JPH0434845A - Acid storage battery - Google Patents

Acid storage battery

Info

Publication number
JPH0434845A
JPH0434845A JP2140451A JP14045190A JPH0434845A JP H0434845 A JPH0434845 A JP H0434845A JP 2140451 A JP2140451 A JP 2140451A JP 14045190 A JP14045190 A JP 14045190A JP H0434845 A JPH0434845 A JP H0434845A
Authority
JP
Japan
Prior art keywords
alloy
electrode
lead
active material
chemical resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2140451A
Other languages
Japanese (ja)
Other versions
JP2518090B2 (en
Inventor
Masayuki Terada
正幸 寺田
Shinji Saito
慎治 斉藤
Takumi Hayakawa
早川 他く美
Akio Komaki
小牧 昭夫
Masayuki Takashima
正之 高島
Nobuatsu Watanabe
渡辺 信淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2140451A priority Critical patent/JP2518090B2/en
Publication of JPH0434845A publication Critical patent/JPH0434845A/en
Application granted granted Critical
Publication of JP2518090B2 publication Critical patent/JP2518090B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To sharply improve a discharge shelf characteristic or an over discharge shelf characteristic by providing an electrode in which an electrode current collecting body, composed of a lead alloy including tin, is used, and a substance, having low surface energy and chemical resistance, exists in an electrode active material or in the vicinity of an electrode surface. CONSTITUTION:An electrode is provided in which an electrode current collecting body, composed of either alloy of Pb-Sn alloy, Pb-Ca-Sn alloy, Pb-Ca-Sn-Sb alloy, and Pb-Ca-Sn-Sb-Al alloy having a small liquid-reduction property and self discharge and a good over discharge shelf characteristic, is used, and a substance, having low surface energy and chemical resistance, exists in an electrode active material or in the vicinity of an electrode surface. For example, graphite fluoride is used as a substance having low surface energy and chemical resistance.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、放電放置後又は過放電放置後の充電性及び容
量回復性を改善した鉛蓄電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a lead-acid battery that has improved chargeability and capacity recovery after being left discharged or left over discharged.

従来の技術 一般に、鉛蓄電池は、深い放電後放置されると充電不可
能な状態となり、使用不能となることが多い。
BACKGROUND OF THE INVENTION Generally, when a lead acid battery is left unused after being deeply discharged, it often becomes unrechargeable and becomes unusable.

近年、この欠点を改善するために、鉛蓄電池の電極集電
体合金に改良が施されている。例えば過放電放置性能に
対して効果のあるSnを電極集電体合金中に加え名こと
により、電極集電体/電極活物質の界面の硫酸鉛化を抑
制することが知られている。また、長期放置による活物
質のサルフェーションに対しては、リグニンや硫酸バリ
ウム等の添加が知られている。
In recent years, improvements have been made to electrode current collector alloys for lead-acid batteries in order to improve this drawback. For example, it is known that by adding Sn to the electrode current collector alloy, which has an effect on overdischarge performance, lead sulfate formation at the electrode current collector/electrode active material interface can be suppressed. Additionally, addition of lignin, barium sulfate, etc. is known to prevent sulfation of active materials due to long-term storage.

発明が解決しようとする課題 現在実用化されている電極集電体合金は、pb−sb系
とPb −Ca系である。しかし、pb−sb系はsb
の水素過電圧小さいため、水の減少量が多くなる欠点が
ある。一方、Pb −Ca系では深い充放電サイクル使
用においては、寿命が短くなる欠点を有する。
Problems to be Solved by the Invention The electrode current collector alloys currently in practical use are pb-sb and Pb-Ca. However, the pb-sb system
Since the hydrogen overvoltage is small, there is a drawback that the amount of water loss is large. On the other hand, the Pb--Ca type has the disadvantage that the life span is shortened when used in deep charge/discharge cycles.

以上の点から、Pb−Ca−5n、 Pb−5n−As
の3元系合金が提案されている。これらの合金は、自己
放電が小さく、水分解もPb−Ca系合金と同程度であ
り、Snを含有しているので、過放電放置特性も良好で
ある。しかしながら、過放電放置又は放電徒長期間放置
すると、電解液の比重が低くなっているため、活物質中
の硫酸鉛は溶解−析出を繰り返して大きく結晶成長する
。この硫酸鉛は反応性に乏しく二酸化鉛に戻り難いため
、容量が回復し難く充電性も悪い、巨大なPbSO4結
晶の生成を抑制するためにリグニンや硫酸バリウムを活
物質中存在させると初期の結晶成長は抑制できても長期
間放置においてはあまり効果がなかった。
From the above points, Pb-Ca-5n, Pb-5n-As
A ternary alloy has been proposed. These alloys have low self-discharge, water decomposition to the same extent as Pb-Ca alloys, and contain Sn, so they have good overdischarge characteristics. However, if left over-discharged or left undischarged for a long period of time, lead sulfate in the active material repeats dissolution and precipitation, resulting in large crystal growth because the specific gravity of the electrolytic solution is low. This lead sulfate has poor reactivity and is difficult to return to lead dioxide. Therefore, in order to suppress the formation of giant PbSO4 crystals, which make it difficult to recover the capacity and have poor charging properties, it is necessary to include lignin or barium sulfate in the active material to prevent initial crystal formation. Even if growth could be suppressed, it was not very effective if left alone for a long time.

課題を解決するための手段 本発明は、上記の課題を解決するために、減液性及び自
己放電が小さく、且つ過放電放置特性の良いPb −S
n合金、Pb −Ca −Sn合金、Pb −Ca−S
n −Sb合金、Pb−Ca−5n−Sb−Al合金の
いずれかの合金からなる電極集電体を用い、電極活物質
中又は電極表面近傍に、低表面エネルギーで且つ耐薬品
性を有する物質を存在させた電極を備えたことにより、
その相乗効果によって放電放置及び過放電放置特性を一
段と向上した鉛蓄電池を提供するものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides Pb-S, which has low liquid reduction properties and low self-discharge, and has good over-discharge storage characteristics.
n alloy, Pb-Ca-Sn alloy, Pb-Ca-S
Using an electrode current collector made of either an n-Sb alloy or a Pb-Ca-5n-Sb-Al alloy, a substance with low surface energy and chemical resistance is contained in the electrode active material or near the electrode surface. By equipping the electrode with the presence of
The synergistic effect provides a lead-acid battery with further improved discharge and over-discharge characteristics.

作用 鉛蓄電池は、充電せずに長期間放置すると、自己放電に
より充電不能な状態となり、また、放電後又は深い放電
後放置されると同様に充電不能な状態となる。その要因
は次のように考えられる。
If a working lead-acid battery is left uncharged for a long period of time, it will become unchargeable due to self-discharge, and if it is left uncharged after being discharged or deeply discharged, it will similarly become unrechargeable. The reasons for this are thought to be as follows.

鉛蓄電池は過放電されると電解液比重が低下し、電極内
部の集電体近傍では電極表面と比べて更に低下している
。この場合、集電体のpbの溶解度が高くなり、局部電
池反応によって、集電体表面にPb5O+とpbo、が
生成し、高抵抗被膜を形成する。そのために内部抵抗が
上昇し充電不能となる。
When a lead-acid battery is over-discharged, the specific gravity of the electrolyte decreases, and the specific gravity of the electrolyte decreases further in the vicinity of the current collector inside the electrode compared to the surface of the electrode. In this case, the solubility of pb in the current collector increases, and Pb5O+ and pbo are generated on the surface of the current collector due to local cell reaction, forming a high-resistance film. As a result, internal resistance increases and charging becomes impossible.

そこでこれらの抵抗被膜が形成し難いか、形成してもP
b (集電体)とPb0z (活物質)とを導通させる
物質が存在すれば良い。
Therefore, it is difficult to form these resistive films, or even if they are formed, the P
b (current collector) and Pb0z (active material) need only be present.

Snはこのような過放電放置に対して効果があるといわ
れており1本発明ではpb又はPb−Ca系電極集電体
合金への添加元素として、まずSnを選択した。
Sn is said to be effective against such overdischarge, and in the present invention, Sn was first selected as an additive element to the pb or Pb-Ca based electrode current collector alloy.

この効果については明確にされていないが、PbVトリ
クス中にCaSn z又はPb、Ca、Snx金属間化
合物が生成し、電極集電体が陽極酸化されるとこれらが
酸化被膜中に分散して導電性が保持されているか、又は
Snが酸化されてSnOやSnO□のような化合物とな
り、これが半導体的性質(n型半導体)を有することに
より、充電性が良くなると考えられる。含有量は、1.
0〜5.0wt%が好ましい。
Although this effect is not clear, CaSnz or Pb, Ca, Snx intermetallic compounds are generated in the PbV trix, and when the electrode current collector is anodized, these are dispersed in the oxide film and conductive. It is thought that the chargeability is improved because the properties are maintained or Sn is oxidized to become a compound such as SnO or SnO□, which has semiconductor properties (n-type semiconductor). The content is 1.
0 to 5.0 wt% is preferable.

次に、pb又はPb −Ca系電極集電体合金への他の
添加元素として、sbを選択した。Sbは酸化被膜中に
存在するとsbo、どなって存在したり、アンチモン酸
イオンとなって溶出して高抵抗被膜を破壊し、多孔質な
ものにする性質があり、過放電放置中での内部抵抗の上
昇を抑制する働きがある。含有量は、1.0wt5未満
が好ましい。
Next, sb was selected as another element added to the pb or Pb-Ca based electrode current collector alloy. When Sb is present in the oxide film, it exists as sbo, or elutes as antimonate ions, which destroys the high-resistance film and makes it porous. It works to suppress the increase in resistance. The content is preferably less than 1.0wt5.

更に、添加元素としてのAIについては、pb −Ca
 −Sn −Sb系合金ではCaとsbの重量%が増大
するとCaとsbがCa5bsなるドロス化合物を生成
させて同容化しない。この場合、 Alが存在するとC
aはドロス化せず合金中に固定されるため、pb−Ca
 −Sn −Sb系合金においてAlの添加は効果があ
る。
Furthermore, regarding AI as an additive element, pb -Ca
In -Sn-Sb alloys, when the weight percentages of Ca and sb increase, Ca and sb generate a dross compound called Ca5bs and are not homogeneous. In this case, if Al exists, C
Since a is fixed in the alloy without turning into dross, pb-Ca
Addition of Al is effective in -Sn-Sb alloys.

以上は電極集電体合金/電極活物質の界面における挙動
について述べた。しかし、過放電放置又は放電徒長期間
放置した鉛蓄電池の活物質中には大きなpbso、結晶
が生成するために、充電性能並びに容量回復性が同様に
劣化する。この巨大結晶が生成する理由は次のように考
えられる。
The behavior at the electrode current collector alloy/electrode active material interface has been described above. However, since large PBSO and crystals are formed in the active material of a lead-acid battery that has been left over-discharged or left undischarged for a long period of time, the charging performance and capacity recovery properties are similarly deteriorated. The reason why these giant crystals are formed is thought to be as follows.

放電又は過放電直後の活物質中には微細なpbso4が
多量に生成している。しかし、電解液は硫酸が消費され
て比重が低下しているため、pbso2の溶解度が大き
くなる。その結果、微細なpbso、結晶は溶解−析出
を繰り返して成長し、更に互いの結晶が結合して、反応
性に乏しい巨大結晶になると考えられる。
A large amount of fine pbso4 is generated in the active material immediately after discharge or overdischarge. However, since sulfuric acid is consumed in the electrolytic solution and the specific gravity is reduced, the solubility of pbso2 increases. As a result, fine pbso crystals grow by repeating dissolution and precipitation, and the crystals are further combined with each other to form giant crystals with poor reactivity.

従って、このpbso4結晶成長を抑制すれば、過放電
放置後又は放電後長期間放置後の充電性及び容量回復性
が著しく改善されると考えられる。そこで、電極活物質
中又は電極表面近傍に低表面エネルギーで且つ耐薬品性
を有する物質。
Therefore, it is thought that if this pbso4 crystal growth is suppressed, the chargeability and capacity recovery properties after being left over-discharged or left undischarged for a long period of time will be significantly improved. Therefore, a substance with low surface energy and chemical resistance is used in the electrode active material or near the electrode surface.

例えばフッ化グラファイトを存在させると、フッ化グラ
ファイトは表面エネルギーが小さく水との接触角が大き
いため、気−液一固の三相界面ができ易く、これらの物
質近傍に析出したpbS04結晶は水と接触し難く、溶
解−析出が起り難いので、結晶成長が抑制され、寿命末
期までその効果が持続すると考えられる。
For example, when graphite fluoride is present, it tends to form a three-phase interface of gas-liquid and solid because it has a small surface energy and a large contact angle with water, and the pbS04 crystals precipitated near these substances are Since it is difficult for the metal to come into contact with the metal and for melting and precipitation to occur, crystal growth is suppressed, and this effect is thought to continue until the end of its life.

実施例 本発明の一実施例を説明する。Example An embodiment of the present invention will be described.

純鉛又は0.08wt%のCaを含むPb −Ca合金
に2.0wt%のSnを含有させ、更にsbやムlを含
有させた極板格子(A:Pb純鉛格子、B:Pb−0,
08Ca合金格子、C: Pb−2,O5n合金格子、
D : Pb−0,08Ca−2,O5n合金格子、E
:Pb−0,08Ca−2,05n−0,3Sb合金格
子、F:Pb−0,08Ca−2,05n−0,3Sb
−0,03Al合金格子)の6種類を作製し、各格子に
充填される活物質中にフッ化グラファイト(セントラル
硝子■製[セフボン−CMAJ  ;粒径2μm又は[
セフボン−DMJ ;粒径3pm)を0.3wt%播加
したものと、添加しないもので1.2Ah−2Vの鉛蓄
電池を作製した。
An electrode plate lattice in which pure lead or a Pb-Ca alloy containing 0.08 wt% Ca contains 2.0 wt% Sn and further contains sb and mulch (A: Pb pure lead lattice, B: Pb- 0,
08Ca alloy lattice, C: Pb-2, O5n alloy lattice,
D: Pb-0,08Ca-2,O5n alloy lattice, E
:Pb-0,08Ca-2,05n-0,3Sb alloy lattice, F:Pb-0,08Ca-2,05n-0,3Sb
-0,03Al alloy lattice) were prepared, and each lattice was filled with active material filled with fluorinated graphite (Central Glass [Cefbon-CMAJ; particle size 2 μm or [
1.2Ah-2V lead-acid batteries were prepared with and without seeding 0.3wt% of Cefbon-DMJ (particle size: 3pm).

これらの鉛蓄電池を用いて、放電放置及び過放電放置試
験を行なった。試験電池は初期容量測定後、0.2Aの
定電流で終止電圧1.75V迄放電する場合と、3Ωの
定抵抗で24時間過放電後、開路状態にして1年間(2
5℃)放置する場合とを行ない、各電池をそれぞれその
後に充電回復(2,45V定電圧充電)させて初期容量
と回復容量との比率で容量回復率を算出し、それぞれ第
1図及び第2図に示した。
Using these lead-acid batteries, discharge and overdischarge tests were conducted. After measuring the initial capacity, the test battery was discharged to a final voltage of 1.75V at a constant current of 0.2A, and after overdischarging for 24 hours at a constant resistance of 3Ω, it was kept open circuit for 1 year (2
5℃), and then each battery was charged and recovered (2,45V constant voltage charging), and the capacity recovery rate was calculated from the ratio of the initial capacity to the recovery capacity, and the results are shown in Figures 1 and 5, respectively. It is shown in Figure 2.

いずれの試験においても、活物質中にフッ化グラファイ
トを添加したものは、容量回復性が大巾に改善されてい
ることが判る。特に、格子にSnを添加したものは80
%以上、更にsbを添加したものは100%容量が回復
しており、著しい効果が見られる。但し、格子中にSn
やsbが存在しない格子A及び格子Bの場合は、過放電
放置によって格子/活物質の界面に高抵抗被膜が形成さ
れ、充電不能となっている。
In both tests, it was found that the active material containing graphite fluoride had significantly improved capacity recovery. In particular, those with Sn added to the lattice have 80
% or more, the capacity was recovered to 100% when sb was further added, and a remarkable effect can be seen. However, Sn in the lattice
In the case of lattice A and lattice B where sb and lattice do not exist, a high resistance film is formed at the lattice/active material interface due to over-discharging, making it impossible to charge.

発明の効果 以上の様に、本発明では、電極集電体合金にSn、 S
bやAlを存在させ、且つ電極活物質中に低表面エネル
ギーで耐薬品性を有する物質を存在させることによって
、放電放置や過放電放置特性を大巾に改善することがで
きる点、工業的価値極めて大なるものである。
As described above, in the present invention, Sn and S are added to the electrode current collector alloy.
The presence of B and Al and the presence of a substance with low surface energy and chemical resistance in the electrode active material makes it possible to greatly improve the discharge storage characteristics and over-discharge storage characteristics, which is of industrial value. It is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、各電池仕様における放電放置後の容量回復性
を示す比較性能図、第2図は、過放電放置後の容量回復
性を示す比較性能図である。 A : Pbl$@釦格子、 B : Pb−0,08Ca合金格子、C: Pb−2
,O3n合金格子、 D : Pb−0,08Ca−2,O5n合金格子、E
 : Pb−0,08Ca−2,05n−0,3Sb合
金格子、F : Pb−0,08Ca−2,05n−0
,3Sb−0,03Al合金格子
FIG. 1 is a comparative performance chart showing the capacity recovery properties after being left to discharge for each battery specification, and FIG. 2 is a comparative performance chart showing the capacity recovery properties after being allowed to over discharge. A: Pbl$@button lattice, B: Pb-0,08Ca alloy lattice, C: Pb-2
, O3n alloy lattice, D: Pb-0,08Ca-2,O5n alloy lattice, E
: Pb-0,08Ca-2,05n-0,3Sb alloy lattice, F: Pb-0,08Ca-2,05n-0
,3Sb-0,03Al alloy lattice

Claims (6)

【特許請求の範囲】[Claims] (1)錫を含む鉛合金からなる電極集電体を用い、電極
活物質中又は電極表面近傍に、低表面エネルギーで且つ
耐薬品性を有する物質を存在させた電極を備えたことを
特徴とする鉛蓄電池。
(1) An electrode current collector made of a lead alloy containing tin is used, and an electrode is provided with a substance having low surface energy and chemical resistance present in the electrode active material or near the electrode surface. lead acid battery.
(2)鉛合金がPb−Ca−Sn合金であることを特徴
とする請求項(1)記載の鉛蓄電池。
(2) The lead acid battery according to claim (1), wherein the lead alloy is a Pb-Ca-Sn alloy.
(3)鉛合金がPb−Ca−Sn−Sb合金であること
を特徴とする請求項(1)記載の鉛蓄電池。
(3) The lead acid battery according to claim (1), wherein the lead alloy is a Pb-Ca-Sn-Sb alloy.
(4)鉛合金がPb−Ca−Sn合金であることを特徴
とする請求項(1)記載の鉛蓄電池。
(4) The lead acid battery according to claim (1), wherein the lead alloy is a Pb-Ca-Sn alloy.
(5)鉛合金がPb−Ca−Sn−Sb−Al合金であ
ることを特徴とする請求項(1)記載の鉛蓄電池。
(5) The lead acid battery according to claim (1), wherein the lead alloy is a Pb-Ca-Sn-Sb-Al alloy.
(6)低表面エネルギーで且つ耐薬品性を有する物質と
して、フッ化グラファイトを用いたことを特徴とする請
求項(1)〜(5)記載の鉛蓄電池。
(6) The lead-acid battery according to any one of claims (1) to (5), characterized in that graphite fluoride is used as the material having low surface energy and chemical resistance.
JP2140451A 1990-05-30 1990-05-30 Lead acid battery Expired - Lifetime JP2518090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2140451A JP2518090B2 (en) 1990-05-30 1990-05-30 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2140451A JP2518090B2 (en) 1990-05-30 1990-05-30 Lead acid battery

Publications (2)

Publication Number Publication Date
JPH0434845A true JPH0434845A (en) 1992-02-05
JP2518090B2 JP2518090B2 (en) 1996-07-24

Family

ID=15268928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2140451A Expired - Lifetime JP2518090B2 (en) 1990-05-30 1990-05-30 Lead acid battery

Country Status (1)

Country Link
JP (1) JP2518090B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278161A (en) * 1988-07-18 1990-03-19 Minnesota Mining & Mfg Co <3M> Storae battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278161A (en) * 1988-07-18 1990-03-19 Minnesota Mining & Mfg Co <3M> Storae battery

Also Published As

Publication number Publication date
JP2518090B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
US6833216B2 (en) Method of manufacturing a sulfated paste for use in a lead acid cell
JPH05151995A (en) Nonaqueous electrolyte secondary battery
JPH0434845A (en) Acid storage battery
CA1323397C (en) Lead accumulators
JPS58117658A (en) Sealed lead-acid battery
JP2523585B2 (en) Sealed lead acid battery
JPH01117279A (en) Lead-acid battery
JP2808685B2 (en) Lead storage battery
JPS588558B2 (en) Positive electrode grid for lead-acid batteries
JPH0770321B2 (en) Sealed lead acid battery
JPH0548586B2 (en)
JPS63207057A (en) Lead storage battery
JP2553598B2 (en) Sealed lead acid battery
JPS63213263A (en) Lead storage battery
JPH0412586B2 (en)
GB2238159A (en) Lead accumulator
JPH01143147A (en) Lead storage battery
JPH01117272A (en) Lead-acid battery
JP2982376B2 (en) Manufacturing method of sealed lead-acid battery
JPS6322428B2 (en)
JPH01117273A (en) Lead-acid battery
JPH01281683A (en) Lead storage battery
JPS6386265A (en) Grid for sealed lead acid battery
JPH0724224B2 (en) Lead acid battery
JPS6366854A (en) Lead acid battery