JPH04352771A - Production of propylene oxide - Google Patents

Production of propylene oxide

Info

Publication number
JPH04352771A
JPH04352771A JP3150850A JP15085091A JPH04352771A JP H04352771 A JPH04352771 A JP H04352771A JP 3150850 A JP3150850 A JP 3150850A JP 15085091 A JP15085091 A JP 15085091A JP H04352771 A JPH04352771 A JP H04352771A
Authority
JP
Japan
Prior art keywords
titanosilicate
catalyst
reaction
propylene
propylene oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3150850A
Other languages
Japanese (ja)
Other versions
JP3044836B2 (en
Inventor
Akira Sato
晶 佐藤
Takanori Miyake
孝典 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP3150850A priority Critical patent/JP3044836B2/en
Publication of JPH04352771A publication Critical patent/JPH04352771A/en
Application granted granted Critical
Publication of JP3044836B2 publication Critical patent/JP3044836B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain the subject compound useful as a raw material for polypropylene glycol, etc., in high productivity at a low cost without producing by-product by reacting propylene with hydrogen and oxygen in the presence of a specific catalyst. CONSTITUTION:Propylene oxide is produced by reacting propylene with oxygen and hydrogen in the presence of a catalyst consisting of a group VIII metal of the periodic table and crystalline titanosilicate at 0-150 deg.C optionally in a solvent (e.g. butyl alcohol). The catalyst can be produced by supporting 0.1-10wt.% of a metal such as palladium on a titanosilicate by impregnation, etc. The molar ratio of Ti in the titanosilicate used as the catalyst to propylene is selected to be 0.00001-0.1. The reaction proceeds without using expensive hydrogen peroxide.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ポリプロピレングリコ
ール等の原料として工業的に重要なプロピレンオキシド
の製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing propylene oxide, which is industrially important as a raw material for polypropylene glycol and the like.

【0002】0002

【従来の技術】プロピレンオキシドの製法には、塩化カ
ルシウムを副生するクロルヒドリン法、t−ブチルアル
コールやスチレンモノマーを併産するハルコン法、酢酸
を併産する過酢酸法などが知られている。
BACKGROUND OF THE INVENTION Known methods for producing propylene oxide include the chlorohydrin method, which produces calcium chloride as a by-product, the Halcon method, which co-produces t-butyl alcohol and styrene monomer, and the peracetic acid method, which co-produces acetic acid.

【0003】また、過酸化水素を副原料とし、触媒とし
て結晶性チタノシリケートを用いる方法(例えば、米国
特許第4833260号公報等)も知られている。
Also known is a method using hydrogen peroxide as an auxiliary raw material and crystalline titanosilicate as a catalyst (eg, US Pat. No. 4,833,260).

【0004】0004

【発明が解決しようとする課題】しかしながら、前記ク
ロルヒドリン法では、使用した塩素は石灰乳で脱塩化水
素するために有効に利用されないこと、また、多量に副
生する塩化カルシウムの処理といった問題がある。ハル
コン法や過酢酸法は、多量の併産品の市場確保が必要で
あり、過酸化水素を用いる方法は、高価な過酸化水素を
等モル以上必要とすることからその経済性に問題がある
[Problems to be Solved by the Invention] However, the chlorohydrin method has problems such as the fact that the chlorine used is not effectively used for dehydrochlorination with milk of lime, and the treatment of large amounts of calcium chloride produced as a by-product. . The Halcon method and the peracetic acid method require securing a market for a large amount of co-products, and the method using hydrogen peroxide requires more than the same mole of expensive hydrogen peroxide, so there is a problem in its economic efficiency.

【0005】これらのことから、併産品がなく、また高
価な過酸化水素を原料としない高選択的なエポキシ化合
物製造プロセスの開発が望まれていた。
[0005] For these reasons, it has been desired to develop a highly selective epoxy compound production process that does not produce co-products and does not use expensive hydrogen peroxide as a raw material.

【0006】[0006]

【課題を解決するための手段】このような現状に鑑み、
本発明者らは、鋭意検討した結果、周期律表における第
VIII族金属と結晶性チタノシリケートよりなる触媒
を用いて、プロピレンと水素及び酸素を反応させると、
プロピレンオキシドを高選択的に得られることを見いだ
し、本発明を完成するに至った。
[Means to solve the problem] In view of the current situation,
As a result of extensive studies, the present inventors found that when propylene is reacted with hydrogen and oxygen using a catalyst consisting of a Group VIII metal in the periodic table and crystalline titanosilicate,
It was discovered that propylene oxide can be obtained with high selectivity, and the present invention was completed.

【0007】即ち、本発明は、周期律表における第VI
II族金属と結晶性チタノシリケートよりなる触媒を用
いて、プロピレンと水素及び酸素との反応を行うことを
特徴とするプロピレンオキシドの製法を提供するもので
ある。
[0007] That is, the present invention is directed to
The present invention provides a method for producing propylene oxide, which is characterized in that propylene is reacted with hydrogen and oxygen using a catalyst made of a group II metal and crystalline titanosilicate.

【0008】以下に本発明の方法について具体的に説明
する。
The method of the present invention will be explained in detail below.

【0009】本発明の方法においては、周期律表におけ
る第VIII族金属と結晶性チタノシリケートよりなる
触媒を使用する。ここでいうチタノシリケートとは、「
シリカライト」(ゼオライト構造をもつ結晶性のSiO
2で、E.M.Flanigenらにより開示されてい
る。(Nature,271,512(1978))の
結晶格子を形成するケイ素の一部を主としてチタンで置
換することにより得られるものを意味する。チタノシリ
ケートはどのような方法によって合成されたものでもよ
く、合成例としては特開昭56−96720号公報等が
挙げられる。チタノシリケートに含まれるチタンの量は
、シリカ/チタニア比(モル比)として、定義すること
ができ、シリカ/チタニア比は5〜200でよい。チタ
ンの量が少ないと触媒としての活性が十分でなく、また
多すぎるとチタノシリケ−トの結晶構造が壊れてしまう
ので好ましくない。また、チタノシリケートに含まれる
成分はチタンに限定されるものではなく、ホウ素、アル
ミニウム、リン、バナジウム、クロム、マンガン、鉄、
ガリウム、ジルコニウム等の元素を一種以上含んでいて
も差し支えない。
[0009] In the process of the present invention, a catalyst comprising a metal from group VIII of the periodic table and a crystalline titanosilicate is used. The titanosilicate mentioned here is “
Silicalite” (crystalline SiO with a zeolite structure)
2, E. M. As disclosed by Flanigen et al. (Nature, 271, 512 (1978)), which is obtained by replacing a part of the silicon forming the crystal lattice with titanium. Titanosilicate may be synthesized by any method, and examples of synthesis include JP-A-56-96720. The amount of titanium contained in the titanosilicate can be defined as the silica/titania ratio (molar ratio), and the silica/titania ratio may be from 5 to 200. If the amount of titanium is too small, the activity as a catalyst will not be sufficient, and if it is too large, the crystal structure of the titanosilicate will be destroyed, which is not preferable. In addition, the components contained in titanosilicate are not limited to titanium, but include boron, aluminum, phosphorus, vanadium, chromium, manganese, iron,
It may contain one or more elements such as gallium and zirconium.

【0010】調製したチタノシリケートは、そのまま使
用してもよく、成型して使用してもよい。成型して使用
する場合には、一般にバインダーを用いるが、バインダ
ーの種類に特に制限はなく、例えばシリカ、アルミナ等
が用いられる。
The prepared titanosilicate may be used as it is or after being molded. When molded and used, a binder is generally used, but the type of binder is not particularly limited, and for example, silica, alumina, etc. are used.

【0011】本発明の方法においては、周期律表におけ
る第VIII族金属と結晶性チタノシリケートよりなる
触媒を用いるが、前記第VIII族金属には、いずれの
第VIII族金属を用いてもよい。代表的には、パラジ
ウム、白金、イリジウム、ロジウム、ルテニウムなどが
使用できるが、特にパラジウムが好ましい。また、第V
III族金属は結晶性チタノシリケートに担持してもよ
く、シリカ,アルミナ,活性炭等に担持したのち、チタ
ノシリケートと物理的に混合してもよい。第VIII族
金属を担持する場合、担持する原料に特に制限はないが
、代表的なものとして、例えばパラジウムの場合には、
塩化パラジウム(II)、塩化テトラアンミンパラジウ
ム(II)、酢酸パラジウム(II)などを用いること
ができる。これらの金属をチタノシリケートに担持する
方法に特に制限はないが、含浸法等が用いられる。
In the method of the present invention, a catalyst consisting of a group VIII metal in the periodic table and crystalline titanosilicate is used; however, any group VIII metal may be used as the group VIII metal. . Typically, palladium, platinum, iridium, rhodium, ruthenium, etc. can be used, with palladium being particularly preferred. Also, Chapter V
The Group III metal may be supported on crystalline titanosilicate, or may be supported on silica, alumina, activated carbon, etc. and then physically mixed with titanosilicate. When supporting Group VIII metals, there are no particular restrictions on the supporting materials, but typical examples include, for example, in the case of palladium,
Palladium (II) chloride, tetraamminepalladium (II) chloride, palladium (II) acetate, etc. can be used. Although there are no particular limitations on the method of supporting these metals on titanosilicate, an impregnation method or the like may be used.

【0012】周期率表における第VIII族金属のチタ
ノシリケートに対する含有量は、金属原子として、0.
1〜10wt%がよい。0.1wt%未満では効果が少
なく、逆に10wt%を越えると、経済的見地から不利
である。含浸等の方法で周期律表における第VIII族
金属をチタノシリケートに担持する場合には、必要に応
じて焼成及び/または還元して触媒として用いることが
できる。焼成する際には、不活性ガスあるいは酸素含有
ガス流通下で行うことができる。焼成温度、時間に特に
制限はないが、例えば100〜700℃で30分〜24
時間焼成すればよい。また、還元を行う場合には、貴金
属成分が還元される限り還元剤、還元温度・時間に特に
制限はないが、例えば、還元剤として水素等を用いて、
常温〜500℃で30分から24時間還元すればよい。
[0012] The content of Group VIII metal in the periodic table in titanosilicate is 0.5% as a metal atom.
1 to 10 wt% is preferable. If it is less than 0.1 wt%, the effect is small, and if it exceeds 10 wt%, it is disadvantageous from an economic standpoint. When a group VIII metal in the periodic table is supported on titanosilicate by a method such as impregnation, it can be used as a catalyst after being calcined and/or reduced as necessary. The firing can be carried out under the flow of an inert gas or an oxygen-containing gas. There are no particular restrictions on the firing temperature and time, but for example, 30 minutes to 24 minutes at 100 to 700°C.
All you have to do is bake it for a while. In addition, when performing reduction, there are no particular restrictions on the reducing agent, reduction temperature and time as long as the noble metal component is reduced, but for example, using hydrogen etc. as the reducing agent,
Reduction may be carried out at room temperature to 500°C for 30 minutes to 24 hours.

【0013】調製した触媒は、そのまま使用してもよく
、シリカ、アルミナ等の希釈剤を添加して反応に用いて
もよい。さらに反応に使用する前に、調製した第VII
I族金属担持ゼオライト触媒は、水素含有ガスの気流下
で還元して用いることもできる。
The prepared catalyst may be used as it is, or may be used in the reaction with the addition of a diluent such as silica or alumina. Before using in further reactions, prepared Part VII
The Group I metal-supported zeolite catalyst can also be used after being reduced in a stream of hydrogen-containing gas.

【0014】また、反応を行う際には、必要に応じて溶
媒を使用してもよい。溶媒としては、水、炭素数6以下
のアルコール、ケトン、グリコール、カルボン酸等の極
性溶媒がよい。
[0014] Furthermore, when carrying out the reaction, a solvent may be used if necessary. As the solvent, polar solvents such as water, alcohols having 6 or less carbon atoms, ketones, glycols, and carboxylic acids are preferable.

【0015】反応方法は、連続流通式、半回分式あるい
は回分式のいずれであってもよいが、連続流通式が生産
性の面から好ましい。
The reaction method may be continuous flow type, semi-batch type or batch type, but continuous flow type is preferable from the viewpoint of productivity.

【0016】反応温度は0〜150℃がよく、10〜1
00℃が好ましい。また、溶媒を使用する際、反応温度
が溶媒の沸点を越える場合には、加圧して反応を行うこ
とができる。反応圧力に特に制限はないが、常圧〜20
0気圧の範囲がよい。
[0016] The reaction temperature is preferably 0 to 150°C, and 10 to 1
00°C is preferred. Further, when using a solvent, if the reaction temperature exceeds the boiling point of the solvent, the reaction can be carried out under pressure. There is no particular restriction on the reaction pressure, but normal pressure to 20
A range of 0 atm is good.

【0017】本発明の方法においては、反応原料の1成
分として酸素を用いるが、空気等の酸素含有ガスを用い
ることも可能である。
In the method of the present invention, oxygen is used as one component of the reaction raw material, but it is also possible to use an oxygen-containing gas such as air.

【0018】供給するガス中の各原料の含有量に特に制
限はないが、プロピレン(C3H6):10〜50vo
l%、水素(H2):5〜40vol%、酸素(O2)
:5〜50vol%がよい。また、安全性の面から各原
料の含有量は、爆発範囲の範囲外であることが好ましく
、窒素等の不活性ガスで希釈してもよい。
[0018] There is no particular restriction on the content of each raw material in the supplied gas, but propylene (C3H6): 10 to 50 vol.
1%, hydrogen (H2): 5-40vol%, oxygen (O2)
: 5 to 50 vol% is good. Further, from the viewpoint of safety, the content of each raw material is preferably outside the explosive range, and may be diluted with an inert gas such as nitrogen.

【0019】反応に使用する触媒の量は、チタノシリケ
ート中のチタンと単位時間当たりに供給される原料の1
つであるプロピレンのモル比で規定することができるが
、チタン/プロピレン比が0.00001〜0.1とな
る量の触媒を用いればよい。
The amount of catalyst used in the reaction is the titanium in the titanosilicate and 1 of the raw material supplied per unit time.
Although it can be defined by the molar ratio of propylene, it is sufficient to use a catalyst in an amount such that the titanium/propylene ratio is 0.00001 to 0.1.

【0020】反応に要する時間は、ガス空間速度(1時
間当たりに供給したC3H6、H2、O2及び不活性ガ
スの全体積/単位触媒体積;以下、GHSVと略称する
。)として規定することができ、GHSVは、2000
〜40000hr−1(20℃)がよい。
The time required for the reaction can be defined as the gas hourly space velocity (total volume of C3H6, H2, O2 and inert gas supplied per hour/unit catalyst volume; hereinafter abbreviated as GHSV). , GHSV is 2000
~40000hr-1 (20°C) is good.

【0021】[0021]

【発明の効果】本発明によれば、併産品もなく、また高
価な過酸化水素を用いることなく、周期律表における第
VIII族金属と結晶性チタノシリケートよりなる触媒
を用いて、プロピレンと水素及び酸素との反応により、
高選択的にプロピレンオキシドを得ることができ、工業
的見地から有意義である。
Effects of the Invention According to the present invention, propylene and By reaction with hydrogen and oxygen,
Propylene oxide can be obtained with high selectivity, which is significant from an industrial standpoint.

【0022】[0022]

【実施例】以下に、本発明を実施例を用いてさらに詳細
に説明するが、これらの実施例は本発明の概要を示すも
ので、本発明はこれらの実施例に限定されるものではな
い。 実施例1 特開昭56−96720号公報の方法に従って調製した
シリカ/チタニア比が67(ICP発光分析により決定
した)のチタノシリケートに塩化テトラアンミンパラジ
ウム(II)水溶液をチタノシリケートに対して、パラ
ジウム原子の重量が0.5wt%になるように加え、1
時間撹拌混合した。蒸発乾固後、150℃で1時間5%
希釈水素流通下で還元し、これを触媒とした。
[Examples] The present invention will be explained in more detail using Examples below, but these Examples merely show the outline of the present invention, and the present invention is not limited to these Examples. . Example 1 A titanosilicate with a silica/titania ratio of 67 (determined by ICP emission spectrometry) prepared according to the method of JP-A-56-96720 was treated with an aqueous solution of tetraamminepalladium(II) chloride. Add so that the weight of palladium atoms is 0.5 wt%,
Stir and mix for an hour. After evaporation to dryness, 5% at 150℃ for 1 hour
It was reduced under diluted hydrogen flow and used as a catalyst.

【0023】反応には、常圧・液相・流通系反応装置を
使用し、反応を行った。
The reaction was carried out using a normal pressure, liquid phase, flow system reactor.

【0024】触媒1.0gをt−ブチルアルコール60
mlに懸濁させ、ここに、C3H6、H2、O2をそれ
ぞれ60,40,40mmol/hrで供給し、これを
窒素で希釈して、GHSV=7970hr−1(20℃
)とした。反応温度は45℃とした。
[0024] 1.0 g of catalyst was mixed with 60 g of t-butyl alcohol.
ml, and C3H6, H2, and O2 were supplied thereto at 60, 40, and 40 mmol/hr, respectively, and this was diluted with nitrogen to give GHSV=7970 hr-1 (at 20°C
). The reaction temperature was 45°C.

【0025】反応生成物は、ガスクロマトグラフにより
分析した。反応開始5時間後までの結果を図1に示した
。また、反応開始5時間目の各生成物の選択率は、プロ
ピレンオキシド:98.6%、プロパン(C3H8):
1.4%であった。
The reaction product was analyzed by gas chromatography. The results up to 5 hours after the start of the reaction are shown in FIG. Furthermore, the selectivity of each product at 5 hours from the start of the reaction was 98.6% for propylene oxide and 98.6% for propane (C3H8).
It was 1.4%.

【0026】実施例2,3 C3H6、H2、O2の供給量をそれぞれ60,80,
40及び60,40,80mmol/hrとした以外は
、実施例1と全く同様にして反応を行った。反応開始5
時間後の結果を表1に示した。
Examples 2 and 3 The supply amounts of C3H6, H2, and O2 were set to 60, 80,
The reaction was carried out in exactly the same manner as in Example 1, except that the reaction rates were 40, 60, 40, and 80 mmol/hr. Reaction start 5
The results after hours are shown in Table 1.

【0027】[0027]

【表1】 実施例4,5 チタノシリケートに対するパラジウム(Pd)原子の重
量がそれぞれ2,5wt%とした触媒を用いた以外は、
実施例1と全く同様にして反応を行った。反応開始5時
間後の結果を表2に示した。
[Table 1] Examples 4 and 5 Except for using catalysts in which the weight of palladium (Pd) atoms relative to titanosilicate was 2.5 wt%, respectively.
The reaction was carried out in exactly the same manner as in Example 1. Table 2 shows the results 5 hours after the start of the reaction.

【0028】[0028]

【表2】 実施例6〜9 パラジウムを担持するチタノシリケートとして、シリカ
/チタニア比が33のチタノシリケートを使用し、反応
温度をそれぞれ25,45,65,82℃とした以外は
、実施例1と全く同様にして反応を行った。反応開始5
時間後の結果を表3に示した。
[Table 2] Examples 6 to 9 The examples were carried out except that a titanosilicate with a silica/titania ratio of 33 was used as the titanosilicate supporting palladium, and the reaction temperature was 25, 45, 65, and 82°C, respectively. The reaction was carried out in exactly the same manner as in Example 1. Reaction start 5
The results after hours are shown in Table 3.

【0029】[0029]

【表3】 実施例10 パラジウムを担持するチタノシリケートとして、シリカ
/チタニア比が33のチタノシリケートを使用し、反応
溶媒を水とした以外は、実施例1と全く同様にして反応
を行った。反応開始5時間後、プロピレンオキシドが1
.56mmol得られた。また、反応開始5時間目の各
生成物の選択率はプロピレンオキシド:99.8%、プ
ロパン:0.2%であった。
[Table 3] Example 10 The reaction was carried out in the same manner as in Example 1, except that a titanosilicate with a silica/titania ratio of 33 was used as the titanosilicate supporting palladium, and water was used as the reaction solvent. Ta. 5 hours after the start of the reaction, propylene oxide was 1
.. 56 mmol was obtained. Further, the selectivity of each product 5 hours after the start of the reaction was 99.8% for propylene oxide and 0.2% for propane.

【0030】実施例11,12 シリカ/チタニア比が15のチタノシリケートを用い、
担持する金属(担持率0.5wt%)をそれぞれパラジ
ウム、白金とした触媒を用いた以外は、実施例1と全く
同様にして反応を行った。反応開始5時間後の結果を表
4に示した。
Examples 11 and 12 Using titanosilicate with a silica/titania ratio of 15,
The reaction was carried out in exactly the same manner as in Example 1, except that catalysts in which palladium and platinum were used as supported metals (supporting rate 0.5 wt%) were used, respectively. Table 4 shows the results 5 hours after the start of the reaction.

【0031】[0031]

【表4】 実施例13 150℃で1時間水素還元した0.5wt%パラジウム
担持活性炭(日本エンゲルハルド(株)製)1gとシリ
カ/チタニア比33のチタノシリケート1gを粉砕混合
したものを触媒として使用した以外は、実施例1と全く
同様にして反応を行った。反応開始5時間後、プロピレ
ンオキシドが1.36mmol得られた。また、反応開
始5時間目の各生成物の選択率は、プロピレンオキシド
:99.8%、プロパン:0.2%であった。
[Table 4] Example 13 A catalyst was prepared by pulverizing and mixing 1 g of 0.5 wt% palladium-supported activated carbon (manufactured by Nippon Engelhard Co., Ltd.) that had been hydrogen-reduced at 150°C for 1 hour and 1 g of titanosilicate with a silica/titania ratio of 33. The reaction was carried out in exactly the same manner as in Example 1, except that the following was used. Five hours after the start of the reaction, 1.36 mmol of propylene oxide was obtained. Further, the selectivity of each product 5 hours after the start of the reaction was 99.8% for propylene oxide and 0.2% for propane.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1は、実施例1のプロピレンのエポキシ化に
おける経過時間とプロピレンオキシド生成量の関係を示
した図である。
FIG. 1 is a diagram showing the relationship between the elapsed time and the amount of propylene oxide produced in the epoxidation of propylene in Example 1.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】周期律表における第VIII族金属と結晶
性チタノシリケートよりなる触媒を用いて、プロピレン
と水素及び酸素との反応を行うことを特徴とするプロピ
レンオキシドの製法。
1. A method for producing propylene oxide, which comprises reacting propylene with hydrogen and oxygen using a catalyst comprising a Group VIII metal in the periodic table and crystalline titanosilicate.
JP3150850A 1991-05-28 1991-05-28 Propylene oxide production method Expired - Fee Related JP3044836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3150850A JP3044836B2 (en) 1991-05-28 1991-05-28 Propylene oxide production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3150850A JP3044836B2 (en) 1991-05-28 1991-05-28 Propylene oxide production method

Publications (2)

Publication Number Publication Date
JPH04352771A true JPH04352771A (en) 1992-12-07
JP3044836B2 JP3044836B2 (en) 2000-05-22

Family

ID=15505745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3150850A Expired - Fee Related JP3044836B2 (en) 1991-05-28 1991-05-28 Propylene oxide production method

Country Status (1)

Country Link
JP (1) JP3044836B2 (en)

Cited By (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0640598A1 (en) * 1993-08-06 1995-03-01 Sumitomo Chemical Company, Limited Process for producing olefin oxides
EP0772491A1 (en) 1994-07-20 1997-05-14 Basf Aktiengesellschaft Oxidation catalyst, process for its preparation and oxidation process using said oxidation catalyst
US5932750A (en) * 1996-03-21 1999-08-03 Agency Of Industrial Science And Technology Catalysts for partial oxidation of hydrocarbons and method of partial oxidation of hydrocarbons
US5965754A (en) * 1996-07-01 1999-10-12 The Dow Chemical Company Process for the direct oxidation of olefins to olefin oxides
US5973171A (en) * 1998-10-07 1999-10-26 Arco Chemical Technology, Lp Propylene oxide production
US5977009A (en) * 1997-04-02 1999-11-02 Arco Chemical Technology, Lp Catalyst compositions derived from titanium-containing molecule sieves
US6005123A (en) * 1998-04-16 1999-12-21 Arco Chemical Technology, L.P. Epoxidation process
US6008389A (en) * 1996-06-13 1999-12-28 Basf Aktiengesellschaft Oxidation catalyst and process for the production of epoxides from olefines, hydrogen and oxygen using said oxidation catalyst
US6008388A (en) * 1998-04-16 1999-12-28 Arco Chemical Technology, L.P. Epoxidation process
US6042807A (en) * 1997-04-02 2000-03-28 Arco Chemical Technology, L.P. Tellurium-containing molecular sieves
US6063942A (en) * 1999-09-27 2000-05-16 Arco Chemical Technology, L.P. Catalyst preparation and epoxidation process
US6194591B1 (en) 2000-04-27 2001-02-27 Arco Chemical Technology, L.P. Aqueous epoxidation process using modified titanium zeolite
US6255499B1 (en) 1999-04-08 2001-07-03 The Dow Chemical Company Process for the hydro-oxidation of olefins to olefin oxides using oxidized gold catalyst
US6281369B1 (en) 2000-12-07 2001-08-28 Arco Chemical Technology, L.P. Epoxidation catalyst and process
US6307073B1 (en) 2000-07-25 2001-10-23 Arco Chemical Technology, L.P. Direct epoxidation process using a mixed catalyst system
US6307072B2 (en) 1999-12-24 2001-10-23 Nippon Shokubai Co., Ltd. Method for production of oxygen-containing organic compound
US6310224B1 (en) 2001-01-19 2001-10-30 Arco Chemical Technology, L.P. Epoxidation catalyst and process
US6323351B1 (en) 1997-06-30 2001-11-27 The Dow Chemical Company Process for the direct oxidation of olefins to olefin oxides
US6376686B1 (en) 2001-09-05 2002-04-23 Arco Chemical Technology, L.P. Direct epoxidation process
US6399794B1 (en) 2001-11-15 2002-06-04 Arco Chemical Technology, L.P. Direct epoxidation process using carbonate modifiers
US6403815B1 (en) 2001-11-29 2002-06-11 Arco Chemical Technology, L.P. Direct epoxidation process using a mixed catalyst system
US6417378B1 (en) 2001-10-09 2002-07-09 Arco Chemical Technology, L.P. Direct epoxidation process using pre-treated titanium zeolite
US6441204B1 (en) 2001-10-19 2002-08-27 Arco Chemical Technology, L.P. Direct epoxidation process using a mixed catalyst system
US6441203B1 (en) 2001-10-19 2002-08-27 Arco Chemical Technology, L.P. Direct epoxidation process using a palladium on niobium-containing support
US6498259B1 (en) 2001-10-19 2002-12-24 Arco Chemical Technology L.P. Direct epoxidation process using a mixed catalyst system
US6562986B2 (en) 1997-06-30 2003-05-13 Dow Global Technologies, Inc. Process for the direct oxidation of olefins to olefin oxides
US6603028B1 (en) 1998-08-07 2003-08-05 Bayer Aktiengesellschaft Method for oxidizing hydrocarbons
US6646142B1 (en) 1998-12-16 2003-11-11 Dow Global Technologies Inc. Process for the direct oxidation of olefins to olefin oxides
US6710192B2 (en) 2001-10-16 2004-03-23 Arco Chemical Technology, L.P. Dense phase epoxidation
US6753287B1 (en) 1999-04-23 2004-06-22 Bayer Aktiengesellschaft Sol-gel hybrid materials containing precious metals as catalysts for partial oxidation of hydrocarbons
US6759541B2 (en) 2002-06-03 2004-07-06 Arco Chemical Technology, L.P. Epoxidation process using a supported niobium oxide catalyst
WO2004067523A1 (en) * 2003-01-23 2004-08-12 Arco Chemical Technology, L.P. Epoxidation process using oxygen, hydrogen and a catalyst
US6884898B1 (en) 2003-12-08 2005-04-26 Arco Chemical Technology, L.P. Propylene oxide process
WO2005077531A1 (en) 2004-02-03 2005-08-25 Lyondell Chemical Technology, L.P. Epoxidation process using a mixed catalyst system
WO2005082529A1 (en) 2004-02-24 2005-09-09 Lyondell Chemical Technology, L.P. Catalyst regeneration process
WO2005092874A1 (en) * 2004-03-17 2005-10-06 Lyondell Chemical Technology, L.P. Process for the preparation of propylene oxide
US6972337B1 (en) 2004-08-12 2005-12-06 Lyondell Chemical Technology, L.P. Epoxidation catalyst
US6984606B2 (en) 2004-02-19 2006-01-10 Lyondell Chemical Technology, L.P. Epoxidation catalyst
US7026492B1 (en) 2004-10-29 2006-04-11 Lyondell Chemical Technology, L.P. Direct epoxidation process using modifiers
US7057056B1 (en) 2004-12-17 2006-06-06 Lyondell Chemical Technology, L.P. Epoxidation catalyst
US7138535B1 (en) 2005-06-01 2006-11-21 Lyondell Chemical Technology, L.P. Direct epoxidation process
US7182932B2 (en) 2004-01-30 2007-02-27 Lyondell Chemical Technology, L.P. Catalyst preparation
WO2007058709A1 (en) * 2005-11-17 2007-05-24 Lyondell Chemical Technology, L.P. Epoxidation catalyst
WO2007058710A1 (en) * 2005-11-17 2007-05-24 Lyondell Chemical Technology, L.P. Epoxidation catalyst
US7232783B2 (en) 2005-07-02 2007-06-19 Lyondell Chemical Technology, L.P. Propylene oxide catalyst and use
US7238817B1 (en) 2006-02-22 2007-07-03 Lyondell Chemical Technology, L.P. Direct epoxidation process
US7271117B2 (en) 2004-06-17 2007-09-18 Lyondell Chemical Technology, L.P. Epoxidation catalyst
US7273826B2 (en) 2005-07-26 2007-09-25 Lyondell Chemical Technology, L.P. Epoxidation catalyst
WO2007126139A1 (en) * 2006-04-27 2007-11-08 Sumitomo Chemical Company, Limited Method for producing epoxy compound
WO2007133363A1 (en) 2006-05-02 2007-11-22 Lyondell Chemical Technology, L.P. Reaction system
JP2008502476A (en) * 2004-06-14 2008-01-31 ライオンデル ケミカル テクノロジー、 エル.ピー. Catalyst regeneration method
WO2008041654A1 (en) * 2006-10-02 2008-04-10 Sumitomo Chemical Company, Limited Process for production of epoxy compound
US7365217B2 (en) 2006-01-25 2008-04-29 Lyondell Chemical Technology, L.P. Oxidation process
US7381675B1 (en) 2006-12-19 2008-06-03 Lyondell Chemical Technology, L.P. Direct epoxidation catalyst
US7387981B1 (en) 2007-06-28 2008-06-17 Lyondell Chemical Technology, L.P. Direct epoxidation catalyst and process
WO2008118265A1 (en) 2007-03-23 2008-10-02 Lyondell Chemical Technology, L.P. Propylene oxide recovery process
US7432384B2 (en) 2005-10-25 2008-10-07 Lyondell Chemical Technology, L.P. Direct epoxidation process
US7453003B1 (en) 2007-08-29 2008-11-18 Lyondell Chemical Technology, L.P. Direct epoxidation catalyst and process
US7470801B1 (en) 2007-10-24 2008-12-30 Lyondell Chemical Technology, L.P. Direct epoxidation process using a mixed catalyst system
WO2009008423A1 (en) * 2007-07-11 2009-01-15 Sumitomo Chemical Company, Limited Apparatus and method for producing epoxy compound
US7531675B1 (en) 2007-10-24 2009-05-12 Lyondell Chemical Technology, L.P. Direct epoxidation process using improved catalyst composition
US7563740B2 (en) 2006-12-19 2009-07-21 Lyondell Chemical Technology, L.P. Direct epoxidation process
US7595410B2 (en) 2006-07-18 2009-09-29 Lyondell Chemical Technology, L.P. Direct epoxidation process using improved catalyst composition
US7615654B2 (en) 2005-10-20 2009-11-10 Lyondell Chemical Technology, L.P. Direct epoxidation process
US7671222B2 (en) 2006-07-12 2010-03-02 Lyondell Chemical Technology, L.P. Direct epoxidation process using a mixed catalyst system
US7696367B2 (en) 2007-04-10 2010-04-13 Lyondell Chemical Technology, L.P. Direct epoxidation process using a mixed catalyst system
US7700790B2 (en) 2006-10-27 2010-04-20 Lyondell Chemical Technology, L.P. Alkylene oxide process
JP2010095510A (en) * 2008-09-19 2010-04-30 Oita Univ Method for catalytically partially oxidizing hydrocarbon
JP2010522689A (en) * 2007-03-30 2010-07-08 中国石油化工股▲ふん▼有限公司 Titanosilicate material containing noble metal and method for producing the same
US7767835B2 (en) 2008-12-18 2010-08-03 Lyondell Chemical Technology, L.P. Direct epoxidation process using improved catalyst
WO2010151302A1 (en) 2009-06-26 2010-12-29 Lyondell Chemical Technology, L.P. Epoxidation process
JP2011111431A (en) * 2009-11-30 2011-06-09 Tosoh Corp Process for simultaneously producing epoxy compound and ketone compound
WO2011075302A1 (en) 2009-12-17 2011-06-23 Lyondell Chemical Technology, L.P. Direct epoxidation catalyst and process
US7994349B2 (en) 2006-01-11 2011-08-09 Sumitomo Chemical Company, Limited Process for producing of epoxy compound
US7999125B2 (en) 2007-06-21 2011-08-16 Sumitomo Chemical Company, Limited Method for producing propylene oxide
WO2012018408A2 (en) 2010-02-01 2012-02-09 Lyondell Chemical Technology, L.P. Process for making titanium-mww zeolite
WO2012044827A1 (en) 2010-09-30 2012-04-05 Lyondell Chemical Technology, L.P. Direct epoxidation process
JP2012072092A (en) * 2010-09-29 2012-04-12 Tosoh Corp Method for producing epoxy compound
JP2012077021A (en) * 2010-09-30 2012-04-19 Tosoh Corp Method for producing epoxy compound
JP2012082137A (en) * 2010-10-06 2012-04-26 Tosoh Corp Method for producing epoxy compound
US8273907B2 (en) 2005-12-26 2012-09-25 Sumitomo Chemical Company, Limited Process for producing propylene oxide
WO2016164585A1 (en) 2015-04-09 2016-10-13 Lyondell Chemical Technology, L.P. Improved catalyst performance in propylene epoxidation
CN116178310A (en) * 2021-11-26 2023-05-30 中国石油化工股份有限公司 Method for preparing epoxy olefin by olefin oxygen epoxidation

Cited By (118)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0640598A1 (en) * 1993-08-06 1995-03-01 Sumitomo Chemical Company, Limited Process for producing olefin oxides
US5525741A (en) * 1993-08-06 1996-06-11 Sumitomo Chemical Company, Limited Process for producing olefin oxides
US5573989A (en) * 1993-08-06 1996-11-12 Sumitomo Chemical Company, Limited Process for producing olefin oxides
EP0772491A1 (en) 1994-07-20 1997-05-14 Basf Aktiengesellschaft Oxidation catalyst, process for its preparation and oxidation process using said oxidation catalyst
US6034028A (en) * 1996-03-21 2000-03-07 Agency Of Industrial Science And Technology Catalysts for partial oxidation of hydrocarbons and method of partial oxidation of hydrocarbons
US5932750A (en) * 1996-03-21 1999-08-03 Agency Of Industrial Science And Technology Catalysts for partial oxidation of hydrocarbons and method of partial oxidation of hydrocarbons
US6008389A (en) * 1996-06-13 1999-12-28 Basf Aktiengesellschaft Oxidation catalyst and process for the production of epoxides from olefines, hydrogen and oxygen using said oxidation catalyst
US6031116A (en) * 1996-07-01 2000-02-29 The Dow Chemical Company Process for the direct oxidation of olefins to olefin oxides
US6309998B1 (en) 1996-07-01 2001-10-30 The Dow Chemical Company Process for the direct oxidation of olefins to olefin oxides
US6524991B2 (en) 1996-07-01 2003-02-25 Dow Global Technologies Inc. Process for the direct oxidation of olefins to olefin oxides
US5965754A (en) * 1996-07-01 1999-10-12 The Dow Chemical Company Process for the direct oxidation of olefins to olefin oxides
US6042807A (en) * 1997-04-02 2000-03-28 Arco Chemical Technology, L.P. Tellurium-containing molecular sieves
US6329537B1 (en) * 1997-04-02 2001-12-11 Arco Chemical Technology, L.P. Tellurium-containing molecular sieves
US5977009A (en) * 1997-04-02 1999-11-02 Arco Chemical Technology, Lp Catalyst compositions derived from titanium-containing molecule sieves
US6323351B1 (en) 1997-06-30 2001-11-27 The Dow Chemical Company Process for the direct oxidation of olefins to olefin oxides
US6562986B2 (en) 1997-06-30 2003-05-13 Dow Global Technologies, Inc. Process for the direct oxidation of olefins to olefin oxides
US6670491B2 (en) 1997-06-30 2003-12-30 Dow Global Technologies Inc. Process for the direct oxidation of olefins to olefin oxides
US6008388A (en) * 1998-04-16 1999-12-28 Arco Chemical Technology, L.P. Epoxidation process
EP1071675A1 (en) * 1998-04-16 2001-01-31 ARCO Chemical Technology, L.P. Epoxidation process
US6005123A (en) * 1998-04-16 1999-12-21 Arco Chemical Technology, L.P. Epoxidation process
EP1077963A1 (en) * 1998-04-16 2001-02-28 ARCO Chemical Technology, L.P. Epoxidation process
EP1077963A4 (en) * 1998-04-16 2003-01-29 Arco Chem Tech Epoxidation process
EP1071675A4 (en) * 1998-04-16 2003-01-29 Arco Chem Tech Epoxidation process
US6603028B1 (en) 1998-08-07 2003-08-05 Bayer Aktiengesellschaft Method for oxidizing hydrocarbons
US5973171A (en) * 1998-10-07 1999-10-26 Arco Chemical Technology, Lp Propylene oxide production
US6646142B1 (en) 1998-12-16 2003-11-11 Dow Global Technologies Inc. Process for the direct oxidation of olefins to olefin oxides
US6255499B1 (en) 1999-04-08 2001-07-03 The Dow Chemical Company Process for the hydro-oxidation of olefins to olefin oxides using oxidized gold catalyst
US6753287B1 (en) 1999-04-23 2004-06-22 Bayer Aktiengesellschaft Sol-gel hybrid materials containing precious metals as catalysts for partial oxidation of hydrocarbons
US6063942A (en) * 1999-09-27 2000-05-16 Arco Chemical Technology, L.P. Catalyst preparation and epoxidation process
US6307072B2 (en) 1999-12-24 2001-10-23 Nippon Shokubai Co., Ltd. Method for production of oxygen-containing organic compound
US6194591B1 (en) 2000-04-27 2001-02-27 Arco Chemical Technology, L.P. Aqueous epoxidation process using modified titanium zeolite
US6307073B1 (en) 2000-07-25 2001-10-23 Arco Chemical Technology, L.P. Direct epoxidation process using a mixed catalyst system
US6281369B1 (en) 2000-12-07 2001-08-28 Arco Chemical Technology, L.P. Epoxidation catalyst and process
US6555493B2 (en) 2000-12-07 2003-04-29 Arco Chemical Technology, L.P. Solid epoxidation catalyst and preparation
JP2004520364A (en) * 2001-01-19 2004-07-08 アルコ ケミカル テクノロジィ, エル.ピー. Epoxidation catalyst and epoxidation method
US6310224B1 (en) 2001-01-19 2001-10-30 Arco Chemical Technology, L.P. Epoxidation catalyst and process
US6376686B1 (en) 2001-09-05 2002-04-23 Arco Chemical Technology, L.P. Direct epoxidation process
WO2003020713A1 (en) * 2001-09-05 2003-03-13 Arco Chemical Technology, L.P. Direct epoxidation process
US6417378B1 (en) 2001-10-09 2002-07-09 Arco Chemical Technology, L.P. Direct epoxidation process using pre-treated titanium zeolite
WO2003031423A1 (en) * 2001-10-09 2003-04-17 Arco Chemical Technology, L.P. Direct epoxidation process using pre-treated titanium zeolite
US6710192B2 (en) 2001-10-16 2004-03-23 Arco Chemical Technology, L.P. Dense phase epoxidation
EP1436276B2 (en) 2001-10-19 2009-10-21 Lyondell Chemical Technology, L.P. Direct epoxidation process using a mixed catalyst system
US6498259B1 (en) 2001-10-19 2002-12-24 Arco Chemical Technology L.P. Direct epoxidation process using a mixed catalyst system
US6441203B1 (en) 2001-10-19 2002-08-27 Arco Chemical Technology, L.P. Direct epoxidation process using a palladium on niobium-containing support
US6441204B1 (en) 2001-10-19 2002-08-27 Arco Chemical Technology, L.P. Direct epoxidation process using a mixed catalyst system
WO2003035630A1 (en) * 2001-10-19 2003-05-01 Arco Chemical Technology, L.P. Direct epoxidation process using a mixed catalyst system
US6399794B1 (en) 2001-11-15 2002-06-04 Arco Chemical Technology, L.P. Direct epoxidation process using carbonate modifiers
US6403815B1 (en) 2001-11-29 2002-06-11 Arco Chemical Technology, L.P. Direct epoxidation process using a mixed catalyst system
US6759541B2 (en) 2002-06-03 2004-07-06 Arco Chemical Technology, L.P. Epoxidation process using a supported niobium oxide catalyst
WO2004067523A1 (en) * 2003-01-23 2004-08-12 Arco Chemical Technology, L.P. Epoxidation process using oxygen, hydrogen and a catalyst
US6884898B1 (en) 2003-12-08 2005-04-26 Arco Chemical Technology, L.P. Propylene oxide process
US7182932B2 (en) 2004-01-30 2007-02-27 Lyondell Chemical Technology, L.P. Catalyst preparation
JP2007534666A (en) * 2004-02-03 2007-11-29 ライオンデル ケミカル テクノロジー、 エル.ピー. Epoxidation process using mixed catalyst system
WO2005077531A1 (en) 2004-02-03 2005-08-25 Lyondell Chemical Technology, L.P. Epoxidation process using a mixed catalyst system
US6984606B2 (en) 2004-02-19 2006-01-10 Lyondell Chemical Technology, L.P. Epoxidation catalyst
WO2005082529A1 (en) 2004-02-24 2005-09-09 Lyondell Chemical Technology, L.P. Catalyst regeneration process
US7256149B2 (en) 2004-02-24 2007-08-14 Lyondell Chemical Technology, L.P. Catalyst regeneration process
WO2005092874A1 (en) * 2004-03-17 2005-10-06 Lyondell Chemical Technology, L.P. Process for the preparation of propylene oxide
JP2008502476A (en) * 2004-06-14 2008-01-31 ライオンデル ケミカル テクノロジー、 エル.ピー. Catalyst regeneration method
US7271117B2 (en) 2004-06-17 2007-09-18 Lyondell Chemical Technology, L.P. Epoxidation catalyst
US6972337B1 (en) 2004-08-12 2005-12-06 Lyondell Chemical Technology, L.P. Epoxidation catalyst
US7026492B1 (en) 2004-10-29 2006-04-11 Lyondell Chemical Technology, L.P. Direct epoxidation process using modifiers
US7057056B1 (en) 2004-12-17 2006-06-06 Lyondell Chemical Technology, L.P. Epoxidation catalyst
US7138535B1 (en) 2005-06-01 2006-11-21 Lyondell Chemical Technology, L.P. Direct epoxidation process
US7232783B2 (en) 2005-07-02 2007-06-19 Lyondell Chemical Technology, L.P. Propylene oxide catalyst and use
US7273826B2 (en) 2005-07-26 2007-09-25 Lyondell Chemical Technology, L.P. Epoxidation catalyst
US7476770B2 (en) 2005-07-26 2009-01-13 Lyondell Chemical Technology, L.P. Epoxidation catalyst
US7615654B2 (en) 2005-10-20 2009-11-10 Lyondell Chemical Technology, L.P. Direct epoxidation process
US7432384B2 (en) 2005-10-25 2008-10-07 Lyondell Chemical Technology, L.P. Direct epoxidation process
JP2009515809A (en) * 2005-11-17 2009-04-16 ライオンデル ケミカル テクノロジー、 エル.ピー. Epoxidation reaction catalyst
US7288237B2 (en) 2005-11-17 2007-10-30 Lyondell Chemical Technology, L.P. Epoxidation catalyst
WO2007058709A1 (en) * 2005-11-17 2007-05-24 Lyondell Chemical Technology, L.P. Epoxidation catalyst
WO2007058710A1 (en) * 2005-11-17 2007-05-24 Lyondell Chemical Technology, L.P. Epoxidation catalyst
US8273907B2 (en) 2005-12-26 2012-09-25 Sumitomo Chemical Company, Limited Process for producing propylene oxide
US7994349B2 (en) 2006-01-11 2011-08-09 Sumitomo Chemical Company, Limited Process for producing of epoxy compound
US7365217B2 (en) 2006-01-25 2008-04-29 Lyondell Chemical Technology, L.P. Oxidation process
US7238817B1 (en) 2006-02-22 2007-07-03 Lyondell Chemical Technology, L.P. Direct epoxidation process
WO2007126139A1 (en) * 2006-04-27 2007-11-08 Sumitomo Chemical Company, Limited Method for producing epoxy compound
US8207359B2 (en) 2006-04-27 2012-06-26 Sumitomo Chemical Company, Limited Method for producing epoxy compound
WO2007133363A1 (en) 2006-05-02 2007-11-22 Lyondell Chemical Technology, L.P. Reaction system
US7645892B2 (en) 2006-05-02 2010-01-12 Lyondell Chemical Technology, L.P. Reaction system
US7671222B2 (en) 2006-07-12 2010-03-02 Lyondell Chemical Technology, L.P. Direct epoxidation process using a mixed catalyst system
US7595410B2 (en) 2006-07-18 2009-09-29 Lyondell Chemical Technology, L.P. Direct epoxidation process using improved catalyst composition
JP2009543863A (en) * 2006-07-18 2009-12-10 ライオンデル ケミカル テクノロジー、 エル.ピー. Direct epoxidation process using improved catalyst composition
JP2008088106A (en) * 2006-10-02 2008-04-17 Sumitomo Chemical Co Ltd Method for producing epoxy compound
EP2085393A1 (en) * 2006-10-02 2009-08-05 Sumitomo Chemical Company, Limited Process for production of epoxy compound
WO2008041654A1 (en) * 2006-10-02 2008-04-10 Sumitomo Chemical Company, Limited Process for production of epoxy compound
EP2085393A4 (en) * 2006-10-02 2011-01-19 Sumitomo Chemical Co Process for production of epoxy compound
US7700790B2 (en) 2006-10-27 2010-04-20 Lyondell Chemical Technology, L.P. Alkylene oxide process
US7563740B2 (en) 2006-12-19 2009-07-21 Lyondell Chemical Technology, L.P. Direct epoxidation process
US7381675B1 (en) 2006-12-19 2008-06-03 Lyondell Chemical Technology, L.P. Direct epoxidation catalyst
WO2008118265A1 (en) 2007-03-23 2008-10-02 Lyondell Chemical Technology, L.P. Propylene oxide recovery process
US7718040B2 (en) 2007-03-23 2010-05-18 Lyondell Chemical Technology, L.P. Propylene oxide recovery process
US8349756B2 (en) 2007-03-30 2013-01-08 China Petroleum & Chemical Corporation Noble metal-containing titanosilicate material and its preparation method
JP2010522689A (en) * 2007-03-30 2010-07-08 中国石油化工股▲ふん▼有限公司 Titanosilicate material containing noble metal and method for producing the same
US7696367B2 (en) 2007-04-10 2010-04-13 Lyondell Chemical Technology, L.P. Direct epoxidation process using a mixed catalyst system
US7999125B2 (en) 2007-06-21 2011-08-16 Sumitomo Chemical Company, Limited Method for producing propylene oxide
US7387981B1 (en) 2007-06-28 2008-06-17 Lyondell Chemical Technology, L.P. Direct epoxidation catalyst and process
WO2009008423A1 (en) * 2007-07-11 2009-01-15 Sumitomo Chemical Company, Limited Apparatus and method for producing epoxy compound
US7453003B1 (en) 2007-08-29 2008-11-18 Lyondell Chemical Technology, L.P. Direct epoxidation catalyst and process
US7470801B1 (en) 2007-10-24 2008-12-30 Lyondell Chemical Technology, L.P. Direct epoxidation process using a mixed catalyst system
US7531675B1 (en) 2007-10-24 2009-05-12 Lyondell Chemical Technology, L.P. Direct epoxidation process using improved catalyst composition
JP2010095510A (en) * 2008-09-19 2010-04-30 Oita Univ Method for catalytically partially oxidizing hydrocarbon
US7767835B2 (en) 2008-12-18 2010-08-03 Lyondell Chemical Technology, L.P. Direct epoxidation process using improved catalyst
WO2010151302A1 (en) 2009-06-26 2010-12-29 Lyondell Chemical Technology, L.P. Epoxidation process
US8124797B2 (en) 2009-06-26 2012-02-28 Lyondell Chemical Technology, Lp Epoxidation process
JP2011111431A (en) * 2009-11-30 2011-06-09 Tosoh Corp Process for simultaneously producing epoxy compound and ketone compound
WO2011075302A1 (en) 2009-12-17 2011-06-23 Lyondell Chemical Technology, L.P. Direct epoxidation catalyst and process
US8124798B2 (en) 2009-12-17 2012-02-28 Lyondell Chemical Technology, Lp Direct epoxidation catalyst and process
WO2012018408A2 (en) 2010-02-01 2012-02-09 Lyondell Chemical Technology, L.P. Process for making titanium-mww zeolite
US8124555B2 (en) 2010-02-01 2012-02-28 Lyondell Chemical Technology L.P. Process for making titanium-MWW zeolite
JP2012072092A (en) * 2010-09-29 2012-04-12 Tosoh Corp Method for producing epoxy compound
JP2012077021A (en) * 2010-09-30 2012-04-19 Tosoh Corp Method for producing epoxy compound
WO2012044827A1 (en) 2010-09-30 2012-04-05 Lyondell Chemical Technology, L.P. Direct epoxidation process
US8440846B2 (en) 2010-09-30 2013-05-14 Lyondell Chemical Technology, L.P. Direct epoxidation process
JP2012082137A (en) * 2010-10-06 2012-04-26 Tosoh Corp Method for producing epoxy compound
WO2016164585A1 (en) 2015-04-09 2016-10-13 Lyondell Chemical Technology, L.P. Improved catalyst performance in propylene epoxidation
CN116178310A (en) * 2021-11-26 2023-05-30 中国石油化工股份有限公司 Method for preparing epoxy olefin by olefin oxygen epoxidation

Also Published As

Publication number Publication date
JP3044836B2 (en) 2000-05-22

Similar Documents

Publication Publication Date Title
JPH04352771A (en) Production of propylene oxide
US6498259B1 (en) Direct epoxidation process using a mixed catalyst system
EP0677518B1 (en) Integrated process for epoxide production
US7365217B2 (en) Oxidation process
JP4167067B2 (en) Epoxidation catalyst and method for producing the same
JPH069593A (en) Consistent production of epoxide
KR20010014315A (en) Process for Epoxidation of Propylene
JP4303957B2 (en) Direct epoxidation process using mixed catalyst system
WO2000020404A1 (en) Propylene oxide production
JP2009527555A (en) Direct epoxidation method
US6300506B1 (en) Process for the preparation of epoxites
EP1963297A2 (en) Direct epoxidation process
EP1722893A1 (en) Epoxidation catalyst
Li et al. Effect of sodium ions on propylene epoxidation catalyzed by titanium silicalite
WO1999048884A1 (en) Process for epoxydation of olefinic compounds with hydrogen peroxide
US7153986B2 (en) Method for producing propylene oxide
US5840934A (en) Process for producing epoxidized product of olefins
US6441204B1 (en) Direct epoxidation process using a mixed catalyst system
JP4291147B2 (en) Direct epoxidation process using pretreated titanium zeolite
JPH08269030A (en) Production of propylene oxide
JPH1072455A (en) Production of epoxidized products of olefin compounds
US7696367B2 (en) Direct epoxidation process using a mixed catalyst system
CA2552573A1 (en) Epoxidation process using a mixed catalyst system
JPH07206736A (en) Oxidation of hydrocarbon

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080317

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees