JP3943568B2 - Circular particle accelerator - Google Patents

Circular particle accelerator Download PDF

Info

Publication number
JP3943568B2
JP3943568B2 JP2004343363A JP2004343363A JP3943568B2 JP 3943568 B2 JP3943568 B2 JP 3943568B2 JP 2004343363 A JP2004343363 A JP 2004343363A JP 2004343363 A JP2004343363 A JP 2004343363A JP 3943568 B2 JP3943568 B2 JP 3943568B2
Authority
JP
Japan
Prior art keywords
particle beam
particle
cavity
orbit
circular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004343363A
Other languages
Japanese (ja)
Other versions
JP2005123204A (en
Inventor
禎浩 石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004343363A priority Critical patent/JP3943568B2/en
Publication of JP2005123204A publication Critical patent/JP2005123204A/en
Application granted granted Critical
Publication of JP3943568B2 publication Critical patent/JP3943568B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Particle Accelerators (AREA)

Description

この発明は、円形粒子加速器に関するものである。   The present invention relates to a circular particle accelerator.

一般的な円形粒子加速器は、図3のように構成されている。図3において、1は粒子ビームが入射される入射ダクト、2は入射された粒子ビームを周回方向に曲げる入射セプタム、3は粒子ビームが周回する粒子ビーム周回軌道、4は四極電磁石、5は粒子ビーム軌道の曲部に配置され粒子ビームを周回方向に曲げる偏向電磁石、6は粒子ビームを加速する加速空洞、7は高次モード空洞、8は加速された粒子ビームを出射ダクトに導く出射セプタム、9は六極電磁石、10は加速された粒子を出射する出射ダクトである。   A general circular particle accelerator is configured as shown in FIG. In FIG. 3, 1 is an incident duct into which a particle beam is incident, 2 is an incident septum that bends the incident particle beam in a circumferential direction, 3 is a particle beam orbit around the particle beam, 4 is a quadrupole electromagnet, and 5 is a particle A deflecting electromagnet arranged at a curved portion of the beam trajectory and bending the particle beam in a circumferential direction; 6 an acceleration cavity for accelerating the particle beam; 7 a higher-order mode cavity; 8 an exit septum for guiding the accelerated particle beam to the exit duct; Reference numeral 9 denotes a hexapole electromagnet, and 10 denotes an exit duct that emits accelerated particles.

図3に示すような円形粒子加速器から粒子ビームを取り出す方法には大きく分けて低エネルギーの粒子ビームを取り出す“早い取り出し”と、高エネルギーの粒子ビームを取り出す“遅い取り出し”と呼ばれる2つの方法があり、この発明は“遅い取り出し”に関するものである。   There are two main methods for extracting a particle beam from a circular particle accelerator as shown in FIG. 3, called “fast extraction” for extracting a low energy particle beam and “slow extraction” for extracting a high energy particle beam. Yes, this invention relates to "slow retrieval".

粒子ビーム周回軌道を周回する粒子ビームのセパラトリクスと呼ばれる安定領域と不安定領域の境界が形成されている場合、セパラトリクスの外側すなわち不安定領域に動かす方法としては、セパラトリクスを徐々に小さくする方法と、セパラトリクスは動かさずに安定領域にいた粒子ビームに高周波電場で振動を加えてセパラトリクスまでエミッタンスを増加させる方法があり、後者の方法がrfノックアウトを用いた遅い取り出しと呼ばれる。   When the boundary between the stable region and the unstable region called the separatrix of the particle beam orbiting the particle beam orbit is formed, as a method of moving outside the separatrix, that is, the unstable region, a method of gradually reducing the separatrix, There is a method of increasing the emittance to the separatrix by applying vibrations to the particle beam in a stable region without moving the separatrix with a high frequency electric field, and the latter method is called slow extraction using rf knockout.

従来の円形粒子加速器から粒子ビームを取り出すrfノックアウトを用いた取り出しは、例えば特許文献1に開示された方法がある。図4に粒子ビームの粒子ビーム周回軌道の直線部にrfノックアウト電極が挿入された状態の模式図を示す。
図4の構成は、粒子ビーム周回軌道11にrfノックアウト電極12、出射セプタム14が配置され、デフレクター15を通して粒子ビームが出射される構成である。
Extraction using an rf knockout for extracting a particle beam from a conventional circular particle accelerator is, for example, a method disclosed in Patent Document 1. FIG. 4 is a schematic view showing a state in which the rf knockout electrode is inserted in the linear portion of the particle beam orbit of the particle beam.
In the configuration of FIG. 4, the rf knockout electrode 12 and the emission septum 14 are arranged on the particle beam orbit 11, and the particle beam is emitted through the deflector 15.

円形粒子加速器では、リング状の粒子ビーム周回軌道11の中を周回する粒子ビームは粒子ビーム周回軌道11の水平方向と垂直方向に微小振動して周回している。この微小振動をベータトロン振動と呼び、リング状の粒子ビーム周回軌道11の1周当たりの振動数をベータトロンチューンまたは単にチューン呼んでいる。このチューンは粒子ビームが安定に周回するように選ばれるが、粒子ビームの取り出しには不安定になるチューンを選んで行われる。例えばチューンを1/3整数に選び、六極電磁石により粒子ビームに振動を与えて位相空間上にセパラトリクスを形成した場合、セパラトリクスの外側すなわち不安定領域に出た粒子ビームが粒子ビーム周回軌道11を周回する毎に振幅が大きくなり、最終的に取り出し用に設置された出射セプタム14に到達し、出射セプタム14に形成されている静的な電場または磁場により外側に蹴り出されて下流に設置されたデフレクター15により出射ダクトに導かれる。   In the circular particle accelerator, the particle beam that circulates in the ring-shaped particle beam orbit 11 is oscillated with a slight vibration in the horizontal and vertical directions of the particle beam orbit 11. This minute vibration is referred to as betatron vibration, and the vibration frequency per round of the ring-shaped particle beam orbit 11 is called betatron tune or simply tune. This tune is selected so that the particle beam circulates stably, but it is selected by selecting a tune that becomes unstable for taking out the particle beam. For example, when a tune is selected to be an integer of 1/3 and a particle beam is vibrated by a hexapole magnet to form a separatrix on the phase space, the particle beam that has emerged outside the separatrix, that is, in an unstable region, moves around the particle beam orbit 11. The amplitude increases each time it circulates, eventually reaches the exit septum 14 installed for extraction, and is kicked outward by a static electric or magnetic field formed on the exit septum 14 and installed downstream. The deflector 15 guides the light to the exit duct.

rfノックアウト電極12は一対の平行平板からなり、この間に周波数Frfの高周波電圧が加えられる。この周波数Frfはベータトロンチューンの小数部分をn、周回周波数をFrev、任意の整数をmとすると、(式1)で表される。   The rf knockout electrode 12 is composed of a pair of parallel plates, and a high frequency voltage having a frequency Frf is applied therebetween. This frequency Frf is expressed by (Equation 1) where n is the decimal part of the betatron tune, Frev is the circulation frequency, and m is an arbitrary integer.

Figure 0003943568
Figure 0003943568

rfノックアウト電極12の間の電場により蹴られる角度θは(式2)の関係になる。   The angle θ kicked by the electric field between the rf knockout electrodes 12 has the relationship of (Equation 2).

Figure 0003943568
Figure 0003943568

ここでそれぞれのパラメータの値が次の表1の場合について電場を求める。   Here, the electric field is obtained for each parameter value shown in Table 1 below.

Figure 0003943568
Figure 0003943568

この条件において、電極間のギャップが100mmの場合、高周波電圧は10kVを加える必要がある。このように電場による運動量pが10GeV/cを越えるような領域では、必要な高周波電圧は10kVよりも高くなり、非常に高い値が必要となる。この電圧を印加するためには、発生させる高周波電源およびrfノックアウト電極は高電圧に耐える絶縁構成となる。   Under this condition, when the gap between the electrodes is 100 mm, it is necessary to apply 10 kV as the high frequency voltage. Thus, in the region where the momentum p due to the electric field exceeds 10 GeV / c, the necessary high-frequency voltage is higher than 10 kV, and a very high value is required. In order to apply this voltage, the generated high-frequency power source and the rf knockout electrode have an insulating configuration that can withstand high voltages.

円形粒子加速器において、取り出される粒子ビームの輸送系が複数の場合には、粒子ビームの行き先を振り分ける必要がある。粒子ビームが周回する粒子ビーム周回軌道の方向に電場を形成する高周波空洞があり、これに高周波電場を与えた場合、周回軌道を周回する粒子ビームは高周波電源の周波数に同期したパルスを形成する。このパルスを発生させる粒子の塊をバンチと称し、バンチになった粒子ビームの下流に図5に示すようなキッカー電磁石を配置し、バンチとバンチの間の空白時間にキッカーの立ち上げ、あるいは立ち下げを行うことでバンチ毎のビームの振り分けが可能になる。図5の構成は、中心部に粒子ビームが周回する真空に保持された真空ダクト21、真空ダクト21に内部の粒子ビームの中心軸に対して垂直方向に磁場を与えるコイル22、磁束のリターンヨーク23を備えている。   In a circular particle accelerator, when there are a plurality of particle beam transport systems to be extracted, it is necessary to sort the destination of the particle beam. There is a high-frequency cavity that forms an electric field in the direction of the particle beam orbit around which the particle beam circulates. When a high-frequency electric field is applied to this, the particle beam that circulates around the orbit forms a pulse synchronized with the frequency of the high-frequency power source. The particle lump that generates this pulse is called a bunch, and a kicker electromagnet as shown in FIG. 5 is arranged downstream of the bunched particle beam, and the kicker is started up or rises during the blank time between the bunch. By lowering, it becomes possible to distribute the beam for each bunch. 5 includes a vacuum duct 21 held in a vacuum around which a particle beam circulates in the center, a coil 22 that applies a magnetic field in a direction perpendicular to the central axis of the internal particle beam to the vacuum duct 21, and a return yoke for magnetic flux. 23.

このように形成された空洞に高周波磁場を発生させ、バンチとバンチの空白の時間に立ち上げあるいは立ち下げを行うと、バンチは磁場によってキックされ、粒子ビーム輸送系に取り出される。このような電磁石磁場によるキッカーの立ち上げ、たち下げを行うon/off動作は100ns程度が限度であり、振り分け能力が十分に得られない。   When a high-frequency magnetic field is generated in the cavity formed in this way, and the bunch is raised or lowered during the blank time of the bunch, the bunch is kicked by the magnetic field and taken out to the particle beam transport system. The on / off operation for starting and lowering the kicker by such an electromagnetic field is limited to about 100 ns, and the distribution ability cannot be sufficiently obtained.

特公平5−198397号公報Japanese Patent Publication No. 5-198397

円形粒子加速器において、取り出される粒子ビームの輸送系が複数ある場合に、バンチとバンチの間の空白時間にキッカーの立ち上げ、あるいは立ち下げを行うキッカー電磁石を配置した構成のon/off動作は100ns程度が限度であり、振り分け能力が十分ではない問題点があった。   In the circular particle accelerator, when there are a plurality of particle beam transport systems to be taken out, the on / off operation of the configuration in which the kicker electromagnet for starting or stopping the kicker is arranged in the blank time between the bunches is 100 ns. There was a problem that the degree was the limit and the distribution ability was not enough.

この発明は、上記問題点を解決するためになされたものであり、取り出される粒子ビームの輸送系が複数ある場合に、粒子ビーム周回軌道の方向に電場を形成する高周波空洞を配置し、高周波電場を与えた場合のバンチになった粒子ビームに所定の方向のキック角を与えるビームキッカーとして、on/off動作がバンチ間の空白の時間に確実に動作するキッカーを装備した円形粒子加速器を構成することを目的とする。   The present invention has been made to solve the above problems, and when there are a plurality of particle beam transport systems to be taken out, a high-frequency cavity that forms an electric field in the direction of the particle beam orbit is disposed. As a beam kicker that gives a kick angle in a predetermined direction to a particle beam that has become a bunch when a beam is given, a circular particle accelerator equipped with a kicker in which the on / off operation operates reliably in a blank time between the bunches is configured For the purpose.

この発明に係る円形粒子加速器は、粒子ビームが周回する粒子ビーム周回軌道、粒子ビームを粒子ビーム周回軌道に沿って周回させる四極電磁石、偏向電磁石および粒子ビームを加速させる加速空洞、粒子ビームを上記粒子ビーム周回軌道から取り出す出射セプタムを備え、粒子ビームが取り出されるビームダクトが複数ある場合の円形粒子加速器において、空洞を粒子ビーム周回軌道に直列に配置し、配置した空洞に電磁波を導入して、粒子ビームに対して垂直な磁場成分を持つTM110モードを励振される高周波空洞で粒子ビームに所定の方向のキック角を与えるビームキッカーを備えた構成としたものである。   A circular particle accelerator according to the present invention includes a particle beam orbit around which the particle beam circulates, a quadrupole electromagnet that circulates the particle beam along the particle beam orbit, a deflection electromagnet, an acceleration cavity that accelerates the particle beam, and the particle beam In a circular particle accelerator equipped with an exit septum for extracting from a beam orbit and having a plurality of beam ducts from which particle beams are extracted, a cavity is arranged in series with the particle beam orbit, and electromagnetic waves are introduced into the arranged cavity, thereby A high-frequency cavity excited by the TM110 mode having a magnetic field component perpendicular to the beam is provided with a beam kicker that gives the particle beam a kick angle in a predetermined direction.

この発明によれば、ビーム周回軌道に設けるビームキッカーを、空洞を粒子ビーム周回軌道に直列に配置し、空洞に電磁波を導入して、粒子ビームに垂直な磁場成分を持つTM110モードを励振される高周波空洞で粒子ビームに所定の方向にキック角を与える高周波空洞で構成したことにより、数10〜数100nsの高速でon/off動作させることができ、正確に粒子ビームの行き先を振り分けることができる。   According to the present invention, the beam kicker provided in the beam orbit is arranged in series with the particle beam orbit, the electromagnetic wave is introduced into the cavity, and the TM110 mode having a magnetic field component perpendicular to the particle beam is excited. By configuring the high-frequency cavity with a high-frequency cavity that gives the particle beam a kick angle in a predetermined direction, it is possible to perform an on / off operation at a high speed of several tens to several hundreds ns, and to accurately distribute the destination of the particle beam. .

実施の形態1.
実施の形態1の円形加速器は、従来の技術欄に示した図3に示したものと同一の構成であり、円形粒子加速器から取り出された粒子ビーム輸送系のビームチャンネルが複数設けられている場合に、バンチ毎に行き先を振り分けるビームキッカーの構成を高周波空洞(HOM=Higher Order Mode、以下HOMという)を円形粒子加速器の出射セプタム8の直前に挿入した円形粒子加速器の構成である。図1にHOM空洞に電磁波を導入してTM110モードを励振したビームキッカーの断面および磁場分布の状況を示す。図において、71はHOM空洞、73は高周波電源、75は導波管、76はループカプラーである。
Embodiment 1 FIG.
The circular accelerator of the first embodiment has the same configuration as that shown in FIG. 3 shown in the prior art, and a plurality of beam channels of the particle beam transport system taken out from the circular particle accelerator are provided. In addition, the configuration of the beam kicker that distributes the destination for each bunch is a configuration of a circular particle accelerator in which a high-frequency cavity (HOM = Higher Order Mode, hereinafter referred to as HOM) is inserted immediately before the exit septum 8 of the circular particle accelerator. FIG. 1 shows a cross section of a beam kicker in which electromagnetic waves are introduced into a HOM cavity and a TM110 mode is excited, and a magnetic field distribution. In the figure, 71 is a HOM cavity, 73 is a high frequency power source, 75 is a waveguide, and 76 is a loop coupler.

HOM空洞71に高周波電源73から導波管75を介して電磁波を導入し、ループカプラー76でTM110モードを励振すると、図示のようにビーム進行方向に対して垂直方向の磁場分布になり、粒子ビームは磁場の直角方向にキックされる。バンチの間隔と高周波磁場の位相を同期することによりキックする方向が決まり、下流のビーム輸送系に分離できる。   When electromagnetic waves are introduced into the HOM cavity 71 from the high-frequency power source 73 through the waveguide 75 and the TM110 mode is excited by the loop coupler 76, the magnetic field distribution becomes perpendicular to the beam traveling direction as shown in the figure. Is kicked in the direction perpendicular to the magnetic field. The direction of kicking is determined by synchronizing the bunch interval and the phase of the high-frequency magnetic field, and can be separated into the downstream beam transport system.

HOM空洞71の1個で十分なキックが与えられない場合に、HOM空洞71を複数として連結した構成を図2に示す。複数の空洞71a、71b・・・71nが多連に連結され、粒子ビームが出射セプタム74に出射されるように構成されている。この構成では、各空洞それぞれに電磁波を導入して、粒子ビームに対して垂直な磁場成分を持つTM110モードを励振し、複数の空洞の各空洞の磁場方向が互い違いになるπモードで運転され、粒子ビームに所定の方向のキックを与えられて適正なキック角となり、ビーム輸送系に振り分けられる。 FIG. 2 shows a configuration in which a plurality of HOM cavities 71 are connected when one HOM cavity 71 cannot provide a sufficient kick. A plurality of cavities 71 a, 71 b,... 71 n are connected in multiples so that the particle beam is emitted to the emission septum 74. In this configuration, an electromagnetic wave is introduced into each of the cavities, the TM110 mode having a magnetic field component perpendicular to the particle beam is excited, and the cavities are operated in a π mode in which the magnetic field directions of the cavities are staggered, A kick in a predetermined direction is given to the particle beam to obtain an appropriate kick angle, which is distributed to the beam transport system.

このようにキッカーをHOM空洞でTM110モードを励振した構成にすると、高速でon/off動作させることができる。そのon/off動作の速度は励振された周波数で決まり、数10〜数100nsで動作させることができ、正確に粒子ビームの分離ができる。   Thus, when the kicker is configured to excite the TM110 mode with the HOM cavity, the on / off operation can be performed at high speed. The speed of the on / off operation is determined by the excited frequency, and can be operated in several tens to several hundreds ns, so that the particle beam can be accurately separated.

実施の形態1のHOM空洞を用いたビームキッカーの動作説明図である。FIG. 6 is an operation explanatory diagram of a beam kicker using the HOM cavity of the first embodiment. 多連に構成したビームキッカーの構成図である。It is a block diagram of the beam kicker comprised in multiple. 従来の粒子加速器の構成図である。It is a block diagram of the conventional particle accelerator. 粒子ビームの粒子ビーム周回軌道の直線部にrfノックアウト電極が挿入された状態の模式的に示した構成図である。It is the block diagram which showed typically the state in which the rf knockout electrode was inserted in the linear part of the particle beam circuit orbit of a particle beam. 従来のビームキッカーの動作説明図である。It is operation | movement explanatory drawing of the conventional beam kicker.

符号の説明Explanation of symbols

71 HOM空洞、71a,72b・・・72n HOM空洞、73 高周波電源、
74 出射セプタム、75 導波管、76 ループカプラー。
71 HOM cavity, 71a, 72b ... 72n HOM cavity, 73 high frequency power supply,
74 Outgoing septum, 75 waveguide, 76 loop coupler.

Claims (2)

粒子ビームが周回する粒子ビーム周回軌道、上記粒子ビームを上記粒子ビーム周回軌道に沿って周回させる四極電磁石、偏向電磁石および上記粒子ビームを加速させる加速空洞、上記粒子ビームを上記粒子ビーム周回軌道から取り出す出射セプタムを備え、粒子ビームが取り出されるビームダクトが複数ある場合の円形粒子加速器において、空洞が上記粒子ビーム周回軌道に直列に配置され、配置した上記空洞に電磁波を導入して、上記粒子ビームに対して垂直な磁場成分を持つTM110モードを励振する高周波空洞で粒子ビームに所定の方向のキック角を与えるビームキッカーを備えたことを特徴とする円形粒子加速器。 A particle beam orbit around which the particle beam circulates, a quadrupole electromagnet that circulates the particle beam along the particle beam orbit, an accelerating cavity that accelerates the particle beam, and the particle beam is taken out from the particle beam orbit. In a circular particle accelerator having an exit septum and a plurality of beam ducts from which particle beams are extracted, a cavity is arranged in series with the particle beam orbit, and electromagnetic waves are introduced into the arranged cavity to A circular particle accelerator comprising a beam kicker that gives a kick angle in a predetermined direction to a particle beam in a high-frequency cavity that excites a TM110 mode having a perpendicular magnetic field component. 上記ビームキッカーは、複数の空洞が連結されて粒子ビーム周回軌道に直列に配置され、上記複数の空洞それぞれに電磁波を導入して、上記粒子ビームに対して垂直な磁場成分を持つTM110モードを励振し、上記複数の空洞の各空洞の磁場方向が互い違いになるπモードで運転される高周波空洞で構成されていることを特徴とする請求項1記載の円形粒子加速器。
In the beam kicker, a plurality of cavities are connected and arranged in series in the particle beam orbit, and an electromagnetic wave is introduced into each of the plurality of cavities to excite a TM110 mode having a magnetic field component perpendicular to the particle beam. The circular particle accelerator according to claim 1, wherein the circular particle accelerator is configured by a high-frequency cavity operated in a π mode in which the magnetic field directions of the cavities are staggered.
JP2004343363A 2004-11-29 2004-11-29 Circular particle accelerator Expired - Fee Related JP3943568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004343363A JP3943568B2 (en) 2004-11-29 2004-11-29 Circular particle accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004343363A JP3943568B2 (en) 2004-11-29 2004-11-29 Circular particle accelerator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP18756098A Division JP3729645B2 (en) 1998-07-02 1998-07-02 Circular particle accelerator

Publications (2)

Publication Number Publication Date
JP2005123204A JP2005123204A (en) 2005-05-12
JP3943568B2 true JP3943568B2 (en) 2007-07-11

Family

ID=34617066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004343363A Expired - Fee Related JP3943568B2 (en) 2004-11-29 2004-11-29 Circular particle accelerator

Country Status (1)

Country Link
JP (1) JP3943568B2 (en)

Also Published As

Publication number Publication date
JP2005123204A (en) 2005-05-12

Similar Documents

Publication Publication Date Title
JP7002952B2 (en) A circular accelerator, a particle beam therapy system equipped with a circular accelerator, and how to operate the circular accelerator
JP4691576B2 (en) Particle beam therapy system
JP6774934B2 (en) Radiation source
JP4988516B2 (en) Particle beam therapy system
JP6169254B2 (en) Circular accelerator, operation method of circular accelerator, and particle beam therapy system
JP2008521207A (en) Electron injection into ion implanter magnet
JP3736343B2 (en) DC electron beam accelerator and DC electron beam acceleration method thereof
US8525449B2 (en) Charged particle beam extraction method using pulse voltage
WO2016174700A1 (en) Circular accelerator
US20020180365A1 (en) Ion accelerator
JP3857096B2 (en) Charged particle beam extraction apparatus, circular accelerator, and circular accelerator system
JP3943568B2 (en) Circular particle accelerator
JPH09237700A (en) High frequency accelerator-decelerator, and usage thereof
JP3943578B2 (en) Circular particle accelerator
JPH07111199A (en) Accelerator, beam radiation method, and medical device
JP3729645B2 (en) Circular particle accelerator
JPH0823067B2 (en) Ion implanter
JP5577277B2 (en) Synchrotron
JP3943579B2 (en) Circular particle accelerator
JP5565798B2 (en) Bending electromagnet system with acceleration function
JP3650354B2 (en) Electron accelerator
JP2002305100A (en) Microtron electron accelerator
JP2007280782A (en) Ion source
JP4900620B2 (en) RF electron gun
JP2000286096A (en) Controller for high frequency acceleration cavity and controlling method for-electron beam

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees