加速空胴間の電磁エネルギー
を結合する側結合空胴である。
Among this type of linear accelerator, a standing wave linear accelerator is conventionally configured as shown in FIG.
3 is a drift tube that blocks the electric field and allows electron flow to pass through; 4 is a ring-shaped side coupling cavity that couples adjacent acceleration cavities among the plurality of acceleration air conditioners; and 5 is the acceleration cavity 1.2 and the side coupling cavity. A coupling hole connecting the shell 4, 6 an input cavity for entering the particle beam, 7 an output cavity for taking out the particle beam, 8 a particle beam generation section, and 9.10 a hole between adjacent acceleration cavities. It is a side coupling cavity that couples electromagnetic energy.

動作時には、加速された荷電粒子(一般には電子)は、
タングステン等のターゲットにてxIlに変換されるが
、変換効率が低いために、放射線治療等の用途では加速
電子数(電流)を多くする必要がある。尚且つ、治療部
位の深度によって、X線エネルギーを可変とすることが
望まれる。X線エネルギーを可変とするためには、電子
の加速エネルギーを可変とすれば良く、電子の加速エネ
ルギーを与える高周波の電力を可変とすれば達成される
In operation, accelerated charged particles (generally electrons)
It is converted to xIl by a target such as tungsten, but because the conversion efficiency is low, it is necessary to increase the number of accelerated electrons (current) in applications such as radiation therapy. Furthermore, it is desirable to make the X-ray energy variable depending on the depth of the treatment site. In order to make the X-ray energy variable, it is sufficient to make the electron acceleration energy variable, and this can be achieved by making the high-frequency power that provides the electron acceleration energy variable.

一方、大強度の電子線を得るためには、粒子線発生部8
の電子銃から加速管に入射された電子を効率良く集群さ
ぜる必要があり、電子流の上流側の加速空胴間隔をより
下流側よりも短くとり、電子の速度と加速電界との同期
を図る必要がある。
On the other hand, in order to obtain a high-intensity electron beam, the particle beam generating section 8
It is necessary to efficiently aggregate the electrons incident on the accelerating tube from the electron gun, and to synchronize the electron velocity with the accelerating electric field by making the acceleration cavity spacing on the upstream side of the electron flow shorter than on the downstream side. It is necessary to aim for

この同期は、電子の速度、従って高周波の電力と空胴間
隔の双方により定まる。上記の如く、電子の加速エネル
ギーを可変とするために、高周波電力を変化させた場合
には、加速電界が変わることによって、同期が最適条件
よりずれ、効率のよい加速、即ち、大電流の加速を行な
うことが出来ないという欠点を有していた。
This synchronization is determined by both the electron velocity and therefore the radio frequency power and the cavity spacing. As mentioned above, when the high frequency power is changed to make the acceleration energy of electrons variable, the synchronization deviates from the optimum condition due to the change in the accelerating electric field, resulting in efficient acceleration, that is, acceleration of large currents. It has the disadvantage that it cannot be carried out.

近年、この欠点を克服すべく、相対論効果によって殆ど
電子速度が光速に等しいと見做せるエネルギーまで加速
する部分く以後、パンチャ部と称す)、及び電子流の下
流に位置し、所要のエネルギーまで加速する加速管部に
分け、異なる所要エネルギーに対しても、パンチャ部の
電界強度は最適値より変化せず、後続の加速管部の電界
の位相又は振幅を変えることによって、大強度でエネル
ギー可変する定在波形線形加速器が提案されている(例
えば特公昭56−63800号公報記載、特公昭57−
55099号公報記載、特開昭61−253800号公
報記載、特開昭61−288400号公報記載)。
In recent years, in order to overcome this drawback, a part that accelerates the electron speed to an energy that can be considered to be almost equal to the speed of light due to relativistic effects (hereinafter referred to as the puncher part), and a part located downstream of the electron flow that has the required energy The electric field strength of the puncher section does not change from the optimum value even for different required energies, and by changing the phase or amplitude of the electric field of the subsequent accelerating tube section, the energy can be increased with high intensity. Variable standing waveform linear accelerators have been proposed (for example, described in Japanese Patent Publication No. 56-63800, Japanese Patent Publication No. 57-
55099, JP-A-61-253800, JP-A-61-288400).

(発明が解決しようとする問題点) 上記の特公昭56−63800号公報記載の定在波形線
形加速器は、個結合空胴の共振モードが2つの結合孔間
で同相(TMo s tr )又は逆相(TEM、又は
TMn 11)であり、且つ上記2つの共振モードの共
振周波数が、加速空胴の共振周波数に略等しいように、
半同軸状の個結合空胴の中心導体の長さを機械的に変化
せしめている。
(Problems to be Solved by the Invention) In the standing wave linear accelerator described in Japanese Patent Publication No. 56-63800, the resonance modes of the individual coupling cavities are in phase (TMo s tr ) or in opposite phases between the two coupling holes. phase (TEM, or TMn 11), and the resonant frequencies of the two resonant modes are approximately equal to the resonant frequency of the acceleration cavity,
The length of the center conductor of the semi-coaxial individual coupling cavity is changed mechanically.

これによって、この側結合空胴以下の加速空胴の電界の
位相を変えて加速管部にて電子のエネルギーを増加させ
る動作(TMQIO)、又は逆に減少させる動作(TE
M、又はTMo s t )が選択出来る。パンチャ部
での加速エネルギーをEl、加速管部での加速エネルギ
ーをE2とすれば、得られるエネルギーはEl +E2
 、又はEt −E2の2通りである。この方式は、得
られるエネルギーが2通りだけに限定されるという欠点
を有している。又、半同軸状の個結合空胴の中心導体の
位置は、加速空胴外壁部に近接しており、真空を保つた
めのベローズや駆動機構を設置する充分なるスペースに
欠けるという欠点がある。
As a result, the phase of the electric field in the acceleration cavity below this side coupling cavity is changed to increase the electron energy in the acceleration tube section (TMQIO), or conversely to decrease it (TE
M or TMo s t ) can be selected. If the acceleration energy at the puncher section is El and the acceleration energy at the acceleration tube section is E2, the obtained energy is El + E2
, or Et-E2. This scheme has the disadvantage that the energy available is limited to only two ways. In addition, the center conductor of the semi-coaxial individual coupled cavity is located close to the outer wall of the acceleration cavity, and there is a drawback that there is not enough space to install a bellows or drive mechanism for maintaining a vacuum.

次に、特公昭57−55099号公報記載の定在波形線
形加速器は、隣接する加速空胴の電界強度が介在する個
結合空胴の結合度によって変化することを利用し、パン
チャ部の電界強度を最適に保ちつつ、加速管部の電界の
振幅を相対的に変化させて、電子の加速エネルギーを変
えるものである。そして、結合度を変化せしめるために
は、半同軸状の個結合空胴を機械構造的に変形させ、共
振周波数を加速空胴の共(辰周波数とほぼ等しく保ちな
がら、側結合空胴内の電磁界を非対称とする。
Next, the standing wave linear accelerator described in Japanese Patent Publication No. 57-55099 utilizes the fact that the electric field strength of adjacent acceleration cavities changes depending on the degree of coupling of intervening individual coupling cavities, and the electric field strength of the puncher part is This is to change the acceleration energy of electrons by relatively changing the amplitude of the electric field in the accelerating tube while keeping it at an optimum level. In order to change the degree of coupling, the semi-coaxial individual coupling cavity is mechanically deformed, and the resonance frequency in the side coupling cavity is kept approximately equal to the co-(dragon) frequency of the acceleration cavity. Make the electromagnetic field asymmetric.

加速管部のエネルギーをOがらE2まで変化させること
によって、ElからEl 十E2までほぼ連続的に変え
ることが出来る。
By changing the energy of the accelerating tube section from O to E2, it is possible to change it almost continuously from El to El + E2.

ところが、この方式では、上記特公昭56−63800
号公報記載の定在波形線形加速器に比べ、E1以下のエ
ネルギーを選択出来ないという欠点を有している。
However, with this method, the above-mentioned
Compared to the standing waveform linear accelerator described in the publication, it has the disadvantage that energy below E1 cannot be selected.

次に、特開昭61−253800号公報記載の定在波形
線形加速器は、機械的変形によって、個結合空胴の共振
周波数を電磁界分布の対称性を保持しながら加速空胴の
共振周波数より離調させることによって、パンチャ部と
加速管部との相対的な位相、振幅を変化させている。
Next, the standing wave linear accelerator described in Japanese Patent Application Laid-open No. 61-253800 uses mechanical deformation to lower the resonance frequency of the individual coupling cavity from the resonance frequency of the accelerating cavity while maintaining the symmetry of the electromagnetic field distribution. By detuning, the relative phase and amplitude between the puncher section and the acceleration tube section are changed.

ところが、この方式でも、上記特公昭57−55099
号公報記載の定在波形線形加速器と同様に、エネルギー
の連続可変が可能であるが、E1以下のエネルギーの選
択は出来ないという欠点を有している。
However, even with this method, the above-mentioned Special Publication No. 57-55099
Similar to the standing wave linear accelerator described in the publication, it is possible to continuously vary the energy, but it has the disadvantage that it is not possible to select energies below E1.

次に、特開昭61−288400号公報記載の定在波形
線形加速器は、2つの隣接する加速空胴を複数の個結合
空胴によって結合させたものである。各々の個結合空胴
は、加速空胴との間に異なった形状の結合孔を有し、且
つ同調機構によって、共振又は完全な非共振の2つの状
態が選択出来る。
Next, the standing wave linear accelerator described in Japanese Patent Application Laid-Open No. 61-288400 is one in which two adjacent acceleration cavities are coupled by a plurality of individual coupling cavities. Each individual coupling cavity has a coupling hole of a different shape between it and the acceleration cavity, and two states, resonance or complete non-resonance, can be selected by a tuning mechanism.

共振、非共振の違い及び結合孔の形状の違いの組合せに
よって、エネルギー可変である。
The energy can be varied depending on the combination of resonance and non-resonance and the shape of the coupling hole.

ところが、この方式では、lqられるエネルギーは高々
有限個の離散的な値をとるのみである。多くの異なった
エネルギーを得るためには、多数の個結合空胴を必要と
し、構造上、調整が困難になること、及びコスト高の欠
点を有している。又、エネルギーはElからFl +E
2の間の値をとり、E1以下のエネルギーはとり得ない
However, in this method, the energy lq takes only a finite number of discrete values at most. In order to obtain a large number of different energies, a large number of individual coupling cavities are required, which has the drawbacks of difficulty in structural adjustment and high cost. Also, the energy is from El to Fl +E
It takes a value between 2 and cannot have an energy below E1.

この発明は、従来の問題点を解消したもので、はぼ0に
近いエネルギーから最大のエネルギーまで、連続的にエ
ネルギー可変な大強度X線を発生出来る定在波形線形加
速器を提供することを目的とする。
The purpose of this invention is to provide a standing waveform linear accelerator that can generate high-intensity X-rays whose energy is continuously variable from near zero energy to maximum energy. shall be.

[発明の構成] この発明は、複数の加速空調と、この複数の加速空調の
うちの隣接する加速空胴間の電磁エネルギーを結合する
個結合空胴とを備えてなる定在波形線形加速器相おいて
、上記個結合空胴は上記加速空胴と同等の共振周波数で
且つ相異なる共振七−ドで共振させられ、更に上記個結
合空胴に周波数微調用チューナが設けられてなる定在波
形線形加速器である。
[Structure of the Invention] The present invention provides a standing wave linear accelerator phase system comprising a plurality of acceleration air conditioners and an individual coupling cavity that couples electromagnetic energy between adjacent acceleration cavities among the plurality of acceleration air conditioners. The individual coupled cavity is made to resonate at the same resonance frequency as the acceleration cavity and at a different resonance seventh, and the individual coupled cavity is further provided with a tuner for frequency fine adjustment to form a standing waveform. It is a linear accelerator.

′  (作用) この発明によれば、実質的にOに等しい低いエネルギー
から加速管長全体を有効加速長とする最大エネルギーま
で、という広範囲で連続的なエネルギー値をとることが
出来る。
(Operation) According to the present invention, it is possible to take a continuous energy value over a wide range from a low energy substantially equal to O to a maximum energy where the entire acceleration tube length is the effective acceleration length.

(実施例) 以下、図面を参照して、この発明の一実施例を詳細に説
明する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

この発明による定在波形線形加速器は、第1図及び第2
図に示すように構成され、第2図は第1図の要部を拡大
したものであり、従来例(第4図)と同一箇所は同一符
号を付すことにする。
The standing waveform linear accelerator according to the present invention is shown in FIGS.
It is constructed as shown in the figure, and FIG. 2 is an enlarged view of the main part of FIG. 1, and the same parts as in the conventional example (FIG. 4) are given the same reference numerals.

即ち、加速器本体11の一端には粒子線発生部8が設け
られ、この粒子線発生部8と所定間隔をおいて、加速器
本体11内には粒子線を入射させる入射空胴6、複数の
加速中l111.2、粒子線を取出す出力中1j!7が
順次形成され、電界を遮断し電子流を通過させるドリフ
ト管3で接続されている。又、加速器本体11の両側に
は、複数の加速空胴のうちの隣接する加速空胴を結合す
る個結合空胴4、及び複数の加速空胴のうちの隣接する
加速空胴間の電磁エネルギーを結合するように両側にそ
れぞれリング状の側結合空rIA9.10が突設され、
結合孔5を介して加速空胴1.2と結合されている。
That is, a particle beam generating section 8 is provided at one end of the accelerator main body 11, and at a predetermined interval from the particle beam generating section 8, an entrance cavity 6 into which the particle beam is incident, and a plurality of accelerators are provided in the accelerator main body 11. Medium l111.2, output medium 1j to extract particle beam! 7 are successively formed and connected by a drift tube 3 that blocks the electric field and allows the electron flow to pass. Further, on both sides of the accelerator main body 11, there are individual coupling cavities 4 for coupling adjacent acceleration cavities among the plurality of acceleration cavities, and electromagnetic energy between adjacent acceleration cavities among the plurality of acceleration cavities. A ring-shaped side bonding hole rIA9.10 is provided on both sides so as to connect the
It is connected via a connecting hole 5 to the acceleration cavity 1.2.

更に、この発明では、第2図からも明らかなように、一
方の側結合空rI49には周波数微調用チューナ16が
設けられ、他方の側結合空ll110には周波数微調用
チューナ15が設けられている。各周波数微調用チュー
ナ16.15は、それぞれ個結合空胴9.10の共振周
波数を変える調整可能な同調霞構である。
Furthermore, in this invention, as is clear from FIG. 2, the frequency fine adjustment tuner 16 is provided in one side coupling air rI49, and the frequency fine adjustment tuner 15 is provided in the other side coupling air 110. There is. Each fine frequency tuner 16.15 is an adjustable tuning mechanism that changes the resonant frequency of the individual coupling cavity 9.10.

尚、第2図中において、12は個結合空胴9における閏
じた状態の中心導体、13は個結合空胴10における開
いた状態の中心導体、14は中心導体12.13に対向
する中心突部を示す。
In FIG. 2, 12 is the center conductor in the open state in the individual coupling cavity 9, 13 is the center conductor in the open state in the individual coupling cavity 10, and 14 is the center opposite to the center conductor 12.13. Indicates a protrusion.

さて、上記の側結合空W49.10は加速空胴1.2と
同等の共振周波数で、且つ相異なる共振モードで共振さ
せられる。即ち、側結合空1110は、周波数微調用チ
ューナ15を調整することによって、加速空胴の共振周
波数にてTMa 1 a様のモードで共振する。これに
よる結合は、加速空胴1.2に電子を加速するような位
相の電界を誘起する。
Now, the above side coupling cavity W49.10 is caused to resonate at the same resonance frequency as the acceleration cavity 1.2, but in a different resonance mode. That is, by adjusting the frequency fine tuning tuner 15, the side coupling cavity 1110 resonates in a TMa 1 a-like mode at the resonant frequency of the acceleration cavity. This coupling induces in the acceleration cavity 1.2 an electric field with a phase that accelerates the electrons.

一方、個結合空胴9は、周波数微調用チューナ16を調
整することドよって、加速空胴の共1辰周波数にてTM
a s を又はTEM様のモードで共振するように、中
心導体12.13、中心突部14の寸法、位冒が設定さ
れている。これによる結合は、加速空胴2に加速中rI
A1で加速された電子を減速するような位相の電界を生
ずる。
On the other hand, by adjusting the frequency fine tuning tuner 16, the individual coupling cavities 9 can be tuned to the TM frequency at the same frequency as that of the acceleration cavities.
The dimensions and positions of the central conductor 12, 13 and the central protrusion 14 are set so that they resonate in the a s or TEM-like mode. This coupling causes the acceleration cavity 2 to have rI during acceleration.
An electric field having a phase that decelerates the electrons accelerated by A1 is generated.

今、周波数微調用チューナ16を操作し、側結合空胴9
の共振周波数を加速空胴1.2の共振周波数からずらせ
ば、個結合空胴9による結合は弱まり、側結合空#A1
0による結合が支配的となる。
Now, operate the frequency fine tuning tuner 16 and tune the side coupling cavity 9.
If the resonant frequency of is shifted from the resonant frequency of the acceleration cavity 1.2, the coupling by the individual coupling cavity 9 will be weakened, and the side coupling cavity #A1
Bonds by 0 become dominant.

この場合の電界強度分布を第3図(a)に示す。The electric field strength distribution in this case is shown in FIG. 3(a).

この図から明らかなように、電子の得るエネルギーはE
l +E2となる。
As is clear from this figure, the energy obtained by the electron is E
It becomes l +E2.

逆に、他方の個結合空胴10の共振周波数ずらし、個結
合空胴9の共振周波数を加速空胴1.2の共振周波数と
略一致させれば、個結合空胴9による結合が支配的とな
る。この場合の電界強度分布を第3図(b)に示す。電
子は加速空胴2では減速されるから、電子の得るエネル
ギーはEl−E2となる。もしE!〜E2とすれば、略
0とすることが出来る。
On the other hand, if the resonance frequency of the other individual coupling cavity 10 is shifted and the resonance frequency of the individual coupling cavity 9 is made to substantially match the resonance frequency of the acceleration cavity 1.2, the coupling by the individual coupling cavity 9 becomes dominant. becomes. The electric field strength distribution in this case is shown in FIG. 3(b). Since the electrons are decelerated in the acceleration cavity 2, the energy obtained by the electrons is El-E2. If E! ~E2, it can be set to approximately 0.

更に、側結合空11i9.10の一方又は双方の共振周
波数を加速空胴1.2の共振周波数からずらせば、それ
によって生ずる結合は、第3図(a)、(b)の中間の
状態つまり第3図(C)、(d)をとる。即ち、加速中
1i12の電界は、電子を加速する位相から減速する位
相まで連続的に可変となり、電子のエネルギーはEl−
E2  (=O)からEl +E2まで連続的に可変と
なる。この操作によって、加速空胴1の電界強度は変化
しないようになし得るから、加速効率を悪化させること
がなく、大強度の電子線を得ることが出来る。
Furthermore, if the resonance frequency of one or both of the side coupling cavities 11i9.10 is shifted from the resonance frequency of the acceleration cavity 1.2, the resulting coupling will be in an intermediate state between FIGS. 3(a) and (b), i.e. Take Fig. 3 (C) and (d). That is, during acceleration, the electric field of 1i12 changes continuously from the phase of accelerating the electron to the phase of decelerating it, and the energy of the electron becomes El-
It is continuously variable from E2 (=O) to El +E2. By this operation, the electric field strength in the acceleration cavity 1 can be kept unchanged, so that a high-intensity electron beam can be obtained without deteriorating the acceleration efficiency.

尚、上記実施例においては、周波数微調チューナ15.
16によって個結合空胴9.10の共振周波数を調整し
たが、中心導体12.13又は中心突部を可変として周
波数微調を行なっても良い。
In the above embodiment, the frequency fine tuner 15.
16 to adjust the resonance frequency of the individual coupling cavities 9.10, fine frequency adjustment may be performed by making the center conductor 12.13 or the center protrusion variable.

[発明の効果] この発明によれば、実質的に0に等しい低いエネルギー
から加速管長全体を有効加速長とする最大エネルギーま
で、という広範囲で連続的なエネルギー値をとることが
出来る。
[Effects of the Invention] According to the present invention, continuous energy values can be taken over a wide range from a low energy substantially equal to 0 to a maximum energy where the entire acceleration tube length is the effective acceleration length.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係る定在波形線形加速器
を示す断面図、第2図はこの発明の要部(エネルギー可
変機構付近)を示す断面図、第3図(a)〜(d)はこ
の発明の定在波形線形加速器における電界強度分布を示
す波形図、第4図は従来の定在波形線形加速器を示す断
面図である。 1.2・・・加速空胴、4.9.10・・・個結合空胴
、15.16・・・周波数m調用チューナ。 出願人代理人 弁理士 鈴江rlc彦 M 1 図
FIG. 1 is a sectional view showing a standing waveform linear accelerator according to an embodiment of the present invention, FIG. 2 is a sectional view showing the main part of the invention (near the variable energy mechanism), and FIGS. d) is a waveform diagram showing the electric field strength distribution in the standing wave linear accelerator of the present invention, and FIG. 4 is a sectional view showing the conventional standing wave linear accelerator. 1.2... Accelerating cavity, 4.9.10... Individual coupling cavity, 15.16... Tuner for m-frequency tuning. Applicant's agent Patent attorney Hiko Suzue RLC M 1 Figure

Claims (1)

【特許請求の範囲】 複数の加速空胴と、この複数の加速空胴のうちの隣接す
る加速空胴間の電磁エネルギーを結合する側結合空胴と
を備えてなる定在波形線形加速器において、 上記側結合空胴は上記加速空胴と同等の共振周波数で且
つ相異なる共振モードで共振させられ、更に上記側結合
空胴に周波数微調用チューナが設けられてなることを特
徴とする定在波形線形加速器。
[Claims] A standing wave linear accelerator comprising a plurality of acceleration cavities and a side coupling cavity that couples electromagnetic energy between adjacent acceleration cavities among the plurality of acceleration cavities, The side coupling cavity has a standing waveform characterized in that the side coupling cavity resonates at the same resonance frequency as the acceleration cavity and in a different resonance mode, and the side coupling cavity is further provided with a tuner for frequency fine adjustment. Linear accelerator.
JP10634487A 1987-05-01 1987-05-01 Standing wave linear accelerator Pending JPS63274098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10634487A JPS63274098A (en) 1987-05-01 1987-05-01 Standing wave linear accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10634487A JPS63274098A (en) 1987-05-01 1987-05-01 Standing wave linear accelerator

Publications (1)

Publication Number Publication Date
JPS63274098A true JPS63274098A (en) 1988-11-11

Family

ID=14431203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10634487A Pending JPS63274098A (en) 1987-05-01 1987-05-01 Standing wave linear accelerator

Country Status (1)

Country Link
JP (1) JPS63274098A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005076674A1 (en) * 2004-02-01 2005-08-18 Mian Yang Gao Xin Qu Twin Peak Technology Development Inc. A phase switch and a standing wave linear accelerator with the phase switch
CN102711360A (en) * 2012-06-04 2012-10-03 山东新华医疗器械股份有限公司 Two-photon medical moderate-energy stationary wave accelerating tube
CN104470193A (en) * 2013-09-22 2015-03-25 同方威视技术股份有限公司 Method for controlling standing wave accelerator and system of method
CN104619110A (en) * 2015-03-04 2015-05-13 中国科学院高能物理研究所 Edge-coupling standing wave accelerating tube
CN104822220A (en) * 2015-04-10 2015-08-05 中广核中科海维科技发展有限公司 Standing wave linear accelerating tube with adjustable field strength of beam focusing segment
CN104837293A (en) * 2015-04-10 2015-08-12 中广核中科海维科技发展有限公司 Accelerating tube energy adjusting device capable of outputting keV-level and MeV-level ray in transformation manner
CN105611712A (en) * 2014-11-03 2016-05-25 上海联影医疗科技有限公司 Accelerating tube and control method thereof, accelerating tube controller and radiation therapy system
CN105636330A (en) * 2014-11-03 2016-06-01 上海联影医疗科技有限公司 Accelerating tube, control method thereof, accelerating tube controller and radiation treatment system
CN105764230A (en) * 2016-03-24 2016-07-13 上海联影医疗科技有限公司 Accelerating tube, method for accelerating charged particles, and medical linear accelerator

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005076674A1 (en) * 2004-02-01 2005-08-18 Mian Yang Gao Xin Qu Twin Peak Technology Development Inc. A phase switch and a standing wave linear accelerator with the phase switch
US7397206B2 (en) 2004-02-01 2008-07-08 Mian Yang Gao Xin Qu Twin Peak Technology Development Inc. Phase switch and a standing wave linear accelerator with the phase switch
CN102711360A (en) * 2012-06-04 2012-10-03 山东新华医疗器械股份有限公司 Two-photon medical moderate-energy stationary wave accelerating tube
CN104470193A (en) * 2013-09-22 2015-03-25 同方威视技术股份有限公司 Method for controlling standing wave accelerator and system of method
US9491842B2 (en) 2013-09-22 2016-11-08 Nuctech Company Limited Methods for controlling standing wave accelerator and systems thereof
CN105611712A (en) * 2014-11-03 2016-05-25 上海联影医疗科技有限公司 Accelerating tube and control method thereof, accelerating tube controller and radiation therapy system
CN105636330A (en) * 2014-11-03 2016-06-01 上海联影医疗科技有限公司 Accelerating tube, control method thereof, accelerating tube controller and radiation treatment system
CN104619110A (en) * 2015-03-04 2015-05-13 中国科学院高能物理研究所 Edge-coupling standing wave accelerating tube
CN104822220A (en) * 2015-04-10 2015-08-05 中广核中科海维科技发展有限公司 Standing wave linear accelerating tube with adjustable field strength of beam focusing segment
CN104837293A (en) * 2015-04-10 2015-08-12 中广核中科海维科技发展有限公司 Accelerating tube energy adjusting device capable of outputting keV-level and MeV-level ray in transformation manner
CN105764230A (en) * 2016-03-24 2016-07-13 上海联影医疗科技有限公司 Accelerating tube, method for accelerating charged particles, and medical linear accelerator

Similar Documents

Publication Publication Date Title
US6407505B1 (en) Variable energy linear accelerator
JP6487057B2 (en) Vacuum electronics drift tube
US4181894A (en) Heavy ion accelerating structure and its application to a heavy-ion linear accelerator
JPH0345520B2 (en)
JP3093553B2 (en) Variable energy high frequency quadrupole linac
JPS5919440B2 (en) Linear accelerator for charged particles
JPS63274098A (en) Standing wave linear accelerator
US5239272A (en) Electron beam tube arrangements having primary and secondary output cavities
US4571524A (en) Electron accelerator and a millimeter-wave and submillimeter-wave generator equipped with said accelerator
EP0058039A2 (en) Gyrotron device
JPH01264200A (en) Standing wave linear accelerator
US2601539A (en) Two-frequency microwave oscillator
US2651001A (en) Electron-discharge system
JP4078307B2 (en) Electron beam tube equipment
JP3131350B2 (en) Standing wave accelerator
JPH05258898A (en) Multi-stage high-frequency quadruple accelerator
JPS59114730A (en) Gyrotron oscillator of multibore cavity for reducing mode bycompetition
JP2004253227A (en) Klystron device
JP3729645B2 (en) Circular particle accelerator
JPH02265146A (en) Super high frequency oscillation tube
JPH08129960A (en) Multiple cavity klystron
JPS594480Y2 (en) standing wave accelerator tube
JPH03171902A (en) Multiconnection high frequency acceleration cavity
KR20170062122A (en) High Power Magnetron using Multiple-Tuning Structure
SU1110335A1 (en) Electronic mw-magnicon device