JPH04357607A - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition

Info

Publication number
JPH04357607A
JPH04357607A JP3031670A JP3167091A JPH04357607A JP H04357607 A JPH04357607 A JP H04357607A JP 3031670 A JP3031670 A JP 3031670A JP 3167091 A JP3167091 A JP 3167091A JP H04357607 A JPH04357607 A JP H04357607A
Authority
JP
Japan
Prior art keywords
parts
weight
sample
oxide
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3031670A
Other languages
Japanese (ja)
Inventor
Kenji Shibata
健司 柴田
Koichi Chazono
広一 茶園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP3031670A priority Critical patent/JPH04357607A/en
Publication of JPH04357607A publication Critical patent/JPH04357607A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To reduce variation in temperature of a dielectric constant by adding barium zirconate or calcium zirconate, rare earth oxide, and manganese oxide into a basic component having a specific composition incorporating barium titanate, niobium oxide and cobalt oxide. CONSTITUTION:0.15-1.90 parts by weight of a zirconium compound of either one or both of barium zirconate and calcium zirconate, 0.08-0.30 parts by weight of rare earth oxide and 0.02-0.30 parts by weight of manganese oxide are added into 100 parts by weight of a basic component expressed by a composition formula: alphaBaTiO3+betaNbO2.5+gammaCoO, wherein alpha represents 0.950-0.990; beta, 0.006-0.042; gamma, 0.002-0.020; and alpha+beta+gamma=1. Consequently, even if a dielectric layer is formed thin, variation in temperature of a dielectric constant can be reduced so that a capacitance varying ratio of a capacitor can be decreased.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は積層磁器コンデンサの誘
電体として好適な誘電体磁器組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric ceramic composition suitable as a dielectric for multilayer ceramic capacitors.

【0002】0002

【従来の技術と発明が解決しようとする課題】チタン酸
バリウムにビスマス酸化物を添加した誘電体磁器組成物
でコンデンサを作ることによって、温度変化に基づく誘
電率の変化が小さいコンデンサを得ることができること
は公知である。しかし、比誘電率が1000〜2000
程度と低く、小型大容量化の要求に応えることができな
い。
[Prior Art and Problems to be Solved by the Invention] By making a capacitor using a dielectric ceramic composition in which bismuth oxide is added to barium titanate, it is possible to obtain a capacitor with a small change in dielectric constant due to temperature changes. What can be done is publicly known. However, the dielectric constant is 1000-2000
However, it cannot meet the demand for smaller size and larger capacity.

【0003】また、特開昭61−110904号公報等
に開示されているように、チタン酸バリウムと酸化コバ
ルトと酸化ニオブと酸化ネオジム(希土類酸化物)と酸
化マンガンとから成る誘電体磁器組成物も公知である。 しかし、誘電体層の一層当りの厚みを15μm以下にす
ると、静電容量の温度変化率が所望範囲(例えば±15
%)から外れてしまったり、誘電体損失tanδが2.
5%よりも大きくなる。
[0003] Furthermore, as disclosed in JP-A-61-110904, etc., a dielectric ceramic composition comprising barium titanate, cobalt oxide, niobium oxide, neodymium oxide (rare earth oxide), and manganese oxide is disclosed. is also publicly known. However, if the thickness of each dielectric layer is set to 15 μm or less, the temperature change rate of capacitance will be within the desired range (for example, ±15 μm).
%) or the dielectric loss tan δ is 2.
It becomes larger than 5%.

【0004】そこで、本発明の目的は、誘電体層の厚み
を15μm以下にしても比誘電率が4000以上、−5
5℃から+125℃の温度範囲における+25℃を基準
にした比誘電率の温度変化率が+15%〜−15%の範
囲内、及び25℃における誘電体損失が2.5%以下、
1000時間後における容量変化率が3%以下にするこ
とができる誘電体磁器組成物を提供することにある。
Therefore, an object of the present invention is to maintain a dielectric constant of 4000 or more, -5 even when the thickness of the dielectric layer is 15 μm or less.
The temperature change rate of the relative permittivity is within the range of +15% to -15% with respect to +25°C in the temperature range from 5°C to +125°C, and the dielectric loss at 25°C is 2.5% or less,
The object of the present invention is to provide a dielectric ceramic composition that can have a capacitance change rate of 3% or less after 1000 hours.

【0005】上記目的を達成するための本発明は、組成
式αBaTiO3 +βNbO2.5 +γCoO(但
し、α、β、γは、  0.950≦α≦0.9900
.006≦β≦0.042 0.002≦γ≦0.020 α+β+γ=1を満足する数値)で表された基本成分1
00重量部と、ジルコン酸バリウムとジルコン酸カルシ
ウムとのいずれか一方又は両方のジルコニウム化合物0
.15〜1.90重量部と、希土類酸化物0.08〜0
.30重量部と、酸化マンガン0.02〜0.30重量
部とを含む誘電体磁器組成物に係わるものである。
[0005] To achieve the above object, the present invention has a compositional formula αBaTiO3 +βNbO2.5 +γCoO (where α, β, and γ are 0.950≦α≦0.9900).
.. 006≦β≦0.042 0.002≦γ≦0.020 A value that satisfies α+β+γ=1) Basic component 1
00 parts by weight and a zirconium compound of either or both of barium zirconate and calcium zirconate.
.. 15 to 1.90 parts by weight and 0.08 to 0 parts by weight of rare earth oxide
.. This relates to a dielectric ceramic composition containing 30 parts by weight of manganese oxide and 0.02 to 0.30 parts by weight of manganese oxide.

【0006】[0006]

【作用】本発明に係わるジルコン酸カルシウム(CaZ
rO3 )又はジルコン酸バリウム(BaZrO3 )
から成るジルコン酸化合物は15μm以下の厚みの誘電
体磁器層を有するコンデンサにおいて、比誘電率の温度
変化率を小さくする作用を有する。また、ジルコン酸化
合物はコンデンサの容量変化率を低減させる作用も有す
る。 従って、本発明の誘電体磁器組成で積層コンデンサを作
ると、比誘電率が4000以上、−55℃から+125
℃の温度範囲における25℃を基準にした静電容量の温
度変化率が−15%〜+15%の範囲内、25℃におけ
る誘電体損失が2.5%以下、1000時間後の容量変
化率が3%以下になる。
[Action] Calcium zirconate (CaZ) according to the present invention
rO3) or barium zirconate (BaZrO3)
This zirconate compound has the effect of reducing the temperature change rate of relative dielectric constant in a capacitor having a dielectric ceramic layer with a thickness of 15 μm or less. Furthermore, the zirconate compound also has the effect of reducing the capacitance change rate of the capacitor. Therefore, when a multilayer capacitor is made with the dielectric ceramic composition of the present invention, the relative permittivity is 4000 or more, and the temperature ranges from -55°C to +125°C.
Temperature change rate of capacitance in the temperature range of ℃ is within the range of -15% to +15% with respect to 25℃, dielectric loss at 25℃ is 2.5% or less, and capacitance change rate after 1000 hours is within the range of -15% to +15%. It will be less than 3%.

【0007】[0007]

【実施例】本実施例では図面に示す複数の誘電体磁器層
1を有する磁器基体2と、この磁器基体2の内に含まれ
ている複数の内部電極3と、磁器基体2の一対の側面に
設けられた一対の外部電極4、5とを備えた積層磁器コ
ンデンサを製作する。まず、磁器基体2の組成が異なる
47種類の磁器コンデンサを作るために、第1表に示す
試料No.1〜47までの47種類の組成の原料を用意
した。
[Example] In this example, a ceramic base 2 having a plurality of dielectric ceramic layers 1 shown in the drawings, a plurality of internal electrodes 3 included in this ceramic base 2, and a pair of side surfaces of the ceramic base 2 are described. A multilayer ceramic capacitor including a pair of external electrodes 4 and 5 provided on the surface is manufactured. First, in order to make 47 types of ceramic capacitors with different compositions of the ceramic substrate 2, sample No. 1 shown in Table 1 was prepared. Raw materials with 47 different compositions numbered 1 to 47 were prepared.

【0008】表1には基本成分の組成式αBaTiO3
 +βNbO2.5 +γCoOにおけるαとβとγの
値が示されている。なお、このα、β及びγはBaTi
O3 とNbO2.5 とCoOとの割合をモル比で示
す。第1表の添加物の欄には、100重量部の基本成分
に添加するジルコン酸カルシウム(CaZrO3 )又
はジルコン酸バリウム(BaZrO3 )、R2 O3
 で示されている希土類酸化物及び酸化マンガン(Mn
O)の添加量が重量部で示されている。
Table 1 shows the compositional formula αBaTiO3 of the basic components.
The values of α, β, and γ in +βNbO2.5 +γCoO are shown. Note that these α, β, and γ are BaTi
The proportions of O3, NbO2.5 and CoO are shown in molar ratios. The column of additives in Table 1 includes calcium zirconate (CaZrO3) or barium zirconate (BaZrO3), R2O3, which is added to 100 parts by weight of the basic ingredients.
Rare earth oxides and manganese oxide (Mn
The amount of O) added is shown in parts by weight.

【0009】[0009]

【表1】[Table 1]

【0010】第1表の試料No.1の組成の誘電体磁器
基体の基本成分 0.990(BaTiO3 )+0.008(NbO2
.5 )+0.002(CoO)を得るために、チタン
酸バリウム(BaTiO3 ):994.773g(0
.990モル部) 五酸化ニオブ(Nb2 O5 ):4.581g(0.
004モル部) 酸化コバルト(CoO):0.646g(0.002モ
ル部) を秤量した。なお、これ等の原料は99.99%以上の
純度を有する。また、組成式におけるβNbO2.5 
を得るために、Nb2 O5 が使用されている。Nb
2 O5 を0.004モル部添加すれば、NbO2.
5 を0.008モル部添加したと等価になる。
[0010] Sample No. in Table 1. The basic components of the dielectric ceramic substrate with a composition of 1 are 0.990 (BaTiO3) + 0.008 (NbO2
.. 5) To obtain +0.002 (CoO), barium titanate (BaTiO3): 994.773 g (0
.. 990 mol parts) Niobium pentoxide (Nb2O5): 4.581g (0.990 mol parts)
0.004 mole part) Cobalt oxide (CoO): 0.646 g (0.002 mole part) was weighed. Note that these raw materials have a purity of 99.99% or more. Also, βNbO2.5 in the composition formula
Nb2O5 has been used to obtain . Nb
If 0.004 mol part of 2O5 is added, NbO2.
This is equivalent to adding 0.008 mol part of 5.

【0011】次に、基本成分1000.00g(100
重量部)に対して ジルコン酸カルシウム(CaZrO3 ):7.60g
(0.76重量部) 酸化ガドリニウム(Gd2 O3 ):1.50g(0
.15重量部) 酸化マンガン(MnO):0.50g(0.05重量部
) を添加して原料混合物を得た。
Next, 1000.00 g (100 g
Calcium zirconate (CaZrO3): 7.60g
(0.76 parts by weight) Gadolinium oxide (Gd2O3): 1.50g (0
.. 15 parts by weight) of manganese oxide (MnO): 0.50 g (0.05 parts by weight) was added to obtain a raw material mixture.

【0012】次に、この原料混合物に適当量の水を加え
て湿式混合し、脱水し、乾燥し、しかる後粗粉砕して原
料粉末を得た。
Next, an appropriate amount of water was added to this raw material mixture, wet-mixed, dehydrated, dried, and then coarsely ground to obtain a raw material powder.

【0013】次に、原料粉末に有機バインダ、分散剤、
可塑剤及び分散媒を加えて24時間ボールミルにより混
合してスラリー(slurry)を得た。
Next, an organic binder, a dispersant, and
A plasticizer and a dispersion medium were added and mixed in a ball mill for 24 hours to obtain a slurry.

【0014】次に、リバースロールコータ(rever
se   roll  coater  )によってス
ラリーから厚さ20μmと30μmのグリーンシート(
green   sheet )を夫々10枚形成した
Next, a reverse roll coater (reverse roll coater) is used.
20 μm and 30 μm thick green sheets (
Ten green sheets were formed.

【0015】次に、厚さ15μmの10枚のグリーンシ
ートに積層コンデンサ6の内部電極3を得るためにパラ
ジウム(Pd)ペーストをスクリーン(screen)
を介して印刷し、その後乾燥させた。なお、夫々のグリ
ーンシートに50個の内部電極3を得るためのPdペー
スト層を形成した。各Pdペースト層は長さ14mm、
幅7mmのパターンを有する。
Next, palladium (Pd) paste was screened onto ten green sheets having a thickness of 15 μm to obtain the internal electrodes 3 of the multilayer capacitor 6.
printed through and then dried. Note that a Pd paste layer for obtaining 50 internal electrodes 3 was formed on each green sheet. Each Pd paste layer is 14 mm long;
It has a pattern with a width of 7 mm.

【0016】次に、Pdペースト層を有する面を上にし
、10枚のグリーンシートを積層し、この積層体の上下
にPdペースト層を有さない厚さ30μmのグリーンシ
ートを5枚ずつ積層し、これ等のグリーンシートを熱圧
着した。なお、Pdペースト層を有するグリーンシート
は、内部電極3がずれて形成されるように配置されてい
る。
Next, ten green sheets were stacked with the side with the Pd paste layer facing up, and five green sheets each having a thickness of 30 μm without a Pd paste layer were stacked on top and bottom of this stack. , these green sheets were bonded by thermocompression. Note that the green sheet having the Pd paste layer is arranged so that the internal electrodes 3 are formed with deviations.

【0017】次に、熱圧着された積層体を格子状に裁断
して50個の積層チップを得た。積層チップは幅9mm
、長さ16mmの寸法を有する。
Next, the thermocompression bonded laminate was cut into a grid shape to obtain 50 laminate chips. Laminated chip is 9mm wide
, has dimensions of 16 mm in length.

【0018】次に、積層チップを焼成炉で20℃/hの
速度で300℃まで昇温し、この温度を3時間保持して
有機バインダを燃焼させた。その後、1280℃まで2
50℃/hで昇温し、この温度を2時間保持して十分緻
密化させ、150℃/hの速度で室温まで降温して焼結
体を得た。即ち、内部電極3を有する磁器基体2を得た
Next, the temperature of the laminated chip was raised to 300° C. at a rate of 20° C./h in a firing furnace, and this temperature was maintained for 3 hours to burn off the organic binder. After that, it is heated to 1280℃.
The temperature was raised at a rate of 50° C./h, maintained at this temperature for 2 hours to achieve sufficient densification, and the temperature was lowered to room temperature at a rate of 150° C./h to obtain a sintered body. That is, a ceramic substrate 2 having internal electrodes 3 was obtained.

【0019】次に、磁器基体2の対の側面にAgペース
トを塗布して約800℃で焼付けることによって図面に
示す一対の外部電極4、5を形成し、積層磁器コンデン
サ6を完成させた。なお、完成した積層磁器コンデンサ
6の磁器基体2の組成(各元素の割合)は、出発原料と
実質的に同一である。
Next, a pair of external electrodes 4 and 5 shown in the drawings were formed by applying Ag paste to the paired sides of the ceramic substrate 2 and baking it at about 800° C., thereby completing the multilayer ceramic capacitor 6. . The composition (ratio of each element) of the ceramic substrate 2 of the completed multilayer ceramic capacitor 6 is substantially the same as that of the starting material.

【0020】表1の試料No.2〜47の他の磁器組成
のコンデンサも試料No.1のコンデンサと同一の方法
で作った。なお、Pdペースト層を設けるグリーンシー
トの厚さは試料No.37〜47で変化させた。
Sample No. in Table 1 Capacitors with other ceramic compositions Nos. 2 to 47 were also sample No. It was made using the same method as capacitor 1. Note that the thickness of the green sheet on which the Pd paste layer is provided is the same as that of sample No. It was varied from 37 to 47.

【0021】次に、試料No.1〜47に従う積層コン
デンサの比誘電率εs 、誘電体損失tan δ、静電
容量経時変化率△C、静電容量の温度変化率(TC)を
測定した。これ等の電気的特性は次の要領で測定した。
Next, sample No. The relative permittivity εs, dielectric loss tan δ, rate of change in capacitance over time ΔC, and rate of change in capacitance with temperature (TC) of the multilayer capacitors according to Nos. 1 to 47 were measured. These electrical characteristics were measured in the following manner.

【0022】(1)  比誘電率εs 25℃、周波数
1kHz、電圧(実効値)1ボルトの条件で静電容量を
測定し、この静電容量と、複数の内部電極3の相互間距
離(磁器層1の厚さ)と、内部電極3の対向面積とに基
づき計算で求めた。
(1) The capacitance is measured under the conditions of relative dielectric constant εs of 25° C., frequency of 1 kHz, and voltage (effective value) of 1 volt, and this capacitance and the distance between the plurality of internal electrodes 3 (porcelain It was calculated based on the thickness of the layer 1) and the opposing area of the internal electrodes 3.

【0023】(2)  誘電体損失tan δ比誘電率
εs と同一の条件で測定した。なお、このtan δ
は%で表されている。
(2) Dielectric loss tan δ Measured under the same conditions as relative dielectric constant εs. In addition, this tan δ
is expressed in %.

【0024】(3)  容量経時変化率△Cコンデンサ
試料に150℃の熱処理を1時間施し、室温中にて1時
間放置後の静電容量を測って初期容量C1 とし、10
00時間後の静電容量C2 を測定し、次式で算出した
。 △C=[(C2 −C1 )/C1 ]×100(%)
(3) Capacitance change rate over time ΔC A capacitor sample was subjected to heat treatment at 150°C for 1 hour, and the capacitance was measured after being left at room temperature for 1 hour to determine the initial capacitance C1.
The capacitance C2 after 00 hours was measured and calculated using the following formula. △C=[(C2-C1)/C1]×100(%)

【0025】(4)  静電容量の温度特性(TC)恒
温槽の中に試料を入れ、−55、−25、0、25、4
0、60、85、105、125℃の各温度の静電容量
を周波数1kHz、電圧(実効値)1ボルトで測定し、
25℃の静電容量Caに対する他の温度の静電容量Cb
の変化率TCを次式で算出した。 TC=[(Cb −Ca )/Ca ]×100(%)
(4) Temperature characteristics of capacitance (TC) Place the sample in a constant temperature bath and measure -55, -25, 0, 25, 4
The capacitance at each temperature of 0, 60, 85, 105, and 125 degrees Celsius was measured at a frequency of 1 kHz and a voltage (effective value) of 1 volt.
Capacitance Cb at other temperatures relative to capacitance Ca at 25°C
The rate of change TC was calculated using the following formula. TC=[(Cb-Ca)/Ca]×100(%)

【0026】表2は上記の方法で測定した各試料の電気
的特性、各試料の焼成後の1層当りの誘電体の厚さt(
μm)を示す。なお、静電容量の温度変化率TCの欄に
は測定温度範囲−55〜+125℃の内の最大値と最小
値が示されている。
Table 2 shows the electrical characteristics of each sample measured by the above method, and the thickness t(
μm). In addition, in the column of temperature change rate TC of capacitance, the maximum value and minimum value within the measurement temperature range -55 to +125° C. are shown.

【0027】[0027]

【表2】[Table 2]

【0028】表2から明らかなように、試料No.1の
コンデンサの比誘電率εs は4200、tan δは
1.90%、△Cは2.8%、静電容量の温度変化率T
Cの最大は+10.4%、最小は−13.3%である。 なお、第2表の各試料のデータは50個のコンデンサの
平均値である。
As is clear from Table 2, sample No. The relative dielectric constant εs of the capacitor No. 1 is 4200, tan δ is 1.90%, ΔC is 2.8%, and the temperature change rate of capacitance T
The maximum value of C is +10.4% and the minimum value is -13.3%. Note that the data for each sample in Table 2 is the average value of 50 capacitors.

【0029】本発明は、焼成後の1層当り誘電体の厚さ
が15μm未満であって、25℃の比誘電率εs が4
000以上、25℃のtan δが2.5%以下、−5
5〜+125℃の温度範囲における静電容量の温度変化
率TCが−15%〜+15%の範囲、容量経時変化率△
Cが3%以下の積層磁器コンデンサを得ることを目標と
している。従って、試料No.5〜10、16、22、
23、29、30、36〜39、43、44の積層磁器
コンデンサの組成は本発明の範囲外のものである。
In the present invention, the thickness of the dielectric per layer after firing is less than 15 μm, and the dielectric constant εs at 25° C. is 4.
000 or more, tan δ at 25°C is 2.5% or less, -5
Temperature change rate TC of capacitance in the temperature range of 5 to +125°C is in the range of -15% to +15%, capacitance change rate over time △
The goal is to obtain a multilayer ceramic capacitor with C of 3% or less. Therefore, sample no. 5-10, 16, 22,
The compositions of the multilayer ceramic capacitors Nos. 23, 29, 30, 36-39, 43, and 44 are outside the scope of the present invention.

【0030】次に、表1および表2を参照して磁器基体
の組成の限定理由を説明する。
Next, the reasons for limiting the composition of the ceramic substrate will be explained with reference to Tables 1 and 2.

【0031】試料No.5に示すようにαが0.991
であると、tan δが2.6%となり、更にTCの最
小値が−19.8%になり、目標とする電気的特性を得
ることができない。しかし、試料No.1及び4に示す
ようにαが0.990である時には、所望の電気的特性
を得ることができる。従って、αの上限は0.990で
ある。
Sample No. As shown in 5, α is 0.991
In this case, tan δ becomes 2.6%, and the minimum value of TC becomes −19.8%, making it impossible to obtain the target electrical characteristics. However, sample no. As shown in 1 and 4, when α is 0.990, desired electrical characteristics can be obtained. Therefore, the upper limit of α is 0.990.

【0032】試料No.6に示すようにαが0.949
である時には、εsが3500となって所望の電気的特
性を得ることができない。一方、試料No.2及び3に
示すようにαが0.950の時には、所望の電気的特性
を得ることができる。従って、αの下限は0.950で
ある。
Sample No. As shown in 6, α is 0.949
When εs becomes 3500, desired electrical characteristics cannot be obtained. On the other hand, sample No. As shown in 2 and 3, when α is 0.950, desired electrical characteristics can be obtained. Therefore, the lower limit of α is 0.950.

【0033】試料No.8に示すようにβが0.043
の場合には、εs が3500となり、且つTCの最小
値が−30.4%になり、目標の電気的特性を得ること
ができない。しかし、試料No.2に示すようにβが0
.042の場合には所望の電気的特性が得られる。従っ
て、βの上限は0.042である。
Sample No. As shown in 8, β is 0.043
In this case, εs becomes 3500 and the minimum value of TC becomes -30.4%, making it impossible to obtain the target electrical characteristics. However, sample no. As shown in 2, β is 0
.. In the case of 042, desired electrical characteristics can be obtained. Therefore, the upper limit of β is 0.042.

【0034】試料No.7に示すようにβが0.005
の場合にはεs が3300、tan δが2.90、
TCの最小値が−21.2%となって所望の電気的特性
を得ることができない。しかし、試料No.4に示すよ
うにβが0.006の場合には所望の電気的特性を得る
ことができる。従って、βの下限は0.006である。
Sample No. As shown in 7, β is 0.005
In the case of εs is 3300, tan δ is 2.90,
The minimum value of TC is -21.2%, making it impossible to obtain desired electrical characteristics. However, sample no. As shown in FIG. 4, when β is 0.006, desired electrical characteristics can be obtained. Therefore, the lower limit of β is 0.006.

【0035】試料No.10に示すようにγが0.02
1の場合にはεs が3200であり、所望の電気的特
性を得ることができない。しかし、試料No.3に示す
ようにγが0.020の場合には所望の電気的特性を得
ることができる。従って、γの上限は0.020である
Sample No. As shown in 10, γ is 0.02
In the case of 1, εs is 3200, and desired electrical characteristics cannot be obtained. However, sample no. As shown in FIG. 3, when γ is 0.020, desired electrical characteristics can be obtained. Therefore, the upper limit of γ is 0.020.

【0036】試料No.9に示すようにγが0.001
の場合にはεs が3100、tan δが2.70%
となり所望の電気的特性を得ることができない。しかし
、試料No.1に示すようにγが0.002の場合には
所望の電気的特性を得ることができる。従って、γの下
限は0.002である。
Sample No. As shown in 9, γ is 0.001
In the case of , εs is 3100 and tan δ is 2.70%.
Therefore, desired electrical characteristics cannot be obtained. However, sample no. As shown in FIG. 1, when γ is 0.002, desired electrical characteristics can be obtained. Therefore, the lower limit of γ is 0.002.

【0037】試料No.16から明らかなようにCaZ
rO3 又はBaZrO3 の添加量が零の場合にはε
s が3960になり、所望の電気的特性を得ることが
できない。しかし、試料No.17に示すようにCaZ
rO3 の添加量が100重量部の基本成分に対して0
.15重量部の場合には所望の電気的特性が得られる。 従って、CaZrO3 の添加量の下限は0.15重量
部である。
Sample No. As is clear from 16, CaZ
When the amount of rO3 or BaZrO3 added is zero, ε
s becomes 3960, making it impossible to obtain desired electrical characteristics. However, sample no. As shown in 17, CaZ
The amount of rO3 added is 0 per 100 parts by weight of the basic ingredients.
.. At 15 parts by weight, desired electrical properties can be obtained. Therefore, the lower limit of the amount of CaZrO3 added is 0.15 parts by weight.

【0038】試料No.22に示すようにCaZrO3
 の添加量が1.96重量部になると、TCが所望範囲
外になる。しかし、試料No.21に示すように1.9
0重量部の場合には所望の電気的特性を得ることができ
る。従って、CaZrO3 の添加量の上限は1.90
重量部である。
Sample No. As shown in 22, CaZrO3
When the amount added becomes 1.96 parts by weight, TC falls outside the desired range. However, sample no. 1.9 as shown in 21
In the case of 0 parts by weight, desired electrical characteristics can be obtained. Therefore, the upper limit of the amount of CaZrO3 added is 1.90
Parts by weight.

【0039】なお、試料No.12〜14、23〜29
から明らかなように、CaZrO3 の代りにBaZr
O3 を使用しても、またCaZrO3 とBaZrO
3 を同時に使用しても、CaZrO3 と同様な作用
効果を得ることができる。即ち、CaZrO3 とBa
ZrO3 とのいずれか一方又は両方を0.15〜1.
9重量部の範囲で添加することによって本発明で目標と
しているコンデンサを得ることができる。
Note that sample No. 12-14, 23-29
As is clear from the above, BaZr instead of CaZrO3
Even if O3 is used, CaZrO3 and BaZrO
Even if CaZrO3 is used at the same time, the same effects as CaZrO3 can be obtained. That is, CaZrO3 and Ba
ZrO3 or both at a concentration of 0.15 to 1.
By adding within the range of 9 parts by weight, the capacitor targeted by the present invention can be obtained.

【0040】R2 O3 (但し、RはGd、Nd、S
m等の希土類元素)で示されている希土類酸化物の添加
量が試料No.23に示すように零の場合には、TCの
最小値が−17.3となり、且つ容量経時変化率△Cが
4.1%となり、所望の特性を得ることができない。し
かし、試料No.24に示すように添加量が0.08重
量部の場合には、所望の電気的特性を得ることができる
。 従って、希土類酸化物の下限は0.08重量部である。
[0040] R2 O3 (However, R is Gd, Nd, S
The amount of rare earth oxides shown in sample No. In the case of zero as shown in 23, the minimum value of TC is -17.3 and the capacity aging rate ΔC is 4.1%, making it impossible to obtain the desired characteristics. However, sample no. As shown in No. 24, when the amount added is 0.08 parts by weight, desired electrical characteristics can be obtained. Therefore, the lower limit of the rare earth oxide is 0.08 parts by weight.

【0041】試料No.29に示すように希土類酸化物
の添加量が0.32重量部の場合には、εs が380
0であり、所望の特性が得られない。しかし、試料No
.28に示すように希土類酸化物の添加量が0.30重
量部の場合には、所望の特性が得られる。従って、希土
類酸化物の上限は0.30重量部である。
Sample No. 29, when the amount of rare earth oxide added is 0.32 parts by weight, εs is 380
0, and the desired characteristics cannot be obtained. However, sample No.
.. As shown in No. 28, when the amount of rare earth oxide added is 0.30 parts by weight, desired characteristics can be obtained. Therefore, the upper limit of the rare earth oxide is 0.30 parts by weight.

【0042】なお、希土類酸化物がGd2 O3 、N
d2 O3 、Sm2 O3 等の1種又は複数種であ
っても同様な効果が得られる。
[0042] Note that the rare earth oxides include Gd2O3, N
Similar effects can be obtained using one or more of d2O3, Sm2O3, and the like.

【0043】試料No.37及び43に示すようすべて
の添加物が零の場合には、誘電体層の厚み(t)が15
μmであってもεs が3820以下となり、△Cが3
.12%以上となり、所望の特性を得ることができない
。 また、すべての添加物が零の場合において誘電体層の厚
み(t)を15μm未満とすると、試料No.38、3
9、44に示すようにtan δが2.5%よりも大き
くなり、またTCが範囲から外れる。これに対して、本
発明に従う添加物が含まれている場合には、試料No.
41、42、46、47に示すように誘電体層の厚みを
14μmよりも小さくしても目標の特性を得ることがで
きる。
Sample No. 37 and 43, when all additives are zero, the thickness (t) of the dielectric layer is 15
Even if it is μm, εs is less than 3820, and △C is 3
.. 12% or more, and desired characteristics cannot be obtained. Furthermore, if the thickness (t) of the dielectric layer is less than 15 μm when all additives are zero, sample No. 38, 3
As shown in Figures 9 and 44, tan δ becomes larger than 2.5% and TC goes out of range. On the other hand, when the additive according to the invention is included, sample no.
As shown in 41, 42, 46, and 47, target characteristics can be obtained even if the thickness of the dielectric layer is made smaller than 14 μm.

【0044】[0044]

【変形例】本発明は上述の実施例に限定されるものでな
く、例えば次の変形が可能なものである。 (1)  基本成分CoOを得るための出発原料をCo
Oの代りにCo2 O3 やCo3 O4 を使用する
ことができる。 (2)  本発明の目的を阻害しない範囲でCeO2 
、SiO2 等の焼結助剤を微量添加することができる
。 (3)  内部電極3の材料をAg−Pdペーストで形
成することができる。 (4)  単層コンデンサにも勿論適用可能である。
[Modifications] The present invention is not limited to the above-described embodiments, but can be modified, for example, as follows. (1) The starting material for obtaining the basic component CoO is Co
Co2 O3 or Co3 O4 can be used instead of O. (2) CeO2 within a range that does not impede the purpose of the present invention
A small amount of a sintering aid such as , SiO2, etc. can be added. (3) The material of the internal electrodes 3 can be formed from Ag-Pd paste. (4) Of course, it can also be applied to single-layer capacitors.

【0045】[0045]

【考案の効果】上述から明らかなように本発明によれば
、極めて薄い誘電体磁器層の場合において、比誘電率が
4000以上、tan δが2.5%以下、−55℃〜
+125℃の静電容量の温度変化率が−15%〜+15
%の範囲、容量の経時変化率△Cが3%以下になる。従
って、小型で特性の良いコンデンサを提供することがで
きる。
[Effects of the Invention] As is clear from the above, according to the present invention, in the case of an extremely thin dielectric ceramic layer, the dielectric constant is 4000 or more, tan δ is 2.5% or less, and -55°C to
Temperature change rate of capacitance at +125℃ is -15% to +15
% range, the rate of change in capacity over time ΔC is 3% or less. Therefore, a small capacitor with good characteristics can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例に係わる積層磁器コンデンサの一
部を原理的に示す断面図である。
The drawing is a sectional view showing the principle of a part of a multilayer ceramic capacitor according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1  磁器層 2  磁器基体 3  内部電極 4,5  外部電極 1 Porcelain layer 2 Porcelain base 3 Internal electrode 4,5 External electrode

【表1】[Table 1]

【表1】[Table 1]

【表1】[Table 1]

【表2】[Table 2]

【表2】[Table 2]

【表2】[Table 2]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  組成式 αBaTiO3 +βNbO2.5 +γCoO(但し
、α、β、γは、  0.950≦α≦0.9900.
006≦β≦0.042 0.002≦γ≦0.020 α+β+γ=1を満足する数値)で表された基本成分1
00重量部と、ジルコン酸バリウムとジルコン酸カルシ
ウムとのいずれか一方又は両方のジルコニウム化合物0
.15〜1.90重量部と、希土類酸化物0.08〜0
.30重量部と、酸化マンガン0.02〜0.30重量
部と、を含む誘電体磁器組成物。
Claim 1: Compositional formula αBaTiO3 +βNbO2.5 +γCoO (where α, β, and γ are 0.950≦α≦0.9900.
006≦β≦0.042 0.002≦γ≦0.020 A value that satisfies α+β+γ=1) Basic component 1
00 parts by weight and a zirconium compound of either or both of barium zirconate and calcium zirconate.
.. 15 to 1.90 parts by weight and 0.08 to 0 parts by weight of rare earth oxide
.. A dielectric ceramic composition containing 30 parts by weight of manganese oxide and 0.02 to 0.30 parts by weight of manganese oxide.
JP3031670A 1991-01-31 1991-01-31 Dielectric porcelain composition Withdrawn JPH04357607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3031670A JPH04357607A (en) 1991-01-31 1991-01-31 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3031670A JPH04357607A (en) 1991-01-31 1991-01-31 Dielectric porcelain composition

Publications (1)

Publication Number Publication Date
JPH04357607A true JPH04357607A (en) 1992-12-10

Family

ID=12337564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3031670A Withdrawn JPH04357607A (en) 1991-01-31 1991-01-31 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JPH04357607A (en)

Similar Documents

Publication Publication Date Title
US4610969A (en) Low temperature sintered ceramic material for use in solid dielectric capacitors or the like, and method of manufacture
KR100606548B1 (en) Dielectric ceramic, process for producing the same and laminate ceramic capacitor
JPH0678189B2 (en) Non-reducing high dielectric constant dielectric ceramic composition
TW201704187A (en) Ceramic capacitor dielectric material the capacitance change rate of the ceramic capacitor dielectric material under DC bias is improved, and thus can satisfy the X7T dielectric characteristics of EIA.
KR20160084193A (en) Dielectric ceramic composition, dielectric material and multilayer ceramic capacitor comprising the same
KR101973421B1 (en) Dielectric ceramic composition and electronic device using the same
JP4321526B2 (en) Dielectric porcelain composition and electronic component using the same
JP3250923B2 (en) Dielectric porcelain composition
US5103369A (en) Solid dielectric capacitor
JPS62157603A (en) Nonreductive dielectric porcelain compound
JPH04357607A (en) Dielectric porcelain composition
JPH09241070A (en) Dielectric porcelain composition
KR102064105B1 (en) Dielectric ceramic composition and electronic device using the same
JP3250917B2 (en) Dielectric porcelain composition
US5111357A (en) Solid dielectric capacitor and method of manufacture
JP2902925B2 (en) Dielectric porcelain composition
KR100268702B1 (en) compound of dielectric ceramic
KR100251137B1 (en) Dielectric ceramic composition having non-reductive property
JPH0589723A (en) Dielectric porcelain composition
JP3228649B2 (en) Dielectric porcelain composition
JP3250927B2 (en) Dielectric porcelain composition
JP2002037663A (en) Dielectric ceramic composition
JPH04209756A (en) Dielectric porcelain composition
JPH04209758A (en) Dielectric porcelain composition
JP2972052B2 (en) Semiconductor porcelain and method of manufacturing the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514