JPH04350162A - Planar magnetron sputtering electrode and method for controlling plasma - Google Patents

Planar magnetron sputtering electrode and method for controlling plasma

Info

Publication number
JPH04350162A
JPH04350162A JP12090591A JP12090591A JPH04350162A JP H04350162 A JPH04350162 A JP H04350162A JP 12090591 A JP12090591 A JP 12090591A JP 12090591 A JP12090591 A JP 12090591A JP H04350162 A JPH04350162 A JP H04350162A
Authority
JP
Japan
Prior art keywords
magnet
target
magnetron sputtering
sputtering electrode
planar magnetron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12090591A
Other languages
Japanese (ja)
Inventor
Tamotsu Shimizu
保 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12090591A priority Critical patent/JPH04350162A/en
Publication of JPH04350162A publication Critical patent/JPH04350162A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To increase the film forming rate by rotating a first magnet eccentrically to a second magnet contg. the first magnet. CONSTITUTION:A magnet provided on the back of a target 3 consisting of a film forming material is formed with a first magnet 1 and a second magnet 2 in a planar magnetron sputtering electrode 21, and the first magnet 1 is placed within the second magnet 2. The first magnet 1 is rotated eccentrically to the second magnet 2. A plasma control magnet is formed with the first magnet 1 and the second magnet 2. The position of plasma produced on the target 3 surface is controlled by rotating the first magnet 1 eccentrically to the second magnet 2. The target material is effectively utilized in this way.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はスパッタ装置のスパッタ
電極に係り、特に、タ−ゲット面のエロ−ジョン領域を
拡大し、かつ成膜速度を高速化する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sputtering electrode for a sputtering apparatus, and more particularly to a method for enlarging the erosion area on a target surface and increasing the film formation rate.

【0002】0002

【従来の技術】スパッタ電極でタ−ゲットの裏面で磁石
を回転させ、タ−ゲット上のプラズマを移動させながら
スパッタ成膜するスパッタ電極については特開昭53−
7586号公報に記載されている。
[Prior Art] A sputter electrode is disclosed in Japanese Patent Application Laid-Open No. 1983-1981, in which a magnet is rotated on the back side of a target to form a sputter film while moving plasma on the target.
It is described in Publication No. 7586.

【0003】0003

【発明が解決しようとする課題】上記発明に開示されて
いるスパッタ電極は一組の磁石からなる磁石アセンブリ
を一体にしてタ−ゲットに対して回転させるものである
。しかし、この方式によると回転させた結果としてタ−
ゲットのエロ−ジョン領域は広がるものの、各瞬間にお
けるタ−ゲットのエロ−ジョン領域(成膜粒子が飛び出
す領域)は狭く、成膜速度が低い欠点があった。
SUMMARY OF THE INVENTION The sputtering electrode disclosed in the above invention is one in which a magnet assembly consisting of a set of magnets is integrally rotated relative to a target. However, according to this method, as a result of rotation, the tar
Although the erosion area of the target is widened, the erosion area of the target at each moment (the area from which the film-forming particles fly out) is narrow, resulting in a low film-forming rate.

【0004】0004

【課題を解決するための手段】上記目的は円形平板タ−
ゲット裏面に第一の磁石と第二の磁石を、第二の磁石が
第一の磁石を内包し、かつ第二の磁石をタ−ゲットの外
周部にそって円形に配置し、第一の磁石を第二の磁石に
対して偏心させて回転させることにより達成される。
[Means for solving the problem] The above purpose is to solve the problem by
A first magnet and a second magnet are placed on the back side of the target, the second magnet contains the first magnet, and the second magnet is arranged in a circle along the outer periphery of the target. This is achieved by rotating the magnet eccentrically with respect to the second magnet.

【0005】[0005]

【作用】円形平板タ−ゲット裏面に第一の磁石と第二の
磁石を、第二の磁石が第一の磁石を内包し、かつ第二の
磁石をタ−ゲットの外周部にそって円形に配置し、第一
の磁石を第二の磁石に対して偏心させて回転させると、
ある瞬間の磁石配置では(図3に示す。)第一の磁石と
第二の磁石によって形成される磁場は図3の磁力線で示
す様になり、従来のスパッタ電極(図4に示す。)に比
べタ−ゲットの広い面積にエロ−ジョン14,15を形
成することができる。この結果、タ−ゲットの広い部分
からスパッタ粒子が放出されるので同一パワ−密度に対
して従来のスパッタ電極の二ないし五倍の高速成膜が可
能となる。また、第一の磁石を偏心させて回転させるこ
とにより、エロ−ジョン領域がタ−ゲットのほぼ全面に
広がり、タ−ゲットの利用効率が増大する。
[Operation] A first magnet and a second magnet are placed on the back side of a circular flat plate target, the second magnet contains the first magnet, and the second magnet is placed in a circular shape along the outer periphery of the target. and rotate the first magnet eccentrically with respect to the second magnet,
At a given instant in the magnet configuration (as shown in Figure 3), the magnetic field formed by the first and second magnets will be as shown by the magnetic field lines in Figure 3, and will be similar to the conventional sputter electrode (as shown in Figure 4). Compared to this, erosions 14 and 15 can be formed over a wider area of the target. As a result, sputtered particles are emitted from a wide area of the target, making it possible to form a film two to five times faster than with conventional sputtering electrodes for the same power density. Furthermore, by eccentrically rotating the first magnet, the erosion region spreads over almost the entire surface of the target, increasing the efficiency of target utilization.

【0006】[0006]

【実施例】図1に本発明によるスパッタ電極の一実施例
を示す。図1において第一の磁石1と第二の磁石2が成
膜材料であるタ−ゲット3の裏面に配設されている。タ
−ゲット3はバッキングプレ−ト4に載置されている。 バッキングプレ−ト4は水路5に流された水より冷却さ
れ、スパッタ時のタ−ゲットの過熱を防いでいる。第一
の磁石1は円柱状で、第二の磁石2は円環状でそれぞれ
、磁性体(たとえば鉄)からなる円板6,7に取付けら
れている。第一の磁石1と第二の磁石2は互いに逆方向
に着磁されている。(図1でN、SでそれぞれN極、S
極を示す。)第二の磁石は第一の磁石を内包し、第一の
磁石は回転軸8を介してモ−タ9により第二の磁石2に
対して偏心して回転できる構造になっている。成膜時は
、タ−ゲット3はケ−シング12を介して負の高電圧(
通常200〜1000V)が印加される。図1には高電
圧印加用の電源は省略してある。ケ−シング12に高電
圧を印加することからモ−タ9は電気的絶縁物13,1
3’を介してケ−シング12に固定されている。図2は
図1のA−A断面を示す。第二の磁石2は円形平板タ−
ゲット3の外周部にそって円形に配置されている。図1
の磁石配置のときのタ−ゲットのエロ−ジョンを図5に
示す。エロ−ジョン部分は14,15の二ヵ所あり、1
6,17で示す部分はスパッタを受けておらず、むしろ
被スパッタ粒子が再付着している。第一の磁石を半回転
させると図5に示すエロ−ジョンパタ−ンは左右逆にな
る。即ち、第一の磁石を適当な速度(成膜時間に対して
、その成膜時間の数十分の一程度の速度が望ましい。)
で回転させれば図6に示すようにタ−ゲットのほぼ全面
がスパッタされ、エロ−ジョン領域18となる。 この結果、タ−ゲット材料の使用効率が高く経済的であ
る。さらにタ−ゲットのほぼ全面がエロ−ジョン領域と
なることは次のような利点がある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of a sputter electrode according to the present invention. In FIG. 1, a first magnet 1 and a second magnet 2 are arranged on the back surface of a target 3, which is a film forming material. The target 3 is placed on a backing plate 4. The backing plate 4 is cooled by water flowing into the water channel 5, and prevents the target from overheating during sputtering. The first magnet 1 has a cylindrical shape, and the second magnet 2 has an annular shape and is attached to disks 6 and 7 made of magnetic material (for example, iron), respectively. The first magnet 1 and the second magnet 2 are magnetized in opposite directions. (In Figure 1, N and S are the N pole and S pole, respectively.
Shows poles. ) The second magnet contains the first magnet, and the first magnet is configured to be eccentrically rotated with respect to the second magnet 2 by a motor 9 via a rotating shaft 8. During film formation, the target 3 is applied with a negative high voltage (
Usually 200 to 1000 V) is applied. In FIG. 1, a power source for applying high voltage is omitted. Since a high voltage is applied to the casing 12, the motor 9 has electric insulators 13,1
It is fixed to the casing 12 via 3'. FIG. 2 shows a cross section taken along line AA in FIG. The second magnet 2 is a circular flat plate.
They are arranged in a circle along the outer periphery of the get 3. Figure 1
FIG. 5 shows the erosion of the target when the magnets are arranged as shown in FIG. There are two erosion parts, 14 and 15, 1
The parts indicated by 6 and 17 are not subjected to sputtering, but rather the sputtered particles are attached again. When the first magnet is rotated half a turn, the erosion pattern shown in FIG. 5 is reversed. That is, the first magnet is moved at an appropriate speed (preferably a speed that is several tenths of the time required for film formation).
When the target is rotated, almost the entire surface of the target is sputtered, forming an erosion region 18, as shown in FIG. As a result, the target material is used efficiently and economically. Furthermore, the fact that almost the entire surface of the target becomes the erosion area has the following advantages.

【0007】エロ−ジョン領域以外は被スパッタされた
成膜粒子が再付着し、この際、不純物を吸蔵した品質の
悪い膜が形成されるため、タ−ゲット面で異常放電を生
じる不具合があった。異常放電を生じるたタ−ゲットの
局所的なところでは異常なスパッタ現象を生じ、異物等
が発生する。サブミクロンLSIでは異物が歩留り低下
の最大の原因となり、ほぼ全面のエロ−ジョンを形成で
きるスパッタ電極は異常放電を抑制し、異物低減に効果
的である。
[0007] Sputtered film particles re-deposit in areas other than the erosion area, and at this time, a poor quality film is formed that occludes impurities, resulting in abnormal discharge on the target surface. Ta. Abnormal sputtering occurs locally on the target where the abnormal discharge occurs, and foreign matter is generated. In submicron LSIs, foreign matter is the biggest cause of yield reduction, and a sputter electrode that can form erosion on almost the entire surface is effective in suppressing abnormal discharge and reducing foreign matter.

【0008】[0008]

【発明の効果】本発明によれば、タ−ゲットのエロ−ジ
ョン領域を拡大できるので、成膜速度の向上が図れ、さ
らに、タ−ゲットのほぼ全面からスパッタできるのでに
タ−ゲット材料の有効利用が図れる。
[Effects of the Invention] According to the present invention, since the erosion area of the target can be enlarged, the film formation rate can be improved.Furthermore, since sputtering can be performed from almost the entire surface of the target, the target material can be It can be used effectively.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例を示すスパッタ電極の断面図
FIG. 1 is a cross-sectional view of a sputter electrode showing an embodiment of the present invention;

【図2】図1に示す本発明のスパッタ電極のA−A断面
図、
FIG. 2 is an AA cross-sectional view of the sputter electrode of the present invention shown in FIG.

【図3】本発明のスパッタ電極によるエロ−ジョンを示
す説明図、
FIG. 3 is an explanatory diagram showing erosion caused by the sputter electrode of the present invention;

【図4】従来のスパッタ電極のエロ−ジョンを示す説明
図、
FIG. 4 is an explanatory diagram showing erosion of a conventional sputter electrode,

【図5】タ−ゲットのエロ−ジョンの一断面図、[Figure 5] A cross-sectional view of the target erosion.

【図6
】タ−ゲットのエロ−ジョンの他の断面図。
[Figure 6
] Another cross-sectional view of the target erosion.

【符号の説明】[Explanation of symbols]

1…第一の磁石、2…第二の磁石、3…タ−ゲット、4
…バッキングプレ−ト 8…回転軸、9…モ−タ、10…ベルト、11、11’
…歯車、12…ケ−シング、13、13’…絶縁物、1
9…アノ−ド、20,20’…絶縁物、21…スパッタ
電極、22…被膜基板。
1...First magnet, 2...Second magnet, 3...Target, 4
...Backing plate 8...Rotating shaft, 9...Motor, 10...Belt, 11, 11'
...Gear, 12...Casing, 13, 13'...Insulator, 1
9... Anode, 20, 20'... Insulator, 21... Sputter electrode, 22... Coated substrate.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】プレ−ナマグネロンスパッタ電極において
成膜材料からなるタ−ゲットの裏面に配設した磁石が第
一の磁石と第二の磁石とからなり、前記第二の磁石が前
記第一の磁石を内包し、前記第一の磁石が前記第二の磁
石に対して偏心して回転するように構成したことを特徴
とするプレ−ナマグネトロンスパッタ電極。
1. In a planar magnetron sputtering electrode, a magnet disposed on the back surface of a target made of a film-forming material is composed of a first magnet and a second magnet, and the second magnet is the second magnet. 1. A planar magnetron sputtering electrode, characterized in that the first magnet includes a magnet, and the first magnet rotates eccentrically with respect to the second magnet.
【請求項2】プレ−ナマグネトロンスパッタ電極のプラ
ズマ制御用磁石の位置制御方法において、前記プラズマ
制御用磁石は第一の磁石と第二の磁石とからなり、前記
第二の磁石が前記第一の磁石を内包し、前記第一の磁石
が前記第二の磁石に対して偏心して回転する様にしてタ
−ゲット面上に発生するプラズマ位置を制御することを
特徴とするプラズマ制御方法。
2. A method for controlling the position of a plasma control magnet of a planar magnetron sputtering electrode, wherein the plasma control magnet includes a first magnet and a second magnet, and the second magnet is located opposite the first magnet. 1. A plasma control method comprising: controlling a position of plasma generated on a target surface by rotating the first magnet eccentrically with respect to the second magnet.
JP12090591A 1991-05-27 1991-05-27 Planar magnetron sputtering electrode and method for controlling plasma Pending JPH04350162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12090591A JPH04350162A (en) 1991-05-27 1991-05-27 Planar magnetron sputtering electrode and method for controlling plasma

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12090591A JPH04350162A (en) 1991-05-27 1991-05-27 Planar magnetron sputtering electrode and method for controlling plasma

Publications (1)

Publication Number Publication Date
JPH04350162A true JPH04350162A (en) 1992-12-04

Family

ID=14797903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12090591A Pending JPH04350162A (en) 1991-05-27 1991-05-27 Planar magnetron sputtering electrode and method for controlling plasma

Country Status (1)

Country Link
JP (1) JPH04350162A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5980707A (en) * 1998-12-18 1999-11-09 Sierra Applied Sciences, Inc. Apparatus and method for a magnetron cathode with moving magnet assembly
JP2011017088A (en) * 2010-09-27 2011-01-27 Canon Anelva Corp Plasma treatment apparatus for applying sputtering film deposition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5980707A (en) * 1998-12-18 1999-11-09 Sierra Applied Sciences, Inc. Apparatus and method for a magnetron cathode with moving magnet assembly
JP2011017088A (en) * 2010-09-27 2011-01-27 Canon Anelva Corp Plasma treatment apparatus for applying sputtering film deposition

Similar Documents

Publication Publication Date Title
US5374343A (en) Magnetron cathode assembly
JP2627651B2 (en) Magnetron sputtering equipment
US5130005A (en) Magnetron sputter coating method and apparatus with rotating magnet cathode
JPH0585634B2 (en)
US5626727A (en) Sputtering apparatus and method
JPS63270461A (en) Opposite target type sputtering device
JP2912864B2 (en) Magnetron unit for sputtering equipment
EP0555339B1 (en) Magnetron sputter coating method and apparatus with rotating magnet cathode
JPH04350162A (en) Planar magnetron sputtering electrode and method for controlling plasma
JP2505724B2 (en) Magnetron sputtering equipment
JP2902822B2 (en) Planar magnetron sputter electrode
JP4431910B2 (en) Sputtering cathode and magnetron type sputtering apparatus provided with the same
JP3056222B2 (en) Sputtering apparatus and sputtering method
JPS63100180A (en) Magnetron sputtering device
JPH04371575A (en) Sputtering device
JPH0257144B2 (en)
JPS63277758A (en) Magnetron sputtering device
JPH09209141A (en) Sputtering device
JPH01111870A (en) Sputtering device
JPH05339726A (en) Magnetron sputtering device
JPS63247366A (en) Magnetron sputtering device
JPH02101158A (en) Sputtering device
JP3343818B2 (en) Ion etching method and apparatus
JP3153280B2 (en) Magnetron sputtering cathode
JPH09310174A (en) Sputtering device