JPH04357887A - Thermoelectric element - Google Patents

Thermoelectric element

Info

Publication number
JPH04357887A
JPH04357887A JP3229857A JP22985791A JPH04357887A JP H04357887 A JPH04357887 A JP H04357887A JP 3229857 A JP3229857 A JP 3229857A JP 22985791 A JP22985791 A JP 22985791A JP H04357887 A JPH04357887 A JP H04357887A
Authority
JP
Japan
Prior art keywords
thermoelectric
thermocouple
copper foil
foil
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3229857A
Other languages
Japanese (ja)
Inventor
Takashi Nakajima
隆 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP3229857A priority Critical patent/JPH04357887A/en
Publication of JPH04357887A publication Critical patent/JPH04357887A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To obtain a small thermoelectric element having a low thermal capacity by connecting in series a positive thermoelectric foot and a negative thermoelectric foot provided on the surface of an insulating base material with a conductive layer provided at a cross-section of the insulating base material. CONSTITUTION:A copper foil laminated polyimide sheet 1 adhering a copper foil 20 at the one surface thereof is prepared and a constant an foil 2n is bonded with pressure to the opposite surface of the copper foil 2p in such a form as sandwiching the polyimide sheet 1 using a polyimide type bonding agent. Thereby, metal foils having positive and negative thermoelectric performances are laminated to the front and rear surfaces of the polyimide sheet 1 to form a double-side polyimide sheet of different metals. Subsequently, the copper foil 2p and constant an foil 2n are patterned to the predetermined shape by photoetching, etc., and through hole plating is conducted to holes 4 of round pattern 21 (21p, 21n). Thereafter, a thermocouple is cut out in the predetermined shape from the sheet to manufacture a thermocouple 10.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は熱電素子に係り、特に
、熱電変換効率と熱電変換に要する時間応答特性を高め
た熱電素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermoelectric element, and more particularly to a thermoelectric element with improved thermoelectric conversion efficiency and time response characteristics required for thermoelectric conversion.

【0002】0002

【従来の技術】熱電素子は、熱電能が正の熱電脚(以下
、正の熱電脚)と熱電能が負の熱電脚(以下、負の熱電
脚)の夫々のゼーベック効果によって熱入力を直接に電
気出力に変換する変換素子である。かかる熱電素子は、
エネルギー変換素子として利用されるだけでなく、一般
には、温度差に応じて熱起電力が変化する熱電対として
各種の温度計測に汎用的に利用されている。また、熱電
素子の周囲の流体の流速や気体の真空度に応じて熱電素
子から放散される熱量が異なることから、流速計測や真
空度計測などにも広く利用されている。そして、温度計
測用の熱電対を例に採れば、最近では、集積回路の内部
の微細な温度分布の測定や、新素材の物性研究、あるい
は、温熱療法での人体の局部温度の計測などを目的とし
て、従来にない熱電対の小型化と低熱容量化ならびに高
速応答化が要請されている。
[Prior Art] Thermoelectric elements directly receive heat input through the Seebeck effect of the thermoelectric leg with positive thermoelectric power (hereinafter referred to as positive thermoelectric leg) and the thermoelectric leg with negative thermoelectric power (hereinafter referred to as negative thermoelectric leg). This is a conversion element that converts electrical output into electrical output. Such a thermoelectric element is
In addition to being used as an energy conversion element, they are generally used for various temperature measurements as thermocouples whose thermoelectromotive force changes according to temperature differences. Furthermore, since the amount of heat dissipated from the thermoelectric element differs depending on the flow velocity of the fluid surrounding the thermoelectric element and the degree of vacuum of the gas, it is widely used for measuring flow velocity and degree of vacuum. Taking thermocouples for temperature measurement as an example, recently they have been used to measure minute temperature distributions inside integrated circuits, research on the physical properties of new materials, and measure local temperatures of the human body during hyperthermia therapy. For this purpose, there is a need for thermocouples to be smaller, lower in heat capacity, and faster in response than ever before.

【0003】このような小型化と低熱容量化ならびに高
速応答化の要請に対して、従来は、極細な裸熱電対素線
やシース熱電対が使用されている。例えば、線径が50
μm程度のクロメル線とアルメル線をスポット溶接した
裸熱電対であり、あるいは、これらの裸熱電対の表面を
マグネシアなどで絶縁してステンレス保護管内に埋め込
んだ外径が250μm程度のシース熱電対である。
[0003] In response to such demands for miniaturization, lower heat capacity, and faster response, ultra-thin bare thermocouple wires and sheathed thermocouples have conventionally been used. For example, the wire diameter is 50
A bare thermocouple made by spot welding a chromel wire and an alumel wire of about μm, or a sheathed thermocouple with an outer diameter of about 250 μm, whose surface is insulated with magnesia or the like and embedded in a stainless steel protective tube. be.

【0004】0004

【発明が解決しようとする課題】しかしながら、上記の
従来技術によれば、小型化を計る結果、熱電素子の機械
的強度が弱まり、耐久性に欠けるばかりでなく、被測定
対象物に対する正確な位置決めが困難であり、微妙な位
置での高精度な温度計測ができない。しかも、極細な裸
熱電対素線の溶接作業や加工には高度な熟練が必要であ
り、一般には使い難いものであった。また、シース熱電
対によれば、被測定対象物と熱電素子との間にステンレ
スやマグネシアが介在するので熱容量が大きくなり、高
速応答性に欠ける。しかも、ステンレス保護管やマグネ
シア経由で被測定対象物の熱が外部に無駄に失われるの
で、結果として熱電変換効率が悪く、熱容量が小さな非
測定対象物の熱的状態を乱し、正確な温度計測ができな
いという課題を有していた。
[Problems to be Solved by the Invention] However, according to the above-mentioned prior art, as a result of miniaturization, the mechanical strength of the thermoelectric element is weakened, and it not only lacks durability, but also has difficulty in accurately positioning the thermoelectric element with respect to the object to be measured. It is difficult to measure temperature accurately at delicate locations. Moreover, welding and processing of extremely thin bare thermocouple wires requires a high level of skill, and is generally difficult to use. Further, according to the sheathed thermocouple, stainless steel or magnesia is interposed between the object to be measured and the thermoelectric element, so the heat capacity becomes large and high-speed response is lacking. Moreover, the heat of the object to be measured is wastefully lost to the outside via the stainless steel protection tube or magnesia, resulting in poor thermoelectric conversion efficiency and disturbing the thermal state of the object to be measured, which has a small heat capacity. The problem was that it could not be measured.

【0005】[0005]

【課題を解決するための手段】この発明は、上記の従来
技術に基づく課題に鑑み、絶縁性基体の表面に設けた正
の熱電脚と負の熱電脚を絶縁性基体の断面に設けた導電
層によって直列接続することにより小型で低熱容量な熱
電素子を提供し、前記課題を解決しようとするものであ
る。
[Means for Solving the Problems] In view of the problems based on the above-mentioned prior art, the present invention provides a conductive device in which a positive thermoelectric leg and a negative thermoelectric leg are provided on the surface of an insulating base and are provided on a cross section of the insulating base. The present invention aims to solve the above problem by providing a thermoelectric element that is small and has a low heat capacity by connecting layers in series.

【0006】[0006]

【作用】この発明の構成によれば、絶縁性基体は、正の
熱電脚と負の熱電脚を機械的に位置を固定し、補強して
支える作用をするとともに、これらの両熱電脚の間を電
気的に絶縁して分離する。また、絶縁性基体の断面に被
着した導電層は、両熱電脚を電気的に直列接続して両熱
電脚の熱起電力を両熱電脚の脚端において出力させる作
用をする。
[Function] According to the structure of the present invention, the insulating base mechanically fixes the positions of the positive thermoelectric leg and the negative thermoelectric leg, and has the function of reinforcing and supporting them. electrically insulated and separated. Further, the conductive layer deposited on the cross section of the insulating base acts to electrically connect both thermoelectric legs in series and output the thermoelectromotive force of both thermoelectric legs at the leg ends of both thermoelectric legs.

【0007】[0007]

【実施例】以下、この発明のいくつかの実施例を図1と
図2を参照して説明する。図1は、この発明の第一の実
施例である熱電対の構成を示す外形図であり、同図(a
)は、一部を省略記載した正面図である。また、同図(
b)は、同図(a)図中にAA’で示す部分の拡大断面
図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Several embodiments of the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 is an outline drawing showing the configuration of a thermocouple that is a first embodiment of the present invention.
) is a front view with some parts omitted. Also, the same figure (
b) is an enlarged sectional view of the portion indicated by AA' in the figure (a).

【0008】熱電対10は、長さが約150mm、幅が
約5mm、厚さが約50μmのシート形状をしており、
その絶縁性基体としてのポリイミドシート1の片面には
、正の熱電脚としての銅箔2pがパターン形成され、反
対面には、負の熱電脚としてのコンスタンタン箔2nが
それぞれパターン形成されている。
The thermocouple 10 has a sheet shape with a length of about 150 mm, a width of about 5 mm, and a thickness of about 50 μm.
A copper foil 2p as a positive thermoelectric leg is patterned on one side of the polyimide sheet 1 as an insulating substrate, and a pattern of constantan foil 2n as a negative thermoelectric leg is formed on the opposite side.

【0009】ここで、銅箔2pとコンスタンタン箔2n
のパターン形状について説明する。銅箔2pとコンスタ
ンタン箔2nは、熱電対10の長手方向の一方の端部近
傍においてパターンが円形に広げられ、ポリイミドシー
ト1の表裏で重なるラウンドパターン21(21p,2
1n)が形成されている。そして、熱電対10の他方の
端部であるラウンドパターン21(21p,21n)の
反対側端部には、外部に熱起電力を供給するための外部
端子パターン22(22p,22n)が形成されている
Here, copper foil 2p and constantan foil 2n
The pattern shape will be explained. The copper foil 2p and the constantan foil 2n have round patterns 21 (21p, 2
1n) is formed. An external terminal pattern 22 (22p, 22n) for supplying thermoelectromotive force to the outside is formed at the opposite end of the round pattern 21 (21p, 21n), which is the other end of the thermocouple 10. ing.

【0010】ラウンドパターン21(21p,21n)
の中央部には、シート1の断面を形成する穴4がシート
1を貫通して開設されている。そして、穴4の内壁面に
は導電層としての銅めっき層3が、いわゆるスルーホー
ルめっきにより被着されており、この銅めっき層3は、
ラウンドパターン21(21p,21n)経由で銅箔2
pとコンスタンタン箔2nを電気的に直列接続し、いわ
ゆる熱電対の接点を形成している。
Round pattern 21 (21p, 21n)
A hole 4, which forms the cross section of the sheet 1, is formed through the sheet 1 in the center thereof. A copper plating layer 3 as a conductive layer is deposited on the inner wall surface of the hole 4 by so-called through-hole plating.
Copper foil 2 via round pattern 21 (21p, 21n)
p and the constantan foil 2n are electrically connected in series to form a so-called thermocouple contact.

【0011】上記実施例の構成を更に具体的に詳述すれ
ば、シート1の厚さは、約25μmであり、銅箔2pの
厚さは、約10μm、コンスタンタン箔2nの厚さは、
約10μmである。また、これらの銅箔2pとコンスタ
ンタン箔2nは、最小パターン幅が50μmとしてパタ
ーン形成されている。なお、パターン幅が広がったラウ
ンドパターン21(21p,21n)の外径は、約0.
3mmであり、その中央部の穴の内径は、約0.2mm
である。なお、穴4の内壁面に被着する銅めっき層3の
厚さは、約5μmである。
To describe the structure of the above embodiment in more detail, the thickness of the sheet 1 is approximately 25 μm, the thickness of the copper foil 2p is approximately 10 μm, and the thickness of the constantan foil 2n is as follows.
It is approximately 10 μm. Further, these copper foil 2p and constantan foil 2n are patterned with a minimum pattern width of 50 μm. Note that the outer diameter of the round pattern 21 (21p, 21n) with increased pattern width is approximately 0.
3 mm, and the inner diameter of the hole in the center is approximately 0.2 mm.
It is. Note that the thickness of the copper plating layer 3 deposited on the inner wall surface of the hole 4 is approximately 5 μm.

【0012】上記実施例の製造方法の一例を説明すれば
、以下の通りである。先ず、銅箔が片面に張り付けられ
た銅箔積層ポリイミドシートを用意し、ポリイミド系の
接着剤を用いてポリイミドシートを間に挟む形で銅箔の
反対面にコンスタンタン箔を加圧接着する。これにより
、ポリイミドシートの表裏にそれぞれ正と負の熱電能を
持った金属箔を積層し、異種金属の両面積層ポリイミド
シートを形成する。次いで、フォトエッチングなどによ
り上記銅箔とコンスタンタン箔を所定の形状にパターン
形成し、ラウンドパターンの穴部にスルーホールめっき
を施す。その後、上記シートから熱電対を所定の外形で
切り出して上記熱電対を製造する。
An example of the manufacturing method of the above embodiment will be explained as follows. First, a copper foil laminated polyimide sheet with copper foil pasted on one side is prepared, and a constantan foil is pressure-bonded to the opposite side of the copper foil using a polyimide adhesive with the polyimide sheet sandwiched between them. In this way, metal foils having positive and negative thermoelectric powers are laminated on the front and back sides of the polyimide sheet, respectively, to form a double-sided laminated polyimide sheet of different metals. Next, the copper foil and constantan foil are patterned into a predetermined shape by photo-etching or the like, and through-hole plating is applied to the holes of the round pattern. Thereafter, the thermocouple is manufactured by cutting out the thermocouple in a predetermined outer shape from the sheet.

【0013】上記の第一の実施例に示した構成によれば
、熱電対10のラウンドパターン21(21p,21n
)を被測定対象物に接触、または、対向させると、被測
定対象物の熱は、ラウンドパターン21(21p,21
n)経由で正の熱電脚2pと負の熱電脚2nに熱伝達す
る。このとき、広い表面積を有するラウンドパターン2
1(21p,21n)は、被測定対象物からの熱を有効
に授受する熱伝達面として作用し、熱収集効果を発揮す
る。しかも、ラウンドパターン21(21p,21n)
は、銅箔2pやコンスタンタン箔2nの厚さが薄く熱容
量が小さいので被測定対象物に追従して短時間で熱平衡
状態に達する。その結果、熱電対10を被測定対象物に
接触させても被測定対象物の温度を乱す度合いが少ない
According to the configuration shown in the first embodiment, the round pattern 21 (21p, 21n) of the thermocouple 10
) in contact with or facing the object to be measured, the heat of the object to be measured is transferred to the round pattern 21 (21p, 21
The heat is transferred to the positive thermoelectric leg 2p and the negative thermoelectric leg 2n via n). At this time, round pattern 2 with a large surface area
1 (21p, 21n) act as a heat transfer surface that effectively transfers and receives heat from the object to be measured, and exhibits a heat collection effect. Moreover, round pattern 21 (21p, 21n)
Since the copper foil 2p and the constantan foil 2n are thin and have a small heat capacity, they follow the object to be measured and reach a thermal equilibrium state in a short time. As a result, even if the thermocouple 10 is brought into contact with the object to be measured, the degree of disturbance in the temperature of the object to be measured is small.

【0014】しかも、ラウンドパターン21(21p,
21n)の穴4の内面の銅めっき層3は、正の熱電能の
銅箔2pと負の熱電能のコンスタンタン箔2nを電気的
に接続する熱電対の接点として作用するとともに、熱的
にも銅箔2pとコンスタンタン箔2nのラウンドパター
ン21(21p,21n)を接続する作用をする。その
結果、ラウンドパターン21(21p,21n)に授受
した熱は、銅めっき層3経由でシート1の厚み方向にも
移動でき、熱平衡に必要な時間を短縮して熱電対10の
応答速度を速めるという効果がある。
[0014] Moreover, the round pattern 21 (21p,
The copper plating layer 3 on the inner surface of the hole 4 of 21n) acts as a thermocouple contact point that electrically connects the copper foil 2p with positive thermopower and the constantan foil 2n with negative thermopower, and also serves as a thermal contact point. It acts to connect the round patterns 21 (21p, 21n) of the copper foil 2p and the constantan foil 2n. As a result, the heat transferred to and received by the round pattern 21 (21p, 21n) can also move in the thickness direction of the sheet 1 via the copper plating layer 3, reducing the time required for thermal equilibrium and increasing the response speed of the thermocouple 10. There is an effect.

【0015】なお、ラウンドパターン21(21p,2
1n)の穴4の内面の導電層3を銅めっき層により形成
したのは、接点部分の導電層が発生する熱起電力を正ま
たは負の熱電脚の熱起電力に比較して無視できる程度に
小さく抑え、寄生するノイズ成分を減少させるためであ
り、この目的に適えば、銅めっき層を他の金属層や導電
性材料層に置き換えることも可能である。なお、上記目
的のためには、正の熱電能を有する金属と負の熱電能を
有する金属を積層することも効果的である。
Note that the round pattern 21 (21p, 2
The reason why the conductive layer 3 on the inner surface of the hole 4 in 1n) is formed of a copper plating layer is that the thermoelectromotive force generated by the conductive layer at the contact point can be ignored compared to the thermoelectromotive force of the positive or negative thermoelectric leg. This is to reduce parasitic noise components by suppressing the noise to a small level, and if it is suitable for this purpose, it is also possible to replace the copper plating layer with another metal layer or a conductive material layer. Note that for the above purpose, it is also effective to laminate a metal having positive thermoelectric power and a metal having negative thermoelectric power.

【0016】また、被測定対象物がガスや液体などの流
動性に富む場合には、穴4の内面の銅めっき層3がガス
や液体と直接に接触して熱を授受できるので、上記ラウ
ンドパターンの熱収集作用と相伴って、銅めっき層3が
被測定対象物から直接に熱収集作用も行い、応答特性を
一段と高めるという効果がある。
Furthermore, when the object to be measured is a highly fluid gas or liquid, the copper plating layer 3 on the inner surface of the hole 4 can directly contact the gas or liquid and transfer heat. Coupled with the heat collecting effect of the pattern, the copper plating layer 3 also collects heat directly from the object to be measured, which has the effect of further improving the response characteristics.

【0017】なお、ラウンドパターン21(21p,2
1n)から外部端子パターン22(22p,22n)に
延びる銅箔2pやコンスタンタン箔2nの熱電脚部分は
、幅細くて厚さが薄いので熱抵抗が大きく、ラウンドパ
ターン21(21p,21n)から外部端子パターン2
2(22p,22n)に熱伝導によって逃げる熱量を実
質的に少なく抑える。
Note that the round pattern 21 (21p, 2
The thermoelectric leg portions of the copper foil 2p and constantan foil 2n that extend from the round pattern 21 (21p, 22n) to the external terminal pattern 22 (22p, 22n) have a large thermal resistance because they are narrow and thin. Terminal pattern 2
2 (22p, 22n) to substantially suppress the amount of heat escaping by thermal conduction.

【0018】また、銅箔2pやコンスタンタン箔2nを
機械的に補強するポリイミドシート1は、高温での機械
的な強度に優れて熱伝導率が小さいのでシート1経由で
逃げる熱を少なく抑える。
Furthermore, the polyimide sheet 1 that mechanically reinforces the copper foil 2p and the constantan foil 2n has excellent mechanical strength at high temperatures and low thermal conductivity, so that the amount of heat escaping via the sheet 1 is kept to a minimum.

【0019】上記のように、この実施例によれば、ラウ
ンドパターンは、被測定対象物からの僅かな熱の授受に
よって迅速かつ高効率で熱平衡状態に至る。しかも、ラ
ウンドパターンに加わった熱が熱伝導して外部端子パタ
ーンを加熱するような悪影響が少ない。その結果、ラウ
ンドパターンと外部端子パターンの間には、適正な温度
差を生じて、銅箔とコンスタンタン箔のそれぞれの熱電
能に応じた正確な熱起電力を外部端子パターンに発生す
る。
As described above, according to this embodiment, the round pattern quickly and efficiently reaches a thermal equilibrium state by receiving and receiving a small amount of heat from the object to be measured. Furthermore, there is less adverse effect such as heat applied to the round pattern conducting and heating the external terminal pattern. As a result, an appropriate temperature difference is generated between the round pattern and the external terminal pattern, and an accurate thermoelectromotive force corresponding to the respective thermoelectric capacities of the copper foil and the constantan foil is generated in the external terminal pattern.

【0020】なお、上記の実施例によれば、熱電対の厚
さが薄いので、流動する被測定対象物に上記熱電対を浸
漬させても、その流動状態を妨げず、流動する状態での
被測定対象物の温度を時々刻々に計測できるという優れ
た効果がある。
According to the above embodiment, since the thickness of the thermocouple is thin, even if the thermocouple is immersed in a flowing object to be measured, the flowing state is not disturbed and the thermocouple can be immersed in the flowing object. It has the excellent effect of being able to measure the temperature of the object to be measured from moment to moment.

【0021】次に、この発明の第二の実施例について図
2を参照して説明する。図2は、一部を省略記載した熱
電対の正面図である。この第二の実施例の熱電対11の
構成が前記の第一の実施例の構成と異なる点は、以下の
通りである。
Next, a second embodiment of the present invention will be explained with reference to FIG. FIG. 2 is a front view of the thermocouple with some parts omitted. The configuration of the thermocouple 11 of this second embodiment differs from the configuration of the first embodiment described above in the following points.

【0022】即ち、第一に、この熱電対11では、正の
熱電脚としての銅蒸着膜2pと負の熱電脚としてのニッ
ケル蒸着膜2nが四組、パターン形成されている点であ
る。より具体的に詳述すれば、厚さが50μmのポリイ
ミドシート1の表裏には、それぞれ厚さが0.3μmの
銅層とニッケル層が電子ビーム蒸着され、これらの蒸着
膜2p,2nは、正と負のそれぞれの熱電脚の所定の形
状にパターン形成されている。第二に、この熱電対11
では、シート1の4対の銅蒸着膜2pとニッケル蒸着膜
2nのパターンの端部には、それぞれ2個の接点が並べ
て設けられている。即ち、それぞれの熱電脚は、2か所
のラウンドパターン211、212と、ラウンドパター
ン211、212の中央部の穴4(41、42)の内面
に被着された銅めっき層3によって電気的にも熱的にも
冗長接続されている。なお、熱電対11上に所定のピッ
チP(この第二の実施例では、ピッチは0.5mmであ
る)で4対の銅箔2pとニッケル箔2nを配置するため
、上記ラウンドパターン211、212と穴4の配列は
、千鳥格子状になっている。
First, in this thermocouple 11, four sets of copper vapor deposited films 2p as positive thermoelectric legs and four nickel vapor deposited films 2n as negative thermoelectric legs are patterned. To be more specific, a copper layer and a nickel layer each having a thickness of 0.3 μm are deposited by electron beam on the front and back sides of a polyimide sheet 1 having a thickness of 50 μm, and these deposited films 2p and 2n are as follows. Each positive and negative thermoelectric leg is patterned into a predetermined shape. Second, this thermocouple 11
Here, two contacts are provided in parallel at each end of the pattern of the four pairs of copper vapor deposited films 2p and nickel vapor deposited films 2n on the sheet 1. That is, each thermoelectric leg is electrically connected to the two round patterns 211, 212 and the copper plating layer 3 deposited on the inner surface of the hole 4 (41, 42) in the center of the round patterns 211, 212. They are also thermally redundantly connected. Note that in order to arrange four pairs of copper foils 2p and nickel foils 2n at a predetermined pitch P (in this second embodiment, the pitch is 0.5 mm) on the thermocouple 11, the round patterns 211, 212 The holes 4 are arranged in a houndstooth pattern.

【0023】そして、上記の第二の実施例の構成によれ
ば、熱電対11には、複数の熱電対がシート1上での位
置を正確に定めて一体に配設されている。その結果、熱
電対11を被測定対象物に対して位置決めするだけで、
被測定対象物における複数箇所の温度や温度分布を同時
に正確に測定できる。
According to the configuration of the second embodiment described above, a plurality of thermocouples are integrally arranged in the thermocouple 11 with accurately determined positions on the sheet 1. As a result, by simply positioning the thermocouple 11 with respect to the object to be measured,
It is possible to accurately measure the temperature and temperature distribution at multiple locations on an object to be measured at the same time.

【0024】また、薄い金属蒸着層によって正と負の熱
電脚やラウンドパターンが形成されているので、熱電対
の熱容量を一段と小さくでき、応答特性を高速化できる
。しかも、測定による被測定対象物に対する影響を低減
できる。
Furthermore, since the positive and negative thermoelectric legs and the round pattern are formed by the thin metal vapor deposition layer, the heat capacity of the thermocouple can be further reduced and the response characteristics can be increased. Furthermore, the influence of measurement on the object to be measured can be reduced.

【0025】更に、正と負の熱電脚が複数の接点により
並列接続されているので、スルーホール経由の熱伝導に
よりラウンドパターンの温度は、短時間で熱平衡化し、
しかも、熱電対11は、機械的な破壊に対しても冗長化
でき、信頼性に富んでいる。
Furthermore, since the positive and negative thermoelectric legs are connected in parallel through multiple contacts, the temperature of the round pattern is brought to thermal equilibrium in a short time due to heat conduction via the through holes.
Furthermore, the thermocouple 11 can be made redundant against mechanical damage, and is highly reliable.

【0026】以上、この発明のいくつかの実施例につい
て説明したが、この発明の技術的思想の範囲での各種の
改変が容易に可能である。例えば、上記の実施例では、
接点は、絶縁性基体の縁端部分よりも内側に設けられて
いるが、接点を絶縁性基体の縁端面に設けることもでき
る。例えば、上記の実施例に従ってスルーホールにより
接点を形成した後、スルーホールの穴中心で絶縁性基体
を切断すれば、その切断線により形成される熱電対の縁
端部分に半円形の接点を形成することが可能である。あ
るいは、上記実施例の説明では、穴の形状を丸穴とした
が、角穴とすることも可能である。また、スルーホール
めっきに変えて、絶縁性基体の縁端面に選択的に端面メ
ッキを施すことも可能である。これによれば、熱電対の
縁端部分で被測定対象物の温度を測定できる。
Although several embodiments of the present invention have been described above, various modifications can be easily made within the scope of the technical idea of the present invention. For example, in the example above,
Although the contact point is provided inside the edge portion of the insulating substrate, the contact point can also be provided on the edge surface of the insulating substrate. For example, if a contact is formed by a through hole according to the above embodiment and the insulating substrate is cut at the center of the through hole, a semicircular contact will be formed at the edge of the thermocouple formed by the cutting line. It is possible to do so. Alternatively, in the description of the above embodiment, the shape of the hole is a round hole, but it is also possible to use a square hole. Furthermore, instead of through-hole plating, it is also possible to selectively perform end face plating on the edge face of the insulating substrate. According to this, the temperature of the object to be measured can be measured at the edge portion of the thermocouple.

【0027】上記の実施例の説明では述べなかったが、
嫌気性樹脂や金属で穴の内部を埋めることもできる。こ
れによれば、接点の機械的強度が高まり、しかも、被測
定対象物からの熱伝達を改善し、一定の熱容量を接点に
持たせることができるので、測定時の熱的な変動を抑え
て安定な熱起電力を得ることができる。
Although not mentioned in the explanation of the above embodiment,
The inside of the hole can also be filled with anaerobic resin or metal. This increases the mechanical strength of the contact, improves heat transfer from the object to be measured, and allows the contact to have a certain heat capacity, suppressing thermal fluctuations during measurement. A stable thermoelectromotive force can be obtained.

【0028】また、穴径を大きくして熱電対を被測定対
象物に螺着可能にすることも、ラウンドパターンを拡大
して受熱面積を拡張することも可能である。更に、レー
ザ加工によって熱電対の外形加工や微小な穴を形成する
こともできる。何れにせよ、この発明は、上記の実施例
の説明で述べた材質や、寸法、形状に限られず、他の絶
縁材料や熱電材料に材質を変更することも、あるいは、
パターンの形状を変更することもできる。更にまた、熱
電脚の表面に保護層や絶縁層を被覆して、熱電対を機械
的に、あるいは、電気的、化学的に保護することもでき
る。
It is also possible to increase the diameter of the hole so that the thermocouple can be screwed onto the object to be measured, or to expand the heat receiving area by enlarging the round pattern. Furthermore, laser processing can also be used to process the outer shape of the thermocouple and to form minute holes. In any case, the present invention is not limited to the materials, dimensions, and shapes described in the description of the above embodiments, and the materials may be changed to other insulating materials or thermoelectric materials, or
It is also possible to change the shape of the pattern. Furthermore, the thermocouple can be mechanically, electrically, or chemically protected by coating the surface of the thermoelectric leg with a protective layer or an insulating layer.

【発明の効果】この発明によれば、絶縁性基体に被着し
た正と負の熱電脚を絶縁性基体の断面に設けた導電層に
よって直列接続するようにしたので、熱電対全体を小型
、薄型にでき、応答特性に優れた熱電対を提供できると
いう著しい効果を奏する。
According to the present invention, the positive and negative thermoelectric legs attached to the insulating base are connected in series through the conductive layer provided on the cross section of the insulating base, so the entire thermocouple can be made smaller and smaller. This has the remarkable effect of providing a thermocouple that can be made thin and has excellent response characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】(a)は、第一の実施例の熱電対の一部を省略
記載した正面図、(b)は、その要部の拡大した構成を
示す断面図。
FIG. 1(a) is a front view with some parts omitted of a thermocouple according to a first embodiment, and FIG. 1(b) is a cross-sectional view showing an enlarged configuration of the main parts thereof.

【図2】第二の実施例の構成を示す一部を省略記載した
正面図。
FIG. 2 is a partially omitted front view showing the configuration of a second embodiment.

【符合の説明】[Explanation of sign]

1  絶縁性基体 2p  正の熱電脚 2n  負の熱電脚、 3  導電層 4  穴 10、11  熱電対 1 Insulating substrate 2p positive thermoelectric leg 2n Negative thermoelectric leg, 3 Conductive layer 4 Hole 10, 11 Thermocouple

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】電気的に直列接続された正の熱電脚と負の
熱電脚を備えた熱電素子において、絶縁性基体1の表面
に被着された正の熱電脚2pと負の熱電脚2nを絶縁性
基体1の断面に被着された導電層3により電気的に直列
接続したことを特徴とする熱電素子。
1. A thermoelectric element having a positive thermoelectric leg and a negative thermoelectric leg electrically connected in series, the positive thermoelectric leg 2p and the negative thermoelectric leg 2n being attached to the surface of an insulating substrate 1. A thermoelectric element characterized in that these are electrically connected in series by a conductive layer 3 deposited on a cross section of an insulating substrate 1.
JP3229857A 1991-06-03 1991-06-03 Thermoelectric element Pending JPH04357887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3229857A JPH04357887A (en) 1991-06-03 1991-06-03 Thermoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3229857A JPH04357887A (en) 1991-06-03 1991-06-03 Thermoelectric element

Publications (1)

Publication Number Publication Date
JPH04357887A true JPH04357887A (en) 1992-12-10

Family

ID=16898781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3229857A Pending JPH04357887A (en) 1991-06-03 1991-06-03 Thermoelectric element

Country Status (1)

Country Link
JP (1) JPH04357887A (en)

Similar Documents

Publication Publication Date Title
US6084172A (en) Thermoelectric conversion component
EP1152474B1 (en) Thermoelectric device
US20110094556A1 (en) Planar thermoelectric generator
JP5256544B2 (en) Resistor
JP2928303B2 (en) Equipment for measuring thermal properties of substance samples
JPS6140154B2 (en)
JP2001118701A (en) Low-resistance resistor for detecting current and its manufacturing method
US4242659A (en) Thin film resistance thermometer detector probe assembly
JP3758331B2 (en) Shunt resistor element for semiconductor device, mounting method thereof, and semiconductor device
US20050105582A1 (en) Heat flux comparator
JP2007085880A (en) Thin thermocouple and manufacturing method therefor
JP2005072268A (en) Metallic resistor
JP2011089859A (en) Temperature sensor
JP2005072268A5 (en)
JPH04357887A (en) Thermoelectric element
JPH07209032A (en) Element and its manufacture
US6186661B1 (en) Schmidt-Boelter gage
Rajagopal et al. Intrinsic thermal interfacial resistance measurement in bonded metal–polymer foils
Schumacher et al. Improved Mounting of strain sensors by reactive bonding
JP2011191214A (en) Thermopile type infrared sensor and method for manufacturing the same
KR100914938B1 (en) Micro Heater, micro heater manufacturing method and environment sensor using thereof
JPH10247752A (en) Thermoelectric conversion device and manufacture thereof
JP2023501040A (en) SENSOR ELEMENT AND METHOD FOR MANUFACTURING SENSOR ELEMENT
JP2001156343A (en) Thermoelectric element and method of manufacturing the same
JPH06310765A (en) Thermionic element and thermionic device