JPH04350101A - Mixed powder for powder metallurgy and sintered body thereof - Google Patents
Mixed powder for powder metallurgy and sintered body thereofInfo
- Publication number
- JPH04350101A JPH04350101A JP3154124A JP15412491A JPH04350101A JP H04350101 A JPH04350101 A JP H04350101A JP 3154124 A JP3154124 A JP 3154124A JP 15412491 A JP15412491 A JP 15412491A JP H04350101 A JPH04350101 A JP H04350101A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- sintered body
- mixed
- iron
- elements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000011812 mixed powder Substances 0.000 title claims abstract description 15
- 238000004663 powder metallurgy Methods 0.000 title claims abstract description 14
- 239000000843 powder Substances 0.000 claims abstract description 53
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 41
- 238000005245 sintering Methods 0.000 claims abstract description 20
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 17
- 229910052802 copper Inorganic materials 0.000 claims abstract description 15
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 14
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 13
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 12
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 11
- 229910045601 alloy Inorganic materials 0.000 claims description 26
- 239000000956 alloy Substances 0.000 claims description 26
- 238000002156 mixing Methods 0.000 claims description 5
- 238000000034 method Methods 0.000 abstract description 32
- 238000005275 alloying Methods 0.000 abstract description 16
- 230000000694 effects Effects 0.000 abstract description 11
- 229910052742 iron Inorganic materials 0.000 abstract description 8
- 230000003647 oxidation Effects 0.000 abstract description 4
- 238000007254 oxidation reaction Methods 0.000 abstract description 4
- 239000010949 copper Substances 0.000 description 20
- 238000002844 melting Methods 0.000 description 8
- 238000009792 diffusion process Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 239000000654 additive Substances 0.000 description 5
- 230000000996 additive effect Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000005204 segregation Methods 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 238000005056 compaction Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 229910000851 Alloy steel Inorganic materials 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910018054 Ni-Cu Inorganic materials 0.000 description 2
- 229910018481 Ni—Cu Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910002482 Cu–Ni Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910003296 Ni-Mo Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- DDTIGTPWGISMKL-UHFFFAOYSA-N molybdenum nickel Chemical compound [Ni].[Mo] DDTIGTPWGISMKL-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、鉄粉および合金粉末を
ベースとし、高密度且つ高強度で、しかも焼結時の寸法
精度および特質のばらつきの少ない焼結体を得ることの
できる粉末冶金用混合粉末、および上記の様な焼結体に
関するものである。[Industrial Application Field] The present invention is a powder metallurgy method that can produce a sintered body based on iron powder and alloy powder, which has high density and high strength, and has less dimensional accuracy and less variation in properties during sintering. The present invention relates to a mixed powder for use in the manufacturing process, and a sintered body as described above.
【0002】0002
【従来の技術】粉末冶金法は圧延,鍛造,鋳造等からな
る従来の生産プロセスを大きく書き換え、原料となる金
属粉末を圧縮成形後焼結して製品とする方法である。従
って粉末冶金法によれば、WやMo等の高融点金属材料
,含油軸受やフィルター等の多孔質材料,超硬合金やサ
ーメット等の様に、従来の溶製法では製造が困難であっ
た部材の製造が可能になる。そればかりか、非切削によ
る材料歩留まりの向上,高い寸法精度等の製造面での利
点,および溶製材で発生しやすい偏析や異方性が少ない
という材料面での利点、等の様に溶製材では得られない
各種の長所があることから、従来溶製法によって製造さ
れていた各種部材を粉末冶金法におきかえて製造するこ
とも行なわれている。BACKGROUND OF THE INVENTION Powder metallurgy is a method that significantly rewrites the conventional production process consisting of rolling, forging, casting, etc., and produces a product by compression molding metal powder as a raw material and then sintering it. Therefore, powder metallurgy can produce materials that are difficult to manufacture using conventional melting methods, such as high-melting metal materials such as W and Mo, porous materials such as oil-impregnated bearings and filters, and cemented carbide and cermet. It becomes possible to manufacture In addition, there are manufacturing advantages such as improved material yield due to non-cutting, high dimensional accuracy, and material advantages such as less segregation and anisotropy that tend to occur in melted materials. Since it has various advantages that cannot be obtained by the powder metallurgy method, various parts that were conventionally manufactured by the melting method are now being manufactured by the powder metallurgy method.
【0003】現在粉末冶金法によって製造されている焼
結体は自動車用部品として用いられるのが大半であり、
とりわけ鉄系焼結部材が汎用されている。この様な鉄系
焼結部材については様々なものが知られており、例えば
強度,耐候性,耐摩耗性等の向上を図るという目的の下
に、主成分となる鉄粉に対し黒鉛や銅等の微粉末を混合
して焼結したものが知られている。また焼結部材の適用
範囲の拡大という観点から、焼結部材にはより高い靭性
や強度が要求される様になり、それを達成する手段とし
てNiやMo等の合金元素を添加して合金化する方法も
知られている。[0003] Most of the sintered bodies currently produced by powder metallurgy are used as automobile parts;
In particular, iron-based sintered members are widely used. Various types of iron-based sintered parts are known. For example, in order to improve strength, weather resistance, wear resistance, etc., graphite or copper is added to the main component of iron powder. It is known to mix and sinter fine powders such as: In addition, from the perspective of expanding the range of application of sintered parts, higher toughness and strength are required of sintered parts, and as a means to achieve this, alloying is performed by adding alloying elements such as Ni and Mo. There are also known methods.
【0004】ところで粉末冶金法によって高強度の鉄系
焼結体を得る為の代表的な方法としては、プレミックス
法とプレアロイ法が知られている。By the way, the premix method and the prealloy method are known as representative methods for obtaining a high-strength iron-based sintered body by powder metallurgy.
【0005】プレミックス法とは、鉄粉と他の合金用微
粉末を均一に混合し、これを圧粉成形した後加熱焼結し
て添加元素を固溶させる方法である。この方法は成形加
工が比較的簡単であるという利点を有しているが、圧粉
成形までの段階で鉄粉と合金用微粉末が比重差によって
分離・偏析したり、あるいは焼結時に合金用微粉末の拡
散が十分に進まないという難点があり、焼結体の強度や
寸法にばらつきを生じるという品質上の問題がある。[0005] The premix method is a method in which iron powder and other alloying fine powders are uniformly mixed, compacted, and then heated and sintered to dissolve additional elements. This method has the advantage that the forming process is relatively simple, but the iron powder and fine alloy powder may separate and segregate due to the difference in specific gravity during the stage up to compaction, or the alloy powder may separate and segregate during sintering. There is a problem in that the fine powder does not diffuse sufficiently, and there is a quality problem in that the strength and dimensions of the sintered body vary.
【0006】これに対しプレアロイ法は、Ni,Mo,
Cr等の合金元素を予め鉄中に固溶してなる合金鋼粉を
使用するものであり、プレミックス法で指摘した様な問
題は起こらない。ところがこの方法では、プレアロイ化
して得られる合金鋼粉が鉄に比べて非常に硬質であるた
め、圧粉成形時の圧密化を十分に高めることができず、
高密度の焼結体が得られにくい。従って当該合金鋼の物
性を十分に生かすことができない。On the other hand, the pre-alloy method uses Ni, Mo,
This method uses alloyed steel powder in which alloying elements such as Cr are dissolved in iron in advance, and the problems pointed out in the premix method do not occur. However, with this method, the alloy steel powder obtained by pre-alloying is much harder than iron, so it is not possible to sufficiently increase the compaction during powder compaction.
It is difficult to obtain a high-density sintered body. Therefore, the physical properties of the alloy steel cannot be fully utilized.
【0007】上記各方法は夫々一長一短を有しているが
、上記の様な偏析の発生や拡散が不十分である等の点が
克服できれば、プレアロイ法よりもプレミックス法の方
が希望する焼結体を得る上で有利であると考えられる。Each of the above methods has its own merits and demerits, but if the above-mentioned problems such as occurrence of segregation and insufficient diffusion can be overcome, the premix method is better than the prealloy method to achieve the desired sintering. It is considered to be advantageous in obtaining solids.
【0008】ところで偏析の防止手段としては、例えば
特開昭56−136901号や同63−103001号
に開示されている如く、有機バインダーを用いて鉄、鋼
粉末に黒鉛粉末を付着させる方法が提案されている。ま
た例えば特公昭45−9649号や特開昭63−297
502号に開示されている如く、鉄粉に他の金属粉を熱
処理で拡散付着させる、いわゆる拡散付着法も開発され
ている。特に拡散付着法は、圧縮性を殆ど下げることな
く且つ偏析による強度や寸法精度の不均一の問題もある
程度防止される。即ち拡散付着型の合金鋼粉は、鉄粉に
Ni,Cu,Mo等の合金用微粉末を加えて均一に混合
した後、拡散処理して鉄粉表面に合金用微粉末を拡散付
着させるものであり、一旦拡散付着したものについては
偏析を生じることはない。By the way, as a means for preventing segregation, a method has been proposed in which graphite powder is attached to iron or steel powder using an organic binder, as disclosed in, for example, Japanese Patent Laid-Open Nos. 56-136901 and 63-103001. has been done. For example, Japanese Patent Publication No. 45-9649 and Japanese Patent Publication No. 63-297
As disclosed in No. 502, a so-called diffusion attachment method has also been developed in which other metal powder is diffused and attached to iron powder by heat treatment. In particular, the diffusion adhesion method hardly reduces compressibility and also prevents problems of uneven strength and dimensional accuracy due to segregation to some extent. In other words, the diffusion adhesion type alloy steel powder is one in which fine alloying powder such as Ni, Cu, Mo, etc. is added to iron powder, mixed uniformly, and then subjected to a diffusion treatment to diffuse and adhere the alloying powder to the surface of the iron powder. Therefore, once it is diffused and attached, no segregation occurs.
【0009】[0009]
【発明が解決しようとする課題】本発明はこうした技術
背景のもとになされたものであって、プレミックス法に
焦点を合わせ、この方法によって高密度且つ高強度で焼
結時における寸法精度のばらつきの少ない焼結体を得る
ことのできる粉末冶金用混合粉末、およびその様な特性
を有する焼結体並びに該焼結体を熱処理した熱処理品等
を提供することを目的とする。[Problems to be Solved by the Invention] The present invention has been made against this technical background, and focuses on the premix method, and aims to achieve high density, high strength, and dimensional accuracy during sintering by this method. The object of the present invention is to provide a mixed powder for powder metallurgy that can produce a sintered body with little variation, a sintered body having such characteristics, and a heat-treated product obtained by heat-treating the sintered body.
【0010】0010
【課題を解決するための手段】上記課題を解決すること
のできた本発明の構成は、鉄粉と合金粉末を混合してな
る粉末冶金用混合粉末であって、上記合金粉末がNi,
CuおよびMoを必須成分として含む他、Cr,Mnお
よびSiよりなる群から選択される1種以上を含むもの
である点に要旨を有するものである。[Means for Solving the Problems] The structure of the present invention that has solved the above problems is a mixed powder for powder metallurgy which is made by mixing iron powder and alloy powder, wherein the alloy powder is Ni,
The gist is that in addition to containing Cu and Mo as essential components, it also contains one or more selected from the group consisting of Cr, Mn, and Si.
【0011】上記の成分からなる混合粉末を焼結するこ
とによって、高密度且つ高強度で、しかも焼結時におけ
る寸法精度のばらつきの少ない焼結体が得られる。また
上記焼結体を熱処理することも有効であり、焼結体をよ
り高密度・高強度にできる。[0011] By sintering a mixed powder consisting of the above-mentioned components, a sintered body having high density and high strength and less variation in dimensional accuracy during sintering can be obtained. It is also effective to heat-treat the sintered body, which can make the sintered body higher in density and strength.
【0012】0012
【作用】本発明者らは、鉄粉に対する添加粉末の拡散性
を改善するという観点に立ち、様々な角度から研究を進
めた。その結果、Cr,MnおよびSiよりなる群から
選択される1種以上の元素を、Ni−Cu−Mo系に合
金化し、該合金化した添加粉末を鉄粉に混合することに
よって、鉄粉に対する添加粉末の拡散性が助長されるこ
とを見出し、本発明を完成した。[Function] The present inventors conducted research from various angles with a view to improving the diffusibility of additive powder to iron powder. As a result, by alloying one or more elements selected from the group consisting of Cr, Mn, and Si into the Ni-Cu-Mo system and mixing the alloyed additive powder with iron powder, The present invention was completed based on the discovery that the diffusibility of the added powder is promoted.
【0013】Cr,Mn,Si等の元素は強化成分とし
て知られているが、焼結中に酸化され易い元素である。
これらの元素は、焼結時に単体粉末として添加されるの
が一般的であるが、焼結中に酸化されて鉄粉表面を薄層
化し、焼結体の強度を低下することになり、強化成分と
しての十分な効果が発揮されなかった。そこでCr,M
n,Si等を難酸化性のNi,Cu,Mo等と共に合金
化することによって、Cr,Mn,Si等の酸化を抑制
し、これによって添加粉末の鉄粉に対する拡散性が助長
されたのである。またCr,Mn,Si等の本来の効果
である強化効果も達成されたのである。Elements such as Cr, Mn, and Si are known as reinforcing components, but they are easily oxidized during sintering. These elements are generally added as single powders during sintering, but they are oxidized during sintering, thinning the surface of the iron powder and reducing the strength of the sintered body. The sufficient effect as an ingredient was not exhibited. So Cr,M
By alloying n, Si, etc. with oxidation-resistant Ni, Cu, Mo, etc., oxidation of Cr, Mn, Si, etc. was suppressed, and this facilitated the diffusibility of the additive powder into the iron powder. . Furthermore, the reinforcing effect, which is the original effect of Cr, Mn, Si, etc., was also achieved.
【0014】本発明においては、Ni,Cu,Mo等の
元素も単独金属粉の形態ではなく合金化された形態であ
る必要がある。即ちNi,Cu,Moの如き合金用元素
は夫々単独では融点が高く、また鉄粉への拡散速度が遅
いのであるが、これらの元素を予め合金化しておくこと
によって単体粉末のときより融点を低下させることがで
き、鉄粉への拡散性を改善して焼結体の強度向上に寄与
する。In the present invention, elements such as Ni, Cu, and Mo must also be in the form of an alloy rather than in the form of individual metal powder. In other words, alloying elements such as Ni, Cu, and Mo each have a high melting point and a slow diffusion rate into iron powder when used alone, but by pre-alloying these elements, the melting point can be lowered than when they are single powders. This contributes to improving the strength of the sintered body by improving its diffusibility into iron powder.
【0015】また合金粉末を使用することは、均一な特
性を有する焼結体を得るという観点からも有効である。
即ち、本発明の混合粉末を用いて焼結体を得る手順とし
ては、■そのままの状態で他の副原料と混合して焼結す
る、■バインダーや拡散処理によって鉄粉と合金粉末を
予め付着させてから他の副原料を混合し焼結する、等の
いずれの手順も採用することができるが、いずれの手順
を採用するにしても、合金粉末を用いることによって均
一に付着させることができ粒度分布のかなり均一な焼結
用粉末が得られる。従って該粉末の特性が一定となり、
得られる焼結体の特性も均一なものとなる。The use of alloy powder is also effective from the viewpoint of obtaining a sintered body having uniform properties. That is, the procedure for obtaining a sintered body using the mixed powder of the present invention is: (1) mixing it as it is with other auxiliary raw materials and sintering, (2) attaching iron powder and alloy powder in advance using a binder or diffusion treatment. It is possible to adopt any of the following procedures, such as mixing and sintering with other auxiliary raw materials, but whichever procedure is adopted, uniform adhesion can be achieved by using alloy powder. A sintering powder with a fairly uniform particle size distribution is obtained. Therefore, the properties of the powder are constant,
The characteristics of the obtained sintered body are also uniform.
【0016】尚本発明の混合粉末は、バインダー付着型
焼結用粉末或は拡散付着型焼結用粉末のいずれの形態を
経ても使用できるのは上述した通りであるが、拡散付着
型粉末とするのが特に好ましく、その後の焼結処理によ
って結果的に2段アニール処理を施したのと同様の効果
が得られ、強度向上という観点からも好ましい。As mentioned above, the mixed powder of the present invention can be used in the form of either a binder-attached sintering powder or a diffusion-attached sintering powder; It is particularly preferable to do so, and the subsequent sintering treatment results in the same effect as that of two-stage annealing treatment, which is also preferable from the viewpoint of improving strength.
【0017】ところで本出願人は鉄粉にNiやCuを拡
散付着させて焼結体製造用原料粉末を製造する際に、N
iやCuを夫々別々の金属粉末として添加する場合と、
Ni−Cu合金粉末として添加する場合とでは、Niや
Cuが結果的にたとえ同じ重量割合で配合される場合で
あっても、焼結部品としての寸法変化が大きく異なるこ
とを知見している(特開平2−217401号)。即ち
、特にCuの添加量が増大すると、Cu−Growth
と呼ばれる異常膨張現象が発生し、それが大きな寸法変
化となって現われるのであるが、CuをCu−Ni合金
粉末として添加することによって寸法変化の減少するこ
とがわかった。従って、本発明において、鉄に対する添
加元素を予め合金化した形態とすることは、特にCuを
添加元素として含む焼結体の寸法変化を防止するという
点からも効果的である。次に、本発明で使用される合金
粉末の成分について説明する。By the way, the present applicant has discovered that when manufacturing raw material powder for manufacturing sintered bodies by diffusing and adhering Ni and Cu to iron powder, N
When i and Cu are added as separate metal powders,
It is known that when Ni-Cu alloy powder is added, the dimensional change as a sintered part is significantly different even if Ni and Cu are mixed at the same weight ratio ( JP-A No. 2-217401). That is, especially when the amount of Cu added increases, Cu-Growth
An abnormal expansion phenomenon called "abnormal expansion phenomenon" occurs, which appears as a large dimensional change, but it has been found that the dimensional change can be reduced by adding Cu as a Cu-Ni alloy powder. Therefore, in the present invention, it is effective to pre-alloy the additive element to iron, especially from the viewpoint of preventing dimensional changes in the sintered body containing Cu as the additive element. Next, the components of the alloy powder used in the present invention will be explained.
【0018】Niは靭性や焼入性を改善する効果があり
、Moは焼入性を高め、焼入,焼戻し処理時の軟化を防
止する。またCuは焼結体の強度若しくは硬度を向上さ
せる効果がある。Ni has the effect of improving toughness and hardenability, and Mo improves hardenability and prevents softening during hardening and tempering treatments. Further, Cu has the effect of improving the strength or hardness of the sintered body.
【0019】ところでNi−Cu系にあっては、全率固
溶型の合金粉末が得られ、Cu含有量が増加するに従っ
て融点を下げることができ、これにより焼結時の鉄粉中
への合金化が容易となる。しかしながらCuがあまり多
くなると焼結後の寸法が膨張するので、実用性の点で効
果がなくなる。一方Ni−Mo系にあっては、50%(
重量%の意味、以下同じ)Mo近傍に共晶点があり、N
i−Mo系に合金化することによってMoの融点を低下
させることができ、これによって鉄粉中への拡散性、つ
まり均一合金化が容易となる。しかしMoの割合があま
り多すぎると液相温度が急激に高くなることから、融点
低下効果はほとんどなくなる。以上の様な観点からNi
−Cu−Mo3元素の組成割合は、Ni:45〜80%
,Cu:5〜50%,Mo:50〜5%程度にするのが
好ましい。By the way, in the case of the Ni-Cu system, a completely solid solution type alloy powder can be obtained, and as the Cu content increases, the melting point can be lowered. Alloying becomes easy. However, if the amount of Cu increases too much, the dimensions after sintering will expand, making it ineffective in terms of practicality. On the other hand, in the Ni-Mo system, 50% (
(meaning of weight %, the same applies hereinafter) There is a eutectic point near Mo, and N
By alloying with the i-Mo system, the melting point of Mo can be lowered, which facilitates the diffusibility into iron powder, that is, uniform alloying. However, if the proportion of Mo is too large, the liquidus temperature will rise rapidly, so that the effect of lowering the melting point will be almost eliminated. From the above points of view, Ni
-Cu-Mo3 element composition ratio is Ni: 45-80%
, Cu: 5 to 50%, and Mo: 50 to 5%.
【0020】本発明は、合金粉末の必須元素として、C
r,Mn,およびSiよりなる群から選択される1種以
上を含むものであり、これらは強度向上という観点から
有効であるが、あまり多過ぎると上記Ni,Cuおよび
Mo等の基本成分による効果を低減することになりかね
ない。こうしたことからCr,Mn,Si等の元素は、
Ni,CuおよびMoの合計量100重量部に対して5
〜100重量部程度とすべきである。[0020] The present invention uses C as an essential element of the alloy powder.
It contains one or more selected from the group consisting of r, Mn, and Si, and these are effective from the viewpoint of improving strength, but if too much is used, the effects of the basic components such as Ni, Cu, and Mo mentioned above are reduced. This could lead to a reduction in For these reasons, elements such as Cr, Mn, and Si,
5 parts per 100 parts by weight of the total amount of Ni, Cu and Mo
It should be about 100 parts by weight.
【0021】また合金粉末の鉄粉に対する割合は、1〜
12%程度とするのが好ましく、これより多くなると相
対的に鉄粉量が少なくなり、鉄粉系焼結体としての基本
的な焼結性が得られない。[0021] The ratio of alloy powder to iron powder is 1 to 1.
It is preferable to set it to about 12%, and if it is more than this, the amount of iron powder becomes relatively small, and the basic sinterability as an iron powder-based sintered body cannot be obtained.
【0022】尚本発明で使用される合金粉末の粒度につ
いては、特に限定されるものではないが、平均粒径で2
0μm 以下程度が望ましい。これは平均粒径があまり
大きくなると、焼結過程における合金粉末の鉄粉中への
合金化が悪化し、均一組織が得られにくくなり、強度,
硬度のばらつきが生じるからである。The particle size of the alloy powder used in the present invention is not particularly limited, but the average particle size is 2.
It is desirable that the thickness be about 0 μm or less. This is because if the average particle size becomes too large, the alloying of the alloy powder into the iron powder during the sintering process will deteriorate, making it difficult to obtain a uniform structure, which will reduce the strength and
This is because variations in hardness occur.
【0023】[0023]
【実施例】鉄粉−6%合金粉末−0.6 %黒鉛−0.
75%ステアリン酸亜鉛系混合粉末を、6トン/cm2
で圧粉成形した後、水素雰囲気中1250℃で焼結した
。そして各種合金粉末を用いて、焼結体の引張強さを調
査した。尚合金粉末は水噴霧法で製造した平均粒径約1
2μm のものを用い、60%Ni−15%Cu−15
%Mo系の組成を基本とし、これにCr,Mn,Si等
を含有させたものである。[Example] Iron powder - 6% Alloy powder - 0.6% Graphite - 0.
6 tons/cm2 of 75% zinc stearate mixed powder
After powder compaction, it was sintered at 1250°C in a hydrogen atmosphere. Then, the tensile strength of the sintered body was investigated using various alloy powders. The alloy powder was manufactured using a water spray method and had an average particle size of approximately 1.
2μm, 60%Ni-15%Cu-15
%Mo system, and contains Cr, Mn, Si, etc.
【0024】用いた合金粉組成と引張強度との関係を図
1に示す。尚図1にはNi,Cu,Mo等の基本成分を
合金化せずに各単体粉末として添加した場合の引張強さ
についても示した。FIG. 1 shows the relationship between the composition of the alloy powder used and the tensile strength. In addition, FIG. 1 also shows the tensile strength when basic components such as Ni, Cu, and Mo are added as individual powders without being alloyed.
【0025】図1から明らかな様に、基本成分を単体粉
末の形態で添加したものに比べ、本発明の混合粉末を用
いたものは強度が向上しており、またCr,Si,Mn
等の強化元素の効果も有効に発揮されていることがわか
る。As is clear from FIG. 1, the strength of the mixed powder of the present invention is improved compared to the one in which the basic components are added in the form of single powder, and the strength of the mixed powder of the present invention is improved, and Cr, Si, Mn
It can be seen that the effects of strengthening elements such as these are also effectively exhibited.
【0026】[0026]
【発明の効果】本発明は以上の様に構成されており、鉄
粉と混合する粉末としてNi,Cu,Moを基本成分と
し、これらとCr,Mn,Si等の易酸化性元素を予め
合金化した形態とすることによって、易酸化性元素の酸
化による不都合を回避しつつ添加元素の効果を有効に発
揮させることができ、高密度且つ高強度で、しかも寸法
精度や特性のばらつきの少ない焼結体を得ることができ
た。Effects of the Invention The present invention is constructed as described above, and the powder to be mixed with iron powder contains Ni, Cu, and Mo as basic components, and these are pre-alloyed with easily oxidizable elements such as Cr, Mn, and Si. By making it into a solid form, it is possible to effectively utilize the effects of the added elements while avoiding the disadvantages caused by the oxidation of easily oxidizable elements. I was able to get the body together.
【図1】各種焼結体の引張強さと合金粉末組成の関係を
示すグラフである。FIG. 1 is a graph showing the relationship between the tensile strength of various sintered bodies and alloy powder composition.
Claims (2)
金用混合粉末であって、上記合金粉末がNi,Cuおよ
びMoを必須成分として含む他、Cr,MnおよびSi
よりなる群から選択される1種以上を含むものであるこ
とを特徴とする粉末冶金用混合粉末。1. A mixed powder for powder metallurgy made by mixing iron powder and alloy powder, wherein the alloy powder contains Ni, Cu and Mo as essential components, and also contains Cr, Mn and Si.
A mixed powder for powder metallurgy, characterized in that it contains one or more selected from the group consisting of:
結したものである焼結体。2. A sintered body obtained by sintering the mixed powder according to claim 1.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3154124A JPH04350101A (en) | 1991-05-28 | 1991-05-28 | Mixed powder for powder metallurgy and sintered body thereof |
CA002069700A CA2069700C (en) | 1991-05-28 | 1992-05-27 | Mixed powder for powder metallurgy and sintered product thereof |
KR1019920009111A KR960003721B1 (en) | 1991-05-28 | 1992-05-28 | Mixed powder for powder metallurgy and the sintered product thereof |
EP92304821A EP0516404A1 (en) | 1991-05-28 | 1992-05-28 | Mixed powder for powder metallurgy and sintered product thereof |
US07/889,421 US5356453A (en) | 1991-05-28 | 1992-05-28 | Mixed powder for powder metallurgy and sintered product thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3154124A JPH04350101A (en) | 1991-05-28 | 1991-05-28 | Mixed powder for powder metallurgy and sintered body thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04350101A true JPH04350101A (en) | 1992-12-04 |
Family
ID=15577442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3154124A Withdrawn JPH04350101A (en) | 1991-05-28 | 1991-05-28 | Mixed powder for powder metallurgy and sintered body thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04350101A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105234390A (en) * | 2015-10-20 | 2016-01-13 | 江门市前通粉末冶金厂有限公司 | Material stirring method for powder metallurgy |
-
1991
- 1991-05-28 JP JP3154124A patent/JPH04350101A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105234390A (en) * | 2015-10-20 | 2016-01-13 | 江门市前通粉末冶金厂有限公司 | Material stirring method for powder metallurgy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4183346B2 (en) | Mixed powder for powder metallurgy, iron-based sintered body and method for producing the same | |
JP5949952B2 (en) | Method for producing iron-based sintered body | |
CN102933731B (en) | The manufacturing process of a kind of master alloy for the manufacture of sintering-hardened steel part and this sinter-hardened part | |
US5552109A (en) | Hi-density sintered alloy and spheroidization method for pre-alloyed powders | |
EP0302430B1 (en) | Alloyed steel powder for powder metallurgy | |
JP5929967B2 (en) | Alloy steel powder for powder metallurgy | |
US6468468B1 (en) | Method for preparation of sintered parts from an aluminum sinter mixture | |
JPS6366362B2 (en) | ||
JP4201830B2 (en) | Iron-based powder containing chromium, molybdenum and manganese and method for producing sintered body | |
JPH10140206A (en) | Low alloy steel powder for sintering and hardening | |
KR960003721B1 (en) | Mixed powder for powder metallurgy and the sintered product thereof | |
JP4060092B2 (en) | Alloy steel powder for powder metallurgy and sintered body thereof | |
JPS6364483B2 (en) | ||
JP2007169736A (en) | Alloy steel powder for powder metallurgy | |
JP4715358B2 (en) | Alloy steel powder for powder metallurgy | |
JPH04350101A (en) | Mixed powder for powder metallurgy and sintered body thereof | |
JP2910326B2 (en) | Mixed powder for powder metallurgy and its sintered body | |
JPH0751721B2 (en) | Low alloy iron powder for sintering | |
JPH05302101A (en) | Mixed powder for powder metallurgy/and its sintered compact | |
JPH0959740A (en) | Powder mixture for powder metallurgy and its sintered compact | |
EP1323840B1 (en) | Iron base mixed powder for high strength sintered parts | |
JPH0689363B2 (en) | High strength alloy steel powder for powder metallurgy | |
JPH0717923B2 (en) | Low alloy iron powder for sintering and method for producing the same | |
JP2007100115A (en) | Alloy steel powder for powder metallurgy | |
JPH04337001A (en) | Low-alloy steel powder for powder metallurgy and its sintered molding and tempered molding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19980806 |