JPH04357114A - Production of zinc oxide powder of ultrafine particle - Google Patents

Production of zinc oxide powder of ultrafine particle

Info

Publication number
JPH04357114A
JPH04357114A JP15550491A JP15550491A JPH04357114A JP H04357114 A JPH04357114 A JP H04357114A JP 15550491 A JP15550491 A JP 15550491A JP 15550491 A JP15550491 A JP 15550491A JP H04357114 A JPH04357114 A JP H04357114A
Authority
JP
Japan
Prior art keywords
zinc oxide
zinc
solution
alcohol
oxide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15550491A
Other languages
Japanese (ja)
Inventor
Motohiko Yoshizumi
素彦 吉住
Akira Nishihara
明 西原
Kyoko Kawamura
京子 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP15550491A priority Critical patent/JPH04357114A/en
Publication of JPH04357114A publication Critical patent/JPH04357114A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To provide zinc oxide powder of ultrafine particle having excellent dispersibility. CONSTITUTION:A zinc salt is hydrolyzed in an alcohol solution or a mixed solution of an alcohol and water under an alkali condition of final pH >=9 at >=60 deg.C to precipitate zinc oxide having <=0.05mum average particle diameter. Zinc oxide powder of ultrafine particle having <=0.05mum average particle diameter is obtained without passing through a burning process and provides a coating film having high transparency in a visible range and excellent ultraviolet ray screening effects.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は透明性および分散性に優
れた超微粒子酸化亜鉛粉末の製造方法に関する。本発明
によって得られる酸化亜鉛粉末を分散させた被膜、成形
体及びペーストは優れた透明性と紫外線遮断効果を有し
、例えば日焼け止め化粧料、自動車、家具、光学材料の
紫外線遮断保護膜として利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing ultrafine zinc oxide powder having excellent transparency and dispersibility. The coatings, molded bodies and pastes in which zinc oxide powder is dispersed, obtained according to the present invention, have excellent transparency and UV-blocking effects, and can be used, for example, as UV-blocking protective films for sunscreen cosmetics, automobiles, furniture, and optical materials. be done.

【0002】紫外線遮断効果を有する材料は従来から知
られており、有機系材料ではベンゾトリアゾール、ベン
ゾフェノン等があり、また無機系材料では酸化チタン、
酸化亜鉛等がある。これらのうち、有機系材料は皮膚に
対する刺激性を有し、また光分解する問題がある。一方
、従来の無機系材料は粒子径が大きく不透明である。 そこで最近、無機系材料を微細化して光の散乱を小さく
することにより透明性を向上させた超微粒子の酸化チタ
ンや酸化亜鉛が市販されている。しかし従来の製造方法
で得られた酸化亜鉛粉末は塩基性炭酸亜鉛、シュウ酸亜
鉛、水ないし酸化亜鉛等を脱水乾燥して焼成するために
凝集し易く分散性に劣るため透明性も不十分である。
Materials that have an ultraviolet blocking effect have been known for a long time. Organic materials include benzotriazole and benzophenone, and inorganic materials include titanium oxide and titanium oxide.
Examples include zinc oxide. Among these, organic materials are irritating to the skin and have the problem of being photodegraded. On the other hand, conventional inorganic materials have large particle sizes and are opaque. Recently, ultrafine particles of titanium oxide and zinc oxide, which have improved transparency by miniaturizing inorganic materials and reducing light scattering, have been commercially available. However, zinc oxide powder obtained by conventional manufacturing methods tends to aggregate and has poor dispersibility because basic zinc carbonate, zinc oxalate, water, zinc oxide, etc. are dehydrated and dried, and then fired, resulting in insufficient transparency. be.

【0003】0003

【発明の解決課題】以上のように従来の酸化亜鉛粉末は
分散性が悪く透明性に劣る問題がある。本発明はこのよ
うな従来の問題を解決し、分散性に優れ高い透明性を有
する酸化亜鉛粉末を容易に製造する方法を提供すること
を目的とする。
Problems to be Solved by the Invention As described above, conventional zinc oxide powders have the problem of poor dispersibility and poor transparency. An object of the present invention is to solve such conventional problems and provide a method for easily producing zinc oxide powder having excellent dispersibility and high transparency.

【0004】0004

【課題の解決手段:発明の構成】本発明は、亜鉛塩をア
ルコール溶液中ないしアルコールと水の混合溶液中で、
60℃以上、最終pH9以上のアルカリ性下で加水分解
させて平均粒径0.05μm以下の酸化亜鉛を沈殿させ
ることを特徴とする超微粒子酸化亜鉛粉末の製造方法を
提供する。
[Means for Solving the Problems: Structure of the Invention] The present invention provides zinc salts in an alcohol solution or a mixed solution of alcohol and water.
Provided is a method for producing ultrafine zinc oxide powder, which is characterized by precipitating zinc oxide having an average particle size of 0.05 μm or less by hydrolyzing it under alkaline conditions at a temperature of 60° C. or higher and a final pH of 9 or higher.

【0005】本発明は、亜鉛塩をアルコール溶液ないし
アルコールと水の混合溶液に溶解した溶液が用いられる
。亜鉛塩としては、例えば塩化亜鉛、硝酸亜鉛、硫酸亜
鉛等の無機酸の亜鉛塩および酢酸亜鉛、シュウ酸亜鉛等
の有機酸亜鉛塩の何れも用いることができる。アルコー
ルとしては、メチルアルコール、エチルアルコール、n
−プロピルアルコール、イソプロピルアルコール等の低
脂肪族アルコールが用いられる。亜鉛塩のアルコール溶
液ないしアルコールと水の混合溶液にアルカリ溶液を添
加して最終pHを9以上に調整し、亜鉛塩を加水分解し
て酸化亜鉛粉末の沈殿を生成させる。亜鉛塩のアルコー
ル溶液ないしアルコールと水の混合溶液の最終pHを9
以上に調整するには、亜鉛塩の溶液をアルカリ溶液に滴
下してもよく、また逆にアルカリ溶液を亜鉛塩の溶塩に
滴下しても良い。アルカリ溶液としては水酸化カリウム
、水酸化ナトリウムなどの強アルカリをメチルアルコー
ル、エチルアルコールのアルコールに溶解した溶液また
はこれに強アルカリをアルコールと水との混合溶液に溶
解した溶液が用いられる。
In the present invention, a solution in which a zinc salt is dissolved in an alcohol solution or a mixed solution of alcohol and water is used. As the zinc salt, for example, any of the zinc salts of inorganic acids such as zinc chloride, zinc nitrate, and zinc sulfate, and the zinc salts of organic acids such as zinc acetate and zinc oxalate can be used. Alcohols include methyl alcohol, ethyl alcohol, n
- Low aliphatic alcohols such as propyl alcohol and isopropyl alcohol are used. An alkaline solution is added to an alcoholic solution or a mixed solution of alcohol and water of zinc salt to adjust the final pH to 9 or more, and the zinc salt is hydrolyzed to form a precipitate of zinc oxide powder. The final pH of the alcohol solution or mixed solution of alcohol and water of zinc salt is 9.
For the above adjustment, a solution of zinc salt may be dropped into an alkaline solution, or conversely, an alkaline solution may be dropped into a molten salt of zinc salt. As the alkaline solution, a solution in which a strong alkali such as potassium hydroxide or sodium hydroxide is dissolved in alcohol such as methyl alcohol or ethyl alcohol, or a solution in which a strong alkali is dissolved in a mixed solution of alcohol and water is used.

【0006】以上のように本発明では、亜鉛塩をアルコ
ール溶液中ないしアルコールと水の混合溶液中で加水分
解させる。反応溶液中にアルコールが存在することによ
り溶液の表面張力が低下して微細なかつ分散性の高い酸
化亜鉛の沈殿を得ることができる。平均粒径 0.05
μm以下の微細な粉末を得るにはアルコールの濃度が5
0%以上であることが好ましい。
As described above, in the present invention, zinc salt is hydrolyzed in an alcohol solution or a mixed solution of alcohol and water. The presence of alcohol in the reaction solution lowers the surface tension of the solution, making it possible to obtain fine and highly dispersible zinc oxide precipitates. Average particle size 0.05
To obtain fine powder of less than μm, the concentration of alcohol is 5.
It is preferably 0% or more.

【0007】溶液中の亜鉛塩濃度及びアルカリの濃度は
、0.1〜5mol/lが好ましく、更に0.5〜3m
ol/lが好ましい。亜鉛塩およびアルカリの濃度が 
0.1mol/lより少ないと酸化亜鉛の沈殿量が少な
く生産性が低い。またこれらの濃度が5mol/lより
大きいと酸化亜鉛の粒子径が大きくなるので好ましくな
い。
The concentration of zinc salt and alkali in the solution is preferably 0.1 to 5 mol/l, more preferably 0.5 to 3 mol/l.
ol/l is preferred. The concentration of zinc salts and alkalis
When it is less than 0.1 mol/l, the amount of zinc oxide precipitated is small and productivity is low. Moreover, if these concentrations are higher than 5 mol/l, the particle size of zinc oxide becomes large, which is not preferable.

【0008】更に本発明では、溶液の温度を60℃以上
、最終pHを9以上に調整して亜鉛塩を加水分解させる
。反応温度が60℃未満であると、亜鉛のヒドロゾルが
酸化亜鉛沈殿中に一部混在するので純度の高い酸化亜鉛
粉末を得ることができない。また加水分解速度が遅くな
り反応効率が低下する。同様に最終pHが9未満である
と亜鉛のヒドロゾルが酸化亜鉛沈殿中に一部混在するの
で好ましくない。
Furthermore, in the present invention, the zinc salt is hydrolyzed by adjusting the temperature of the solution to 60° C. or higher and the final pH to 9 or higher. If the reaction temperature is less than 60°C, a part of the zinc hydrosol will be mixed in the zinc oxide precipitation, making it impossible to obtain highly pure zinc oxide powder. Moreover, the hydrolysis rate becomes slow and the reaction efficiency decreases. Similarly, if the final pH is less than 9, some of the zinc hydrosol will be mixed in the zinc oxide precipitate, which is not preferable.

【0009】以上の方法によって得られた酸化亜鉛は平
均粒径が 0.05μm以下の超微粒子粉末であり、凝
集が少なく、また溶液中にアルコールが含まれるために
溶液の表面張力が低下するので、従来の方法で製造され
る酸化亜鉛に比べて分散性が良い。更に焼成工程を必要
としないにもかかわらず従来の湿式法で得られる酸化亜
鉛に比べて高い結晶性を有する。上記超微粒子酸化亜鉛
は脱水、乾燥工程を経ることなく直接に溶媒であるアル
コールやその他の有機溶媒に分散させて塗料、ペースト
などの添加材として利用することができる。また必要に
応じて表面処理することにより更に分散性を高めること
もできる。この場合、有機溶媒中での反応であるため表
面処理を容易に行なうことができる。
[0009] The zinc oxide obtained by the above method is an ultrafine powder with an average particle size of 0.05 μm or less, has little agglomeration, and contains alcohol, which reduces the surface tension of the solution. , has better dispersibility than zinc oxide produced by conventional methods. Furthermore, although it does not require a firing process, it has higher crystallinity than zinc oxide obtained by conventional wet methods. The above-mentioned ultrafine zinc oxide particles can be directly dispersed in a solvent such as alcohol or other organic solvent without going through a dehydration or drying process and used as an additive for paints, pastes, and the like. Further, the dispersibility can be further improved by surface treatment as necessary. In this case, since the reaction is carried out in an organic solvent, surface treatment can be easily carried out.

【0010】実施例1 水酸化カリウムのエタノール溶液(1mol/l)22
0mlを80℃に保ち、これに酢酸亜鉛のエタノール溶
液(1mol/l)100mlを滴下した後、30分間
温度を保持して酸化亜鉛の沈殿を生成させ、エタノール
洗浄により塩類を除去し濾別、風乾した。この粉末の平
均粒子径は0.025μmであり、分散性に優れた超微
粒子酸化亜鉛粉末が得られた。 この粉末は、図1の透過型電子顕微鏡写真に示すように
、粒子の凝集もなく分散性に優れていることが確認され
た。また、これをX線回析法により測定したところ、図
2に示すように亜鉛のヒドロゾルの生成もなく酸化亜鉛
の高い結晶性を示した。
Example 1 Ethanol solution of potassium hydroxide (1 mol/l) 22
0 ml was kept at 80°C, 100 ml of an ethanol solution of zinc acetate (1 mol/l) was added dropwise thereto, the temperature was maintained for 30 minutes to form a precipitate of zinc oxide, salts were removed by ethanol washing, and the mixture was separated by filtration. Air dried. The average particle diameter of this powder was 0.025 μm, and an ultrafine zinc oxide powder with excellent dispersibility was obtained. As shown in the transmission electron micrograph of FIG. 1, this powder was confirmed to have excellent dispersibility without particle agglomeration. Furthermore, when this was measured by X-ray diffraction, as shown in FIG. 2, no zinc hydrosol was formed and the zinc oxide exhibited high crystallinity.

【0011】実施例2 水酸化カリウムのエタノール溶液(1mol/l)22
0mlを60℃に保ち、これに塩化亜鉛のエタノール溶
液(1mol/l)100mlを滴下した後、30分間
温度を保持して酸化亜鉛の沈殿を生成させ、水洗により
塩類を除去し濾別、風乾した。 この粉末の平均粒子径は0.019μmであり、分散性
に優れた超微粒子酸化亜鉛粉末が得られた。
Example 2 Ethanol solution of potassium hydroxide (1 mol/l) 22
0 ml was kept at 60°C, and 100 ml of an ethanol solution of zinc chloride (1 mol/l) was added dropwise thereto, and the temperature was maintained for 30 minutes to form a precipitate of zinc oxide. Salts were removed by washing with water, separated by filtration, and air-dried. did. The average particle diameter of this powder was 0.019 μm, and an ultrafine zinc oxide powder with excellent dispersibility was obtained.

【0012】実施例3 酢酸亜鉛のエタノールと水の混合溶液(エタノール:水
=50:50)(1mol/l)100 mlを100
℃に保ち、これに水酸化ナトリウムのエタノールと水の
混合溶液(エタノール:水=50:50)(1mol/
l)220mlを滴下した後、30分間温度を保持して
酸化亜鉛の沈殿を生成させ、エタノール洗浄により塩類
を除去し濾別、風乾した。この粉末の平均粒子径は0.
027μmであり、分散性に優れた超微粒子酸化亜鉛粉
末が得られた。
Example 3 100 ml of a mixed solution of zinc acetate in ethanol and water (ethanol:water=50:50) (1 mol/l) was
℃, and add a mixed solution of sodium hydroxide in ethanol and water (ethanol:water = 50:50) (1 mol/
1) After dropping 220 ml, the temperature was maintained for 30 minutes to form a zinc oxide precipitate, salts were removed by washing with ethanol, and the mixture was filtered and air-dried. The average particle size of this powder is 0.
027 μm, and an ultrafine zinc oxide powder with excellent dispersibility was obtained.

【0013】実施例4 水酸化ナトリウムのエタノール溶液(1mol/l)2
20mlを40℃に保ち、これに塩化亜鉛のエタノール
溶液(1mol/l)100mlを滴下した後、30分
間温度を保持して生成した沈殿を、水洗により塩類を除
去し濾別、風乾した。この粉末をX線回析法により測定
したところ、酸化亜鉛とともに一部亜鉛のヒドロゾルの
生成が見られたが、平均粒子径は0.029μmの分散
性に優れた超微粒子酸化亜鉛粉末が得られた。
Example 4 Ethanol solution of sodium hydroxide (1 mol/l) 2
20 ml was kept at 40° C., and 100 ml of an ethanol solution of zinc chloride (1 mol/l) was added dropwise thereto, and the temperature was maintained for 30 minutes to form a precipitate. Salts were removed by washing with water, filtered, and air-dried. When this powder was measured by X-ray diffraction, some zinc hydrosol was observed to be formed along with zinc oxide, but an ultrafine zinc oxide powder with an average particle diameter of 0.029 μm and excellent dispersibility was obtained. Ta.

【0014】実施例5 水酸ナトリウムのエタノールと水の混合溶液(エタノー
ル:水=10:90)(1mol/l)220mlを8
0℃に保ち、これに塩化亜鉛のエタノールと水の混合溶
液(エタノール:水=10:90)(1mol/l)1
00mlを滴下した後、30分間温度を保持して酸化亜
鉛を生成させ水洗により塩類を除去し濾別、風乾した。 この粉末の平均粒子径は0.044μmであり、分散性
に優れた超微粒子酸化亜鉛粉末が得られた。
Example 5 220 ml of a mixed solution of sodium hydroxide in ethanol and water (ethanol:water=10:90) (1 mol/l) was mixed with 8
Maintain at 0°C, and add a mixed solution of zinc chloride in ethanol and water (ethanol:water = 10:90) (1 mol/l) 1
After dropping 00 ml of the solution, the temperature was maintained for 30 minutes to generate zinc oxide, and the salts were removed by washing with water, separated by filtration, and air-dried. The average particle diameter of this powder was 0.044 μm, and an ultrafine zinc oxide powder with excellent dispersibility was obtained.

【0015】比較例 塩化亜鉛水溶液(1mol/l)100mlを60℃に
保ち、これに水酸化ナトリウム水溶液(1mol/l)
180mlを滴下した後、30分間温度を保持して水酸
化亜鉛を生成させ、水洗により塩類を除去し濾別、風乾
後 500℃で2時間焼成した。この粉末の平均粒子径
は0.2μmであり、ここで得られた酸化亜鉛の粒子径
は、実施例と比較して大きかった。
Comparative Example 100 ml of zinc chloride aqueous solution (1 mol/l) was kept at 60°C, and sodium hydroxide aqueous solution (1 mol/l) was added to it.
After dropping 180 ml, the temperature was maintained for 30 minutes to generate zinc hydroxide, the salts were removed by washing with water, the mixture was filtered, air-dried, and then calcined at 500° C. for 2 hours. The average particle size of this powder was 0.2 μm, and the particle size of the zinc oxide obtained here was larger than that of the example.

【0016】[0016]

【発明の効果】本発明による酸化亜鉛粉末の製造方法で
は、焼成工程を経ることなく、分散性に優れた超微粒子
酸化亜鉛粉末を得ることができ、この粉末を利用すれば
、可視域での高い透明性と優れた紫外線遮断効果を有す
る塗膜を製造することができる。更に、本発明による超
微粒子酸化亜鉛粉末は、日焼け止め化粧料、自動車、家
具、光学材料等の紫外線遮断保護膜に利用することがで
きる。また、この粉末の分散液を用いると有機溶媒への
分散を必要とせず、直接に塗料ペーストに利用すること
ができる。
[Effects of the Invention] The method for producing zinc oxide powder according to the present invention makes it possible to obtain ultrafine zinc oxide powder with excellent dispersibility without going through a firing process. A coating film with high transparency and excellent UV blocking effect can be produced. Furthermore, the ultrafine zinc oxide powder according to the present invention can be used in sunscreen cosmetics, UV-blocking protective films for automobiles, furniture, optical materials, and the like. Moreover, when a dispersion of this powder is used, dispersion in an organic solvent is not required, and it can be directly used in a paint paste.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  本発明の方法(実施例1)で得られた超微
粒子酸化亜鉛粉末の粒子構造を示す透過型電子顕微鏡写
[Figure 1] Transmission electron micrograph showing the particle structure of ultrafine zinc oxide powder obtained by the method of the present invention (Example 1)

【図2】  図1の試料のX線回析図[Figure 2] X-ray diffraction diagram of the sample in Figure 1

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  亜鉛塩をアルコール溶液中ないしアル
コールと水の混合溶液中で、60℃以上、最終pH9以
上のアルカリ性下で加水分解させて平均粒径 0.05
μm 以下の酸化亜鉛を沈殿させることを特徴とする超
微粒子酸化亜鉛粉末の製造方法。
Claim 1: Zinc salt is hydrolyzed in an alcohol solution or a mixed solution of alcohol and water at a temperature of 60° C. or higher and an alkaline condition with a final pH of 9 or higher to obtain an average particle size of 0.05.
A method for producing ultrafine zinc oxide powder, characterized by precipitating zinc oxide with a particle size of μm or less.
JP15550491A 1991-05-31 1991-05-31 Production of zinc oxide powder of ultrafine particle Pending JPH04357114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15550491A JPH04357114A (en) 1991-05-31 1991-05-31 Production of zinc oxide powder of ultrafine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15550491A JPH04357114A (en) 1991-05-31 1991-05-31 Production of zinc oxide powder of ultrafine particle

Publications (1)

Publication Number Publication Date
JPH04357114A true JPH04357114A (en) 1992-12-10

Family

ID=15607494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15550491A Pending JPH04357114A (en) 1991-05-31 1991-05-31 Production of zinc oxide powder of ultrafine particle

Country Status (1)

Country Link
JP (1) JPH04357114A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH684387A5 (en) * 1993-04-22 1994-09-15 Greiter Ag Cosmetic or pharmaceutical product for topical application to the skin and the mucous membranes
JPH07232919A (en) * 1994-02-22 1995-09-05 Nippon Shokubai Co Ltd Production of fine zinc oxide particles
WO1995033688A1 (en) * 1994-06-06 1995-12-14 Nippon Shokubai Co., Ltd. Fine zinc oxide particles, process for producing the same, and use thereof
WO2005113427A3 (en) * 2004-05-19 2007-08-02 Texas A & M Univ Sys Process for preparing nano-sized metal oxide particles
WO2008062871A1 (en) * 2006-11-22 2008-05-29 Shiseido Company Ltd. Process for production of zinc oxide fine-particle powder and cosmetics containing the powder
CN100408480C (en) * 2006-07-26 2008-08-06 中国科学院上海硅酸盐研究所 Prepn process of nanometer Zinc oxide powder
WO2008117932A1 (en) * 2007-03-28 2008-10-02 Electronics And Telecommunications Research Institute Method of manufacturing oxide-based nano-structured material
JP2009538264A (en) * 2006-05-23 2009-11-05 ラバー ナノ プロダクツ (プロプライエタリー) リミテッド Nonpolar capped nano transition metal oxides and sulfides
WO2011023266A1 (en) 2009-08-28 2011-03-03 Basf Se Modified nanoparticles
JP2011057473A (en) * 2009-09-07 2011-03-24 Univ Of Miyazaki Method for manufacturing magnetite fine particle
JP2011513190A (en) * 2008-03-10 2011-04-28 タタ ケミカルズ リミテッド Method for producing nano zinc oxide particles
JP4864205B2 (en) * 1999-02-23 2012-02-01 ランクセス・ドイチュランド・ゲーエムベーハー Method for producing nano-sized zinc oxide particles
US8344054B2 (en) 2007-07-24 2013-01-01 The Texas A & M University System Polymer nanocomposites including dispersed nanoparticles and inorganic nanoplatelets
US8747804B2 (en) 2008-07-18 2014-06-10 Basf Se Modified zinc oxide particles
JP2014526614A (en) * 2011-09-09 2014-10-06 カナダス ケミカル,エルエルシー Zinc oxide purification method

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH684387A5 (en) * 1993-04-22 1994-09-15 Greiter Ag Cosmetic or pharmaceutical product for topical application to the skin and the mucous membranes
JPH07232919A (en) * 1994-02-22 1995-09-05 Nippon Shokubai Co Ltd Production of fine zinc oxide particles
WO1995033688A1 (en) * 1994-06-06 1995-12-14 Nippon Shokubai Co., Ltd. Fine zinc oxide particles, process for producing the same, and use thereof
EP0893409A1 (en) * 1994-06-06 1999-01-27 Nippon Shokubai Co., Ltd. Zinc oxide-based fine particles, process for producing the same, and use thereof
US6200680B1 (en) 1994-06-06 2001-03-13 Nippon Shokubai Co., Ltd. Fine zinc oxide particles, process for producing the same, and use thereof
JP4864205B2 (en) * 1999-02-23 2012-02-01 ランクセス・ドイチュランド・ゲーエムベーハー Method for producing nano-sized zinc oxide particles
WO2005113427A3 (en) * 2004-05-19 2007-08-02 Texas A & M Univ Sys Process for preparing nano-sized metal oxide particles
JP2007537970A (en) * 2004-05-19 2007-12-27 ザ テキサス エイ・アンド・エム ユニヴァーシティ システム Method for preparing nano-sized metal oxide particles
JP2009538264A (en) * 2006-05-23 2009-11-05 ラバー ナノ プロダクツ (プロプライエタリー) リミテッド Nonpolar capped nano transition metal oxides and sulfides
CN100408480C (en) * 2006-07-26 2008-08-06 中国科学院上海硅酸盐研究所 Prepn process of nanometer Zinc oxide powder
EP2093193A1 (en) * 2006-11-22 2009-08-26 Shiseido Company, Limited Process for production of zinc oxide fine-particle powder and cosmetics containing the powder
JPWO2008062871A1 (en) * 2006-11-22 2010-03-04 株式会社資生堂 Method for producing fine particle zinc oxide powder and cosmetic containing the same
EP2093193A4 (en) * 2006-11-22 2010-04-14 Shiseido Co Ltd Process for production of zinc oxide fine-particle powder and cosmetics containing the powder
WO2008062871A1 (en) * 2006-11-22 2008-05-29 Shiseido Company Ltd. Process for production of zinc oxide fine-particle powder and cosmetics containing the powder
US8168157B2 (en) 2006-11-22 2012-05-01 Shiseido Company Ltd. Production method of fine particle zinc oxide powder and cosmetics containing the same
WO2008117932A1 (en) * 2007-03-28 2008-10-02 Electronics And Telecommunications Research Institute Method of manufacturing oxide-based nano-structured material
US8344054B2 (en) 2007-07-24 2013-01-01 The Texas A & M University System Polymer nanocomposites including dispersed nanoparticles and inorganic nanoplatelets
JP2011513190A (en) * 2008-03-10 2011-04-28 タタ ケミカルズ リミテッド Method for producing nano zinc oxide particles
US8747804B2 (en) 2008-07-18 2014-06-10 Basf Se Modified zinc oxide particles
WO2011023266A1 (en) 2009-08-28 2011-03-03 Basf Se Modified nanoparticles
JP2011057473A (en) * 2009-09-07 2011-03-24 Univ Of Miyazaki Method for manufacturing magnetite fine particle
JP2014526614A (en) * 2011-09-09 2014-10-06 カナダス ケミカル,エルエルシー Zinc oxide purification method

Similar Documents

Publication Publication Date Title
JPH04357114A (en) Production of zinc oxide powder of ultrafine particle
US6447759B2 (en) Ultraviolet absorbent
EP1157064A1 (en) Nanoparticulate, redispersible zinc oxide gels
HUT68360A (en) Titanium dioxide pigment and method of preparation
JP3713077B2 (en) Method for producing metal oxide or hydroxide sol
CN111168083A (en) Preparation method of nano silver powder
JP2687640B2 (en) Ultrafine zinc oxide powder having excellent ultraviolet absorption capacity and method for producing the same
WO1997040118A1 (en) Ultraviolet absorber composition and process for production thereof
JPH10158015A (en) Production of surface-treated titanium dioxide sol
CN108128798B (en) Simple preparation method of flaky nano zinc oxide sun-screening agent
US5380360A (en) Ultra-fine granular barium sulfate-coated flaky pigment and method of preparing the same
JP4851685B2 (en) Method for producing rutile type titanium oxide ultrafine particles
US4695439A (en) Yttrium oxide stabilized zirconium oxide
JPH02296726A (en) Ultraviolet ray absorptive granular material
JPH04164814A (en) Production of ultra-fine zinc oxide powder having excellent dispersibility
US3954951A (en) Preparation of red amorphous selenium
JPH09183620A (en) Bismuth oxycarbonate powder and its production
US3980491A (en) Bismuth oxychloride-mica nacreous pigments with enhanced luster and dispersibility
US7858066B2 (en) Method of making titanium dioxide particles
US4261965A (en) Basic zinc compound flake-like crystalline particle and method for preparation thereof
JP2002284527A (en) Method for producing fine powder of zinc oxide, fine powder of zinc oxide and resin composition containing it
JP5327848B2 (en) Ultraviolet shielding dispersion and ultraviolet shielding coating composition
JPH04164813A (en) Production of zinc oxide powder
US10233560B2 (en) Method for the production of single crystalline TiO2 flakes
JPH0980203A (en) Modified metal oxide sol and its production

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010821