JPH0435661B2 - - Google Patents

Info

Publication number
JPH0435661B2
JPH0435661B2 JP9834085A JP9834085A JPH0435661B2 JP H0435661 B2 JPH0435661 B2 JP H0435661B2 JP 9834085 A JP9834085 A JP 9834085A JP 9834085 A JP9834085 A JP 9834085A JP H0435661 B2 JPH0435661 B2 JP H0435661B2
Authority
JP
Japan
Prior art keywords
heat exchanger
throttling
during
defrosting
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9834085A
Other languages
Japanese (ja)
Other versions
JPS61256159A (en
Inventor
Koji Murozono
Toshio Wakabayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9834085A priority Critical patent/JPS61256159A/en
Publication of JPS61256159A publication Critical patent/JPS61256159A/en
Publication of JPH0435661B2 publication Critical patent/JPH0435661B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、空気を熱源とするヒートポンプ式空
調機に関するもので、詳しくは低外気時に室外熱
交換器に付着する霜を融解する除霜制御に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat pump type air conditioner that uses air as a heat source, and more specifically to defrosting control that melts frost that adheres to an outdoor heat exchanger when the outside air temperature is low. It is.

従来の技術 従来空気熱源ヒートポンプ式空調機の室外熱交
換機の除霜方式は、大半が四方弁を切換えて冷房
サイクルとし、室外熱交換器を凝縮器、室内熱交
換器を蒸発器とする逆サイクル除霜方式で、この
時コールドドラフト防止の為に室内フアンを停止
していた。
Conventional technology The defrosting method of the outdoor heat exchanger of conventional air source heat pump air conditioners is mostly a cooling cycle by switching the four-way valve, and a reverse cycle in which the outdoor heat exchanger serves as the condenser and the indoor heat exchanger serves as the evaporator. Due to the defrosting method, the indoor fan was stopped at this time to prevent cold drafts.

この方式では基本的に冷媒循環が少なく圧縮機
入力の増大がそれほど期待できないので除霜時間
が長くなることゝ並びに除霜運転中の数分間は室
内フアンが停止するので暖房感が欠如し快適性が
損なわれることゝさらには除霜運転終了後の四方
弁が切換わつて暖房運転に復帰してからも室内熱
交換器の温度が上昇するまでに時間を要するなど
使用者からすれば満足できるものではなかつた。
With this method, there is basically little refrigerant circulation and it is not possible to expect much increase in compressor input, so the defrosting time becomes longer, and the indoor fan stops for several minutes during defrosting operation, so there is a lack of heating sensation and comfort. Moreover, even after the four-way valve is switched and the heating operation is resumed after the defrosting operation is completed, it takes time for the temperature of the indoor heat exchanger to rise, which is not satisfactory from the user's point of view. It wasn't.

近年このような欠点を有する逆サイクル除霜方
式に代わつて、除霜運転時にも四方弁は暖房運転
時のままとし、圧縮機からの吐出ガスの一部を室
内熱交換器に流して若干の暖房能力を維持しなが
ら、吐出ガスの残りを室外熱交換器の入口に導き
除霜を行なうホツトガスバイパス除霜方式が提案
されている(例えば「日本冷凍協会講演論文集」、
S59−11、P53)。
In recent years, in place of the reverse cycle defrosting system, which has these drawbacks, the four-way valve is left in the same position as in heating operation during defrosting operation, and a portion of the gas discharged from the compressor is passed through the indoor heat exchanger to A hot gas bypass defrosting method has been proposed that defrosts the remaining discharged gas by guiding it to the inlet of the outdoor heat exchanger while maintaining the heating capacity (for example, "Japan Refrigeration Association Lecture Proceedings",
S59−11, P53).

以下図面を参照しながら上述の従来のヒートポ
ンプ式空調機の一例について説明する。
An example of the above-mentioned conventional heat pump type air conditioner will be described below with reference to the drawings.

第4図は従来のヒートポンプ式空調機の冷凍サ
イクル図を示すものである。
FIG. 4 shows a refrigeration cycle diagram of a conventional heat pump type air conditioner.

同図において1は容量制御可能な周波数可変圧
縮機、2は四方弁、3は室内熱交換器、4は弁開
度を可変できる電動膨張弁、5は室外熱交換器、
6はホツトガスバイパス回路、7は二方弁であ
る。
In the figure, 1 is a variable frequency compressor whose capacity can be controlled, 2 is a four-way valve, 3 is an indoor heat exchanger, 4 is an electric expansion valve whose valve opening can be varied, 5 is an outdoor heat exchanger,
6 is a hot gas bypass circuit, and 7 is a two-way valve.

ホツトガスバイパス回路6は、周波数可変圧縮
機1の吐出側と室外熱交換器5の暖房運転時に入
口側となる配管とを連結し、途中に二方弁7を備
えて構成されている。通常の暖房運転時には二方
弁7は閉の状態で暖房サイクルを形成するが、低
外気時で室外熱交換器5に着霜が生じ、暖房能力
が低下して除霜運転が必要になると、二方弁7を
開いて高温の吐出ガスの大部分をホツトガスバイ
パス回路6を経て室外熱交換器5の入口側へ導
く。同時に高温の吐出ガスの残りを暖房運転時と
同様に四方弁2、室内熱交換器3、電動膨張弁4
と流し、若干の暖房運転を継続して行ない、室外
熱交換器5の入口側である点Cにて高圧側で分岐
した大部分の冷媒と合流させる。この合流後の冷
媒は自身の持つ凝縮熱で室外熱交換器5を除霜し
た後、四方弁2を経て周波数可変圧縮機1に戻り
除霜サイクルを完結する。
The hot gas bypass circuit 6 connects the discharge side of the variable frequency compressor 1 to a pipe that becomes the inlet side during heating operation of the outdoor heat exchanger 5, and includes a two-way valve 7 in the middle. During normal heating operation, the two-way valve 7 is closed to form a heating cycle, but when frost forms on the outdoor heat exchanger 5 when the outside air temperature is low, the heating capacity decreases and a defrosting operation becomes necessary. The two-way valve 7 is opened to direct most of the high temperature discharged gas to the inlet side of the outdoor heat exchanger 5 via the hot gas bypass circuit 6. At the same time, the remainder of the high-temperature discharged gas is transferred to the four-way valve 2, indoor heat exchanger 3, and electric expansion valve 4 in the same way as during heating operation.
Then, a slight heating operation is continued, and at point C, which is the inlet side of the outdoor heat exchanger 5, the refrigerant is merged with most of the refrigerant branched on the high pressure side. After this combined refrigerant defrosts the outdoor heat exchanger 5 with its own condensation heat, it returns to the variable frequency compressor 1 via the four-way valve 2 and completes the defrosting cycle.

発明が解決しようとする問題点 しかしながら上記構成では以下のような問題点
があつた。第5図は第4図に示す従来のヒートポ
ンプ式空調機の除霜運転時におけるサイクルをモ
リエル線図上に示したものである。
Problems to be Solved by the Invention However, the above configuration has the following problems. FIG. 5 shows the cycle of the conventional heat pump air conditioner shown in FIG. 4 during defrosting operation on a Mollier diagram.

同図に示す記号a〜eは第4図に示したものと
対応する。すなわち除霜運転時に圧縮機吐出側の
点aで分岐した冷媒は室外熱交換器5の入口側の
点Cで合流し、この点Cは温度の過熱域に存在す
る。ここで冷媒はicなるエンタルピを持つ。そし
て凝縮後、つまり除霜後の冷媒状態は二相域の液
分の多い点dまで変化し圧力損失後の点eとな
り、この液分の多い乾き度xeなる冷媒をそのまま
周波数可変圧縮機1に吸入されるので相当の液圧
縮を行つていることになる。これは年間のヒート
ポンプシーズンの除霜回数を考慮すると圧縮機信
頼性上大きな問題となる。さらに除霜時の冷媒の
利用状況(点c→点d)からすると、冷媒の顕熱
(過熱域)と潜熱(二相域)を利用しており、霜
が融解しドレン水が滴下し始める除霜後期には室
外熱交換器5の表面に温度分布を生じるので、室
外熱交換器5の表面の高温部からは周囲の大気に
対流放熱し除霜性能を落としていることにもな
る。
Symbols a to e shown in the figure correspond to those shown in FIG. That is, during defrosting operation, the refrigerant branched at point a on the compressor discharge side joins at point C on the inlet side of the outdoor heat exchanger 5, and this point C exists in the superheating region. Here, the refrigerant has an enthalpy of i c . After condensation, that is, after defrosting, the refrigerant state changes to a point d with a high liquid content in the two-phase region and reaches a point e after pressure loss. 1, so a considerable amount of liquid compression is being performed. This poses a major problem in terms of compressor reliability when considering the number of defrosting operations during the annual heat pump season. Furthermore, from the usage status of refrigerant during defrosting (point c → point d), the sensible heat (superheat region) and latent heat (two-phase region) of the refrigerant are used, and as the frost melts, drain water begins to drip. In the later stages of defrosting, a temperature distribution occurs on the surface of the outdoor heat exchanger 5, so that convective heat is radiated from the high temperature portion of the surface of the outdoor heat exchanger 5 to the surrounding atmosphere, reducing the defrosting performance.

また第6図は前記従来のヒートポンプ式空調機
の除霜運転時の暖房能力の変化を示し、第7図は
同じく除霜運転時の高圧側圧力と低圧側圧力の変
化を示す。第7図においてAは高圧側圧力、Bは
低圧側圧力を示す。
Further, FIG. 6 shows the change in the heating capacity of the conventional heat pump type air conditioner during defrosting operation, and FIG. 7 similarly shows the change in high pressure side pressure and low pressure side pressure during defrosting operation. In FIG. 7, A indicates the high pressure side pressure, and B indicates the low pressure side pressure.

同図より明らかなように除霜が進むにつれて高
圧側圧力Aと低圧側圧力Bの比、すなわち圧縮比
が小さくなり、また低圧側圧力Bは上昇するので
前記周波数可変圧縮機1の吸入側の冷媒の比容積
が小さくなつて冷凍サイクル内の冷媒の循環量は
増加し、したがつて暖房能力は除霜開始時一旦大
きく低下した後徐々に増加する。このため除霜開
始時、暖房能力が大きく低下して居住者に不快感
を与える恐れがあり、逆に除霜終了時近くになる
と暖房能力は除霜開始時に比べて大きくなりす
ぎ、それだけ除霜時間が長くなつていた。
As is clear from the figure, as defrosting progresses, the ratio of the high pressure side pressure A and the low pressure side pressure B, that is, the compression ratio, decreases, and the low pressure side pressure B increases, so that the suction side of the frequency variable compressor 1 decreases. As the specific volume of the refrigerant decreases, the amount of refrigerant circulated within the refrigeration cycle increases, and therefore the heating capacity decreases significantly at the start of defrosting and then gradually increases. For this reason, when defrosting begins, the heating capacity may drop significantly, causing discomfort to the occupants, and conversely, near the end of defrosting, the heating capacity becomes too large compared to when defrosting begins, and the defrosting increases. The hours were getting long.

本発明は上記問題点に鑑み、除霜運転時にも室
内熱交換器に高温の吐出ガスの一部を流して暖房
運転継続可能として、圧縮機への多量の液戻りや
液圧縮を軽減し、室外熱交換器表面の温度分布を
改善して一様温度とする均一除霜を実現し、さら
に室内熱交換器を流れる冷媒流量とバイパス回路
を流れる冷媒流量の割合を可変とし、長期にわた
つて信頼性の高い、しかも居住者に不快感を与え
ることなく除霜効率を改善したヒートポンプ式空
調機を提供するものである。
In view of the above-mentioned problems, the present invention allows a portion of the high temperature discharged gas to flow through the indoor heat exchanger during defrosting operation to allow continued heating operation, thereby reducing a large amount of liquid returning to the compressor and liquid compression. It improves the temperature distribution on the surface of the outdoor heat exchanger to achieve uniform defrosting with a uniform temperature, and also makes the ratio of the refrigerant flow rate flowing through the indoor heat exchanger and the refrigerant flow rate flowing through the bypass circuit variable, so that it can be used for a long period of time. To provide a heat pump air conditioner that is highly reliable and has improved defrosting efficiency without causing discomfort to residents.

問題点を解決するための手段 上記問題点を解決するために本発明のヒートポン
プ式空調機は、圧縮機、四方弁、室内熱交換器、
絞り量を可変とした第1の絞り装置、室外熱交換
器等を順次環状に配管で連結して冷凍サイクルを
構成し、暖房運転時に高圧となる前記圧縮機より
前記室内熱交換器に至る配管と、同じく暖房運転
時に低圧となる前記室外熱交換器より圧縮機に至
る配管とを結ぶバイパス回路を設け、前記バイパ
ス回路に絞り量を可変とし、かつ流路を遮断可能
とした第2の絞り装置を設け、前記室外熱交換器
の除霜を行なう除霜運転時の暖房能力の変化を検
出可能な暖房能力検出手段を設け、前記除霜運転
の開始時には前記第1の絞り装置の絞り量を暖房
運転時の絞り量よりも小さい所定値となるよう
に、かつ前記第2の絞り装置の絞り量を前記バイ
パス回路の流路を開とする所定値となるように制
御し、除霜運転中には前記暖房能力検出手段によ
り検出された値に応じて前記第2の絞り装置の絞
り量を制御する絞り量制御手段を設けたものであ
る。
Means for Solving the Problems In order to solve the above problems, the heat pump air conditioner of the present invention includes a compressor, a four-way valve, an indoor heat exchanger,
A first throttling device with a variable throttling amount, an outdoor heat exchanger, etc. are sequentially connected in an annular manner by piping to constitute a refrigeration cycle, and piping leads from the compressor, which is at high pressure during heating operation, to the indoor heat exchanger. and a bypass circuit connecting the outdoor heat exchanger to the compressor, which also has a low pressure during heating operation, and a second throttle that has a variable throttle amount and can block the flow path. a heating capacity detection means capable of detecting a change in heating capacity during a defrosting operation for defrosting the outdoor heat exchanger; is controlled to a predetermined value smaller than the throttling amount during the heating operation, and the throttling amount of the second throttling device is controlled to be a predetermined value that opens the flow path of the bypass circuit, and the defrosting operation is performed. A throttle amount control means is provided therein for controlling the throttle amount of the second throttle device in accordance with the value detected by the heating capacity detection means.

作 用 本発明は上記構成により、除霜運転時にも高温
の吐出ガスの一部を室内熱交換器に流して暖房運
転継続可能とし、第1の絞り装置の絞りを小さく
して、高温の吐出ガスの残りを室外熱交換器出口
である圧縮機吸入側へ直接戻すので、冷媒循環も
よく圧縮機入力を維持した状態で、圧縮機吸入冷
媒も二相ではあるが乾き度を大きくでき、液戻り
や液圧縮を軽減できる。また室外熱交換器への流
入冷媒も二相となり、除霜初期、中期はもちろん
融解後のドレン水滴下中の後期から乾燥期まで室
外熱交換器表面は温度ムラなく一様に温度上昇す
るので、暖房運転に戻る復帰温度までに一部分が
どんどん温度上昇することがなく、それだけ周囲
への対流放熱損失が押えられて除霜効率も改善で
きる。さらに、除霜運転中の暖房能力の変化に応
じて室内熱交換器を流れる冷媒流量とバイパス回
路を流れる冷媒流量の割合を可変としたことで、
除霜時居住者に不快感を与えることなくまた暖房
能力の極端な上昇を招かず、除霜効率をさらに改
善できる。
Effects With the above configuration, the present invention allows part of the high temperature discharged gas to flow to the indoor heat exchanger even during defrosting operation to continue the heating operation, and reduces the aperture of the first throttle device to discharge the high temperature discharged gas. Since the remainder of the gas is returned directly to the outdoor heat exchanger outlet, which is the compressor suction side, the refrigerant circulation is good, and while the compressor input is maintained, the dryness of the compressor suction refrigerant can be increased, even though it is two-phase. It can reduce backflow and liquid compression. In addition, the refrigerant flowing into the outdoor heat exchanger becomes two-phase, and the temperature on the surface of the outdoor heat exchanger rises uniformly and uniformly from the early and middle stages of defrosting, as well as from the latter stages of dripping water after melting to the drying stage. This prevents the temperature of a portion from rising rapidly before returning to heating operation, which reduces convective heat radiation loss to the surroundings and improves defrosting efficiency. Furthermore, by making the ratio of the refrigerant flow rate flowing through the indoor heat exchanger and the refrigerant flow rate flowing through the bypass circuit variable according to changes in heating capacity during defrosting operation,
Defrosting efficiency can be further improved without causing discomfort to residents during defrosting and without causing an extreme increase in heating capacity.

実施例 以下本発明の一実施例のヒートポンプ式空調機
について、図面を参照しながら説明する。
Embodiment A heat pump air conditioner according to an embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例におけるヒートポン
プ式空調機の冷凍サイクル図を示すものである。
FIG. 1 shows a refrigeration cycle diagram of a heat pump air conditioner according to an embodiment of the present invention.

同図において、11は圧縮機、12は四方弁、
13は室内熱交換器、14は電磁力で弁開度を可
変できる第1電動膨張弁、15は室外熱交換器、
16はバイパス回路、17はバイパス回路に設け
られて電磁力で弁開度を可変できる第2電動膨張
弁である。また18は室内熱交換器13の温度を
検知する室内温度検出素子、19は室外熱交換器
15の温度を検知する室外温度検出素子であり、
20はこの室内温度検出素子18、室外温度検出
素子19の温度信号を受けて第1電動膨張弁1
4、第2電動膨張弁17の弁開度を制御する制御
回路である。そして圧縮機11、四方弁12、室
内熱交換器13、第1電動膨張弁14、室外熱交
換器15を順次環状に連結し、さらに圧縮機11
の吐出側と、室外熱交換器15の暖房運転時の出
口側とを結び、その途中に第2電動膨張弁17を
備えたバイパス回路16を設けたものである。
In the figure, 11 is a compressor, 12 is a four-way valve,
13 is an indoor heat exchanger, 14 is a first electric expansion valve whose opening degree can be varied by electromagnetic force, 15 is an outdoor heat exchanger,
16 is a bypass circuit, and 17 is a second electric expansion valve that is provided in the bypass circuit and whose valve opening degree can be varied by electromagnetic force. Further, 18 is an indoor temperature detection element that detects the temperature of the indoor heat exchanger 13, and 19 is an outdoor temperature detection element that detects the temperature of the outdoor heat exchanger 15.
20 receives the temperature signals from the indoor temperature detection element 18 and the outdoor temperature detection element 19, and operates the first electric expansion valve 1.
4. A control circuit that controls the valve opening degree of the second electric expansion valve 17. Then, the compressor 11, the four-way valve 12, the indoor heat exchanger 13, the first electric expansion valve 14, and the outdoor heat exchanger 15 are sequentially connected in an annular manner.
The outlet side of the outdoor heat exchanger 15 during heating operation is connected to the outlet side of the outdoor heat exchanger 15 during heating operation, and a bypass circuit 16 including a second electric expansion valve 17 is provided in the middle.

次に、以上のように構成されたヒートポンプ式
空調機についてその動作を説明する。通常の暖房
運転時には第2電動膨張弁17は全閉の状態とな
つており、冷媒は圧縮機11、四方弁12、室内
熱交換器13、第1電動膨張弁14、室外熱交換
器15、四方弁12と流れて圧縮機11に戻り暖
房サイクルを形成し、バイパス回路16には冷媒
は流れない。
Next, the operation of the heat pump air conditioner configured as described above will be explained. During normal heating operation, the second electric expansion valve 17 is in a fully closed state, and the refrigerant is supplied to the compressor 11, four-way valve 12, indoor heat exchanger 13, first electric expansion valve 14, outdoor heat exchanger 15, The refrigerant flows through the four-way valve 12 and returns to the compressor 11 to form a heating cycle, and no refrigerant flows into the bypass circuit 16.

ところが、低外気温時には室外熱交換器15に
着霜が生じ、室外温度検出素子19の温度信号が
設定値まで下がると制御回路20が徐霜開始指令
を発し、四方弁12はそのままの状態で第2電動
膨張弁を居住者が不快感を感じない程度の暖房能
力の低下となるように設定した所定の弁開度まで
開き、高温の吐出ガスを点a′で分岐させ、一部は
そのまま室内熱交換器13へ流し、残りは室外熱
交換器15の出口側へ導くとともに、第1電動膨
張弁14の弁開度を全開気味にすることで絞り量
をほぼゼロとして除霜を開始する。
However, when the outside temperature is low, frost forms on the outdoor heat exchanger 15, and when the temperature signal of the outdoor temperature detection element 19 drops to the set value, the control circuit 20 issues a command to start defrosting, and the four-way valve 12 remains in the same state. The second electric expansion valve is opened to a predetermined valve opening that is set to reduce the heating capacity to an extent that does not cause discomfort to the occupants, and the high temperature discharged gas is branched off at point a', with some remaining as it is. It flows into the indoor heat exchanger 13, and the rest is guided to the outlet side of the outdoor heat exchanger 15, and defrosting is started by setting the valve opening of the first electric expansion valve 14 to a slightly fully open position to reduce the throttling amount to almost zero. .

第2図は第1図に示すヒートポンプ式空調機の
一実施例の除霜運転時におけるサイクルをモリエ
ル線図に示したものである。
FIG. 2 is a Mollier diagram showing a cycle during defrosting operation of one embodiment of the heat pump type air conditioner shown in FIG.

同図に示す記号a′〜e′は第1図に示したものと
対応する。すなわち除霜運転時に点a′からそのま
ま室内熱交換器13へ流した高温の吐出ガスは、
第1電動膨張弁14の弁開度が全開気味になつて
いるので比較的低い温度約30〜40℃で凝縮放熱
し、点b′に移り図示しない室内フアンのNによ
り暖房運転継続可能となる。途中の配管や第1電
動膨張弁14の若干の絞りで減圧して点c′となり
室外熱交換器15に流入して、さらに霜の融解温
度である約0℃で凝縮放熱して除霜し点d′に至
る。この時の除霜に利用する冷媒のエンタルピ差
はΔidef=ic′−id′となり、室外熱交換器15への
流入冷媒状態は点c′に示すように既に二相となつ
ている。ちなみに室内暖房に利用する冷媒のエン
タルピ差は途中の熱ロスを無視すればia′−ib′と
なる。
Symbols a' to e' shown in the figure correspond to those shown in FIG. In other words, the high temperature discharged gas that flows directly from point a' to the indoor heat exchanger 13 during defrosting operation is:
Since the valve opening degree of the first electric expansion valve 14 is almost fully open, the heat is condensed and radiated at a relatively low temperature of about 30 to 40 degrees Celsius, and then moving to point b', heating operation can be continued by the N of the indoor fan (not shown). . The pressure is reduced through the pipes along the way and a slight restriction in the first electric expansion valve 14, and the temperature reaches point c', where it flows into the outdoor heat exchanger 15, where it is further condensed at about 0°C, which is the melting temperature of frost, and radiated heat to defrost it. It reaches point d′. The enthalpy difference of the refrigerant used for defrosting at this time is Δidef=ic'-id', and the state of the refrigerant flowing into the outdoor heat exchanger 15 is already two-phase as shown at point c'. By the way, the enthalpy difference of the refrigerant used for indoor heating is ia'-ib' if we ignore the heat loss along the way.

一方残りの温度の吐出ガスは室外熱交換器15
の出口側に導かれるのでほゞ等エンタルピ変化
後、主回路を流れてきた液分の多い冷媒と合流し
混合して点e′となり、圧縮機11に吸入される。
この点e′は二相状態にあるものの冷媒乾き度
xe′が大きく液分が少ないので液戻りや液圧縮を
軽減または実質的に回避することができる。さら
にまた除霜運転時に室外熱交換器15へ流入して
いる冷媒は基本的に二相状態であるため冷媒温度
つまり室外熱交換器15の表面温度も一定とな
り、同表面温度にムラがないため均一除霜が実現
できる。
On the other hand, the discharged gas at the remaining temperature is transferred to the outdoor heat exchanger 15.
Since the refrigerant is guided to the outlet side of the refrigerant, after changing its enthalpy, it joins and mixes with the liquid-rich refrigerant that has flowed through the main circuit, reaches point e', and is sucked into the compressor 11.
This point e′ is the dryness of the refrigerant even though it is in a two-phase state.
Since xe′ is large and the liquid content is small, liquid return and liquid compression can be reduced or substantially avoided. Furthermore, since the refrigerant flowing into the outdoor heat exchanger 15 during defrosting operation is basically in a two-phase state, the refrigerant temperature, that is, the surface temperature of the outdoor heat exchanger 15, is also constant, and there is no unevenness in the surface temperature. Uniform defrosting can be achieved.

また、除霜運転開始時、第2電動膨張弁17の
弁開度を全開とせずに所定の弁開度とすることで
高圧側圧力の低下が少なく、したがつて暖房能力
が急激に低下することがなく居住者に不快感を与
えない。さらに、除霜が進行するにつれ、従来例
で示したのと同様に次第に高圧側圧力が高くなつ
て暖房能力が大きくなるが、室内温度検出素子1
8の温度信号が設定値まで上昇すると制御回路2
0が信号を発して第2電動膨張弁17の弁開度を
大きくし、それにより高圧側圧力、暖房能力の増
加を押さえ、バイパス回路16を流れる冷媒流量
を増加させることができるのでさらに除霜効率の
改善が可能となる。
Furthermore, when the defrosting operation starts, by setting the valve opening of the second electric expansion valve 17 to a predetermined valve opening rather than fully opening, the drop in high pressure side pressure is small, and therefore the heating capacity is sharply reduced. without causing any discomfort to residents. Furthermore, as defrosting progresses, the high pressure side pressure gradually increases and the heating capacity increases as shown in the conventional example, but the indoor temperature detection element 1
When the temperature signal of 8 rises to the set value, the control circuit 2
0 issues a signal to increase the valve opening of the second electric expansion valve 17, thereby suppressing the increase in high pressure side pressure and heating capacity, and increasing the flow rate of refrigerant flowing through the bypass circuit 16, further defrosting. Efficiency can be improved.

第3図の実線は、本発明の一実施例におけるヒ
ートポンプ式空調機の除霜運転時の暖房能力の変
化を示すもので、前記のように第2電動膨張弁1
7の弁開度を変化させることで、破線で示す従来
例のヒートポンプ式空調機の除雪時の暖房能力の
変化と比較して除霜開始時に居住者に不快感を与
えることなく、除霜終了時近くで不必要な暖房を
行なうこともない。
The solid line in FIG. 3 shows the change in heating capacity during defrosting operation of the heat pump type air conditioner in one embodiment of the present invention.
By changing the opening degree of the valve 7, defrosting can be completed without causing discomfort to residents at the start of defrosting compared to the change in heating capacity during snow removal of the conventional heat pump air conditioner shown by the broken line. There is no need for unnecessary heating near the time of day.

なお、本発明は第1、第2の絞り装置の最良の
形態として電磁力を駆動源として弁開度を可変と
した第1、第2の電動膨張弁14,17を用いて
説明したが、それぞれの絞り装置をキヤピラリ等
の絞りを複数個用いて構成し、適宜切換により制
御してもよく、さらに弁開度を可変する手段とし
てバイメタル若しくは形状記憶合金等を用いても
よい。また、暖房能力の増加を室内熱交換器13
の温度を用いて検知したが、本発明はそれに限定
されるものではなく、暖房能力の増加を検知でき
るものであれば、検出する圧力、温度等の位置お
よびその手段は任意である。また、除霜開始時期
の決定についても同様である。
Note that the present invention has been described using the first and second electric expansion valves 14 and 17 whose valve opening degree is variable using electromagnetic force as a driving source as the best form of the first and second throttle devices. Each throttle device may be configured using a plurality of throttles such as capillaries, and may be controlled by appropriate switching, and bimetal, shape memory alloy, or the like may be used as a means for varying the valve opening degree. In addition, increasing heating capacity can be achieved by using indoor heat exchanger 13.
Although the present invention is not limited to this, the position of the pressure, temperature, etc. to be detected and the means thereof are arbitrary as long as an increase in heating capacity can be detected. The same applies to the determination of the time to start defrosting.

発明の効果 以上のように本発明のヒートポンプ式空調機
は、圧縮機、四方弁、室内熱交換器、絞り量を可
変とした第1の絞り装置、室外熱交換器を配管で
連結して冷凍サイクルを構成し、暖房運転時に高
圧となる前記圧縮機より前記室内熱交換器に至る
配管と、同じく暖房運転時に低圧となる前記室外
熱交換器より圧縮機に至る配管とを結ぶバイパス
回路を形成し、前記バイパス回路に絞り量を可変
とし、かつ流路を遮断可能とした第2の絞り装置
を設け、前記室外熱交換器の除霜を行なう除霜運
転時の暖房能力の変化を検出可能な暖房能力検出
手段を設け、前記除霜運転の開始時には前記第1
の絞り装置の絞り量を暖房運転時の絞り量よりも
小さい所定値となるように、かつ前記第2の絞り
装置の絞り量を前記バイパス回路の流路を開とす
る所定値となるように制御し、除霜運転中には前
記暖房能力検出手段により検出された値に応じて
前記第2の絞り装置の絞り量を制御する絞り量制
御手段を設けたもので、除霜運転時にも室内熱交
換器に高温の吐出ガスの一部を流して暖房運転継
続可能として、圧縮機への多量の液戻りや液圧縮
を軽減し、室外熱交換器表面の温度分布を改善し
て一様温度とする均一除霜を実現し、さらに除霜
運転中の暖房能力の変化に応じて室内熱交換器を
流れる冷媒流量とバイパス回路を流れる冷媒流量
の割合を可変として、長期にわたつて信頼性が高
く、しかも居住者に不快感を与えることなく除霜
効率を改善できる等の種々の効果を有する。
Effects of the Invention As described above, the heat pump air conditioner of the present invention has a compressor, a four-way valve, an indoor heat exchanger, a first throttling device with a variable throttling amount, and an outdoor heat exchanger that are connected via piping. A bypass circuit is formed that forms a cycle and connects piping from the compressor to the indoor heat exchanger, which is at high pressure during heating operation, and piping from the outdoor heat exchanger to the compressor, which is also at low pressure during heating operation. A second throttling device is provided in the bypass circuit with a variable throttling amount and can shut off the flow path, and a change in heating capacity can be detected during a defrosting operation to defrost the outdoor heat exchanger. heating capacity detection means is provided, and when the defrosting operation is started, the first
The throttling amount of the second throttling device is set to a predetermined value smaller than the throttling amount during heating operation, and the throttling amount of the second throttling device is set to a predetermined value that opens the flow path of the bypass circuit. and a throttling amount control means for controlling the throttling amount of the second throttling device according to the value detected by the heating capacity detecting means during defrosting operation. By allowing a portion of the high temperature discharged gas to flow through the heat exchanger to continue heating operation, it reduces the amount of liquid returning to the compressor and liquid compression, and improves the temperature distribution on the surface of the outdoor heat exchanger to maintain a uniform temperature. It achieves uniform defrosting, and also changes the ratio of the refrigerant flow rate through the indoor heat exchanger to the refrigerant flow rate through the bypass circuit in response to changes in heating capacity during defrosting operation, ensuring long-term reliability. It has various effects such as being able to improve defrosting efficiency without causing discomfort to residents.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるヒートポン
プ式空調機の冷凍サイクル図、第2図は同ヒート
ポンプ式空調機の除霜運転時のサイクルをモリエ
ル線図上にあらわした図、第3図は同ヒートポン
プ式空調機の除霜運転時の暖房能力の変化を示す
説明図、第4図は従来のヒートポンプ式空調機の
冷凍サイクル図、第5図は第4図に示す従来のヒ
ートポンプ式空調機の除霜運転時のサイクルをモ
リエル線図上にあらわした図、第6図は同じく従
来のヒートポンプ式空調機の除霜運転時の暖房能
力の変化を示す説明図、第7図は同じく従来のヒ
ートポンプ式空調機の除霜運転時の高圧側圧力と
低圧側圧力の変化を示す説明図である。 11……圧縮機、12……四方弁、13……室
内熱交換器、14……第1電動膨張弁(第1の絞
り装置)、15……室外熱交換器、16……バイ
パス回路、17……第2電動膨張弁(第2の絞り
装置)、18……室内温度検出素子(暖房能力検
出手段)、20……制御回路(絞り量制御手段)。
Fig. 1 is a refrigeration cycle diagram of a heat pump air conditioner according to an embodiment of the present invention, Fig. 2 is a diagram showing the cycle during defrosting operation of the heat pump air conditioner on a Mollier diagram, and Fig. 3 is a diagram showing the cycle during defrosting operation of the heat pump air conditioner. An explanatory diagram showing changes in heating capacity during defrosting operation of the heat pump air conditioner, Figure 4 is a refrigeration cycle diagram of a conventional heat pump air conditioner, and Figure 5 is a diagram of the conventional heat pump air conditioner shown in Figure 4. Figure 6 is an explanatory diagram showing the change in heating capacity during defrosting operation of a conventional heat pump air conditioner, and Figure 7 is a diagram showing the cycle during defrosting operation of a conventional heat pump air conditioner on a Mollier diagram. FIG. 2 is an explanatory diagram showing changes in high-pressure side pressure and low-pressure side pressure during defrosting operation of the heat pump air conditioner. 11... Compressor, 12... Four-way valve, 13... Indoor heat exchanger, 14... First electric expansion valve (first throttling device), 15... Outdoor heat exchanger, 16... Bypass circuit, 17...Second electric expansion valve (second throttle device), 18...Indoor temperature detection element (heating capacity detection means), 20...Control circuit (throttling amount control means).

Claims (1)

【特許請求の範囲】 1 圧縮機、四方弁、室内熱交換器、絞り量を可
変とした第1の絞り装置、室外熱交換器を配管で
順次連結して冷凍サイクルを構成し、暖房運転時
に高圧となる前記圧縮機より前記室内熱交換器に
至る配管と、暖房運転時に低圧となる前記室外熱
交換器より圧縮機に至る配管とをバイパスするバ
イパス回路を形成し、前記バイパス回路に絞り量
を可変とし、かつ流路を遮断可能とした第2の絞
り装置を設け、前記室外熱交換器の除霜を行なう
除霜運転時の暖房能力の変化を検出可能とした暖
房能力検出手段を設け、前記除霜運転の開始時に
は前記第1の絞り装置の絞り量を暖房運転時の絞
り量よりも少なく、かつ前記第2の絞り装置の絞
り量を前記バイパス回路の流路を開となるように
制御し、除霜運転中には前記暖房能力検出手段に
より検出された値に応じて前記第2の絞り装置の
絞り量を制御する絞り量制御手段を設けたヒート
ポンプ式空調機。 2 除霜運転時、暖房能力検出手段により検出さ
れた値が所定値以上となつた時、絞り量制御手段
により第2の絞り装置の絞り量を除霜運転開始時
の所定値よりも小さな値となるように制御を行な
う請求項1記載のヒートポンプ式空調機。
[Scope of Claims] 1 A compressor, a four-way valve, an indoor heat exchanger, a first throttling device with a variable throttling amount, and an outdoor heat exchanger are sequentially connected via piping to constitute a refrigeration cycle, and during heating operation A bypass circuit is formed that bypasses piping from the compressor to the indoor heat exchanger, which is at high pressure, and piping from the outdoor heat exchanger to the compressor, which is at low pressure during heating operation. A second throttling device is provided that is variable and capable of blocking the flow path, and heating capacity detection means is provided that is capable of detecting a change in heating capacity during a defrosting operation to defrost the outdoor heat exchanger. , at the start of the defrosting operation, the throttle amount of the first throttle device is smaller than the throttle amount during the heating operation, and the throttle amount of the second throttle device is set such that the flow path of the bypass circuit is opened. The heat pump air conditioner is provided with a throttling amount control means for controlling the throttling amount of the second throttling device according to the value detected by the heating capacity detecting means during defrosting operation. 2 During defrosting operation, when the value detected by the heating capacity detection means exceeds a predetermined value, the throttling amount control means sets the throttling amount of the second throttling device to a value smaller than the predetermined value at the start of the defrosting operation. The heat pump type air conditioner according to claim 1, wherein the heat pump type air conditioner is controlled so that the following is achieved.
JP9834085A 1985-05-09 1985-05-09 Heat pump type air conditioner Granted JPS61256159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9834085A JPS61256159A (en) 1985-05-09 1985-05-09 Heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9834085A JPS61256159A (en) 1985-05-09 1985-05-09 Heat pump type air conditioner

Publications (2)

Publication Number Publication Date
JPS61256159A JPS61256159A (en) 1986-11-13
JPH0435661B2 true JPH0435661B2 (en) 1992-06-11

Family

ID=14217170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9834085A Granted JPS61256159A (en) 1985-05-09 1985-05-09 Heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JPS61256159A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY190716A (en) * 2014-05-12 2022-05-12 Panasonic Ip Man Co Ltd Refrigeration cycle device

Also Published As

Publication number Publication date
JPS61256159A (en) 1986-11-13

Similar Documents

Publication Publication Date Title
US4901534A (en) Defrosting control of air-conditioning apparatus
JP2008082589A (en) Air conditioner
JP7034325B2 (en) Air conditioner
JPH01118080A (en) Heat pump type air conditioner
JP3418891B2 (en) Refrigeration equipment
JP2007247997A (en) Air conditioner
JPH10205933A (en) Air conditioner
JPS63129238A (en) Defrosting control device for air conditioner of heat pump type
JPS61262560A (en) Heat pump type air conditioner
JPH0435661B2 (en)
JP3511161B2 (en) Air conditioner
JP2001099512A (en) Heat source unit for heat pump type air conditioner
JPH0752031B2 (en) Heat pump type air conditioner
JPH0373794B2 (en)
JPH04217754A (en) Air conditioner
JPS6229868A (en) Heat pump type air conditioner
CN108444141B (en) Air conditioner system, air conditioner and control method of air conditioner
JPH0579901B2 (en)
JPH04136669A (en) Multi-room air conditioner
JPH0431505Y2 (en)
JP4023385B2 (en) Refrigeration equipment
JP2533585B2 (en) Multi-room air conditioner
JPS62237260A (en) Defrostation control method of heat pump type air conditioner
JP2024053324A (en) Air conditioners
JP2001330347A (en) Air-conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees