JPH043425A - Method and device for evaluating cleanliness of washing liquid - Google Patents

Method and device for evaluating cleanliness of washing liquid

Info

Publication number
JPH043425A
JPH043425A JP10421090A JP10421090A JPH043425A JP H043425 A JPH043425 A JP H043425A JP 10421090 A JP10421090 A JP 10421090A JP 10421090 A JP10421090 A JP 10421090A JP H043425 A JPH043425 A JP H043425A
Authority
JP
Japan
Prior art keywords
cleanliness
cleaning liquid
cleaning
hydrogen peroxide
cleaning solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10421090A
Other languages
Japanese (ja)
Inventor
Masaaki Harazono
正昭 原園
Toshihiko Sakurai
桜井 俊彦
Tetsuya Takagaki
哲也 高垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10421090A priority Critical patent/JPH043425A/en
Publication of JPH043425A publication Critical patent/JPH043425A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable an amount of metal and reducing impurities which are brought into a washing liquid to be indirectly evaluated in-line by evaluating cleanliness by measuring composition change of the washing liquid. CONSTITUTION:A washing liquid 2 is introduced into a sample loop of a manifold 10 by closing a solenoid valve 17. Then a washing liquid 2 within the sample loop is sent to a detection part 12 at a nitrous acid ion concentration measuring part 4 by a liquid-feeding pump 20 by switching a channel of the manifold 10, thus enabling a concentration of the nitrous acid ion to be measured. As this method, by utilizing that absorbance of ultra-violet rays and concentration of the nitrous acid ion are in linear relationship, the concentration of the nitrous acid ion is obtained based on a measurement result of the previously measured absorbance and concentration by measuring the absorbance of ultra-violet rays whose wavelength is for example 354nm and an amount of coexisting metal which is in linear relationship with an amount of produced nitrous acid ion which is included within the washing liquid 2, namely the amount of produced nitrous acid ion, and a reducing impurity, especially a copper ion is calculated, thus indirectly obtaining the cleanliness of the washing liquid 2.

Description

【発明の詳細な説明】 こ産業上の利用分野− 本発明は、洗浄液の清浄度評価技術に関し、特に半導体
集積回路装置の製造工程における半導体ウェハなどの被
洗浄物において、洗浄に使用される洗浄液の清浄度の評
価が可能とされる洗浄液の清浄度評価方法および装置に
適用して有効な技術に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a technique for evaluating the cleanliness of a cleaning liquid, and in particular to a cleaning liquid used for cleaning objects to be cleaned such as semiconductor wafers in the manufacturing process of semiconductor integrated circuit devices. The present invention relates to a technique that is effective when applied to a method and apparatus for evaluating the cleanliness of a cleaning liquid, which enables the evaluation of the cleanliness of a cleaning liquid.

「従来の技術] 半導体ウェハの洗浄に使用される洗浄液としては、たと
えば過酸化水素(H202)、アンモニア(NH,OH
)および水(H20)から組成され、通常80℃程度に
加熱して利用されるために、熱分解により数十分で過酸
化水素が分解して洗浄液に劣化が起こる。
“Prior Art” Cleaning liquids used for cleaning semiconductor wafers include, for example, hydrogen peroxide (H202) and ammonia (NH, OH).
) and water (H20), and is usually heated to about 80° C. for use, so hydrogen peroxide decomposes in several tens of minutes due to thermal decomposition, causing deterioration of the cleaning solution.

従来、過酸化水素の濃度は、特公昭63−16901号
公報に記載されるように紫外線の吸収を利用する方法、
JIS K  8230−1987に記載されている酸
化還元反応を利用する滴定法で測定している。
Conventionally, the concentration of hydrogen peroxide has been determined by a method using ultraviolet absorption as described in Japanese Patent Publication No. 16901/1983;
It is measured by a titration method using a redox reaction described in JIS K 8230-1987.

たとえば、紫外線の吸収を利用する方法におし)では、
過酸化水素、アンモニアおよび水からなる洗浄液中の過
酸化水素成分が300nm付近の波長の紫外線の吸光度
測定により濃度が測定され、またアンモニア濃度がイオ
ン電極により連続測定できるものである。
For example, in a method that uses ultraviolet absorption,
The concentration of the hydrogen peroxide component in the cleaning solution consisting of hydrogen peroxide, ammonia and water is measured by measuring the absorbance of ultraviolet light having a wavelength of around 300 nm, and the ammonia concentration can be continuously measured using an ion electrode.

[発明が解決しようとする課題で ところが、前記のような従来技術においては、洗浄液の
過酸化水素およびアンモニア成分の濃度測定によって薬
液管理を行い、濃度の減少に伴って過酸化水素またはア
ンモニアを補充して洗浄効果の安定化を図ることを目的
としており、洗浄液に持ち込まれた金属および還元性の
不純物による汚染、およびこの不純物によって半導体ウ
ェハが再汚染されることについての配慮がなされておら
ず、半導体集積回路装置の歩留りに大きく影響する洗浄
液の清浄度に対しての考慮がなされていない。従って、
微細化が進む半導体集積回路装置の製造工程において、
欠陥のない高品質な半導1不集積回路装置を得ることが
できないという問題がある。
[This is a problem to be solved by the invention. However, in the prior art as described above, chemical solution management is performed by measuring the concentration of hydrogen peroxide and ammonia components in the cleaning solution, and hydrogen peroxide or ammonia is replenished as the concentration decreases.] The purpose is to stabilize the cleaning effect by cleaning the cleaning solution, but there is no consideration given to contamination by metals and reducing impurities brought into the cleaning solution, and re-contamination of semiconductor wafers by these impurities. No consideration is given to the cleanliness of the cleaning liquid, which greatly affects the yield of semiconductor integrated circuit devices. Therefore,
In the manufacturing process of semiconductor integrated circuit devices, which are becoming increasingly miniaturized,
There is a problem in that it is not possible to obtain a defect-free, high-quality semiconductor non-integrated circuit device.

そこで、本発明者は、過酸化水素を含有するアンモニア
性アルカリ溶液の洗浄液中に、金属や還元性の不純物が
持ち込まれると過酸化水素の分解が著しく促進されるこ
とに着目し、たとえば洗浄液中に鉄(Fe)、銅(Cu
)またはニッケル(Ni)イオンが1ooppb共存す
る場合に、時刻t0 における過酸化水素の濃度C8と
、時刻tにおける濃度C1とを測定することによって、
下記(1)式より分解速度定数kを求めることができる
ことを見い出した。
Therefore, the present inventor focused on the fact that the decomposition of hydrogen peroxide is significantly accelerated when metals and reducing impurities are brought into the cleaning solution of an ammoniacal alkaline solution containing hydrogen peroxide. Iron (Fe), copper (Cu
) or when 1ooppb of nickel (Ni) ions coexist, by measuring the concentration C8 of hydrogen peroxide at time t0 and the concentration C1 at time t,
It has been found that the decomposition rate constant k can be determined from the following equation (1).

k= (1/ (t+  −to)) Iin (C+
 /Co )・ ・ ・ (1) すなわち、第5図は液温80℃における過酸化水素の分
解速度定数kを求めた結果であり、分解速度定数kが大
きくなる程洗浄液が汚染されていることを表す。
k= (1/ (t+ -to)) Iin (C+
/Co)・・・・(1) In other words, Figure 5 shows the results of determining the decomposition rate constant k of hydrogen peroxide at a liquid temperature of 80°C, and the larger the decomposition rate constant k, the more contaminated the cleaning liquid is. represents.

また、特に銅(Cu)イオンが洗浄液中に共存する場合
には、銅イオンが触媒的な働きをして亜硝酸イオン(N
O2−)が生成されることに着目し、たとえば第6図の
洗浄液中に共存する銅イオン量と亜硝酸イオンの生成量
との関係においても解るように、洗浄液中で生成される
亜硝酸イオンは銅イオンの共存量に対して約2X10’
 倍も生成されるので、亜硝酸イオンの濃度を測定する
ことによって間接的に銅イオンの共存量を高感度に測定
できることを見い出した。
In addition, especially when copper (Cu) ions coexist in the cleaning solution, the copper ions act as a catalyst and nitrite ions (N
For example, as can be seen from the relationship between the amount of copper ions coexisting in the cleaning solution and the amount of nitrite ions produced in the cleaning solution, we focus on the fact that nitrite ions are generated in the cleaning solution. is approximately 2X10' for the coexisting amount of copper ions.
It was discovered that the amount of coexisting copper ions can be indirectly measured with high sensitivity by measuring the concentration of nitrite ions.

そこで、本発明の目的は、洗浄液に持ち込まれた金属お
よび還元性の不純物量を亜硝酸イオンの生成量により間
接的にインラインで評価が可能とされる洗浄液の清浄度
評価方法および装置を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method and apparatus for evaluating the cleanliness of a cleaning liquid, which makes it possible to indirectly evaluate in-line the amount of metal and reducing impurities brought into the cleaning liquid based on the amount of nitrite ions produced. There is a particular thing.

また、本発明の他の目的は、洗浄液中に持ち込まれた金
属および還元性の不純物量を過酸化水素の濃度の分解速
度により間接的にインラインで評価が可能とされる洗浄
液の清浄度評価方法および装置を提供することにある。
Another object of the present invention is a method for evaluating the cleanliness of a cleaning solution, which enables indirect in-line evaluation of the amount of metals and reducing impurities brought into the cleaning solution based on the decomposition rate of the concentration of hydrogen peroxide. and equipment.

本発明の前記ならびにその他の目的と新規な特徴は、本
明細書のΔ己述および添付図面から明らかになるであろ
う。
The above and other objects and novel features of the present invention will become apparent from the detailed description of this specification and the accompanying drawings.

百課題を解決するための手段] 本願において開示される発胡のうち、代表的なものの概
要を簡単に説明すれば、下記のとおりである。
Means for Solving the 100 Problems] A brief outline of representative ones among the hatching disclosed in the present application is as follows.

すなわち、本発明の洗浄液の清浄度評価方法は、被洗浄
物の洗浄に使用される洗浄液の清浄度を評価する評価方
法であって、前記洗浄液の組成変化を測定することによ
り清浄度を評価するものである。この場合に、前記洗浄
液が過酸化水素水、アンモニア水および水からなるもの
である。
That is, the cleaning liquid cleanliness evaluation method of the present invention is an evaluation method for evaluating the cleanliness of a cleaning liquid used for cleaning an object to be cleaned, and the cleanliness is evaluated by measuring a change in the composition of the cleaning liquid. It is something. In this case, the cleaning liquid consists of hydrogen peroxide solution, ammonia water, and water.

また、この場合の洗浄液の清浄度評価方法としては、前
記洗浄液中で生成される亜硝酸イオンの生成量を測定す
ることにより清浄度を評価するようにしたものである。
Further, in this case, the cleanliness of the cleaning liquid is evaluated by measuring the amount of nitrite ions generated in the cleaning liquid.

さらに、他の清浄度評価方法としては、前記洗浄液中の
過酸化水素の分解速度を求めることにより清浄度を評価
するものである。この場合に、前転洗浄液中の酸素によ
る紫外線吸収量が一定流量で送液した純水により希釈さ
れて減少し、所望の吸収量に減少するのに要する時間を
測定して過酸化水素の濃度を求め、該過酸化水素の濃度
により前記過酸化水素の分解速度を求するようにしたも
のである。
Furthermore, as another cleanliness evaluation method, the cleanliness is evaluated by determining the decomposition rate of hydrogen peroxide in the cleaning liquid. In this case, the amount of ultraviolet light absorbed by the oxygen in the forward cleaning solution is diluted and reduced by pure water fed at a constant flow rate, and the time required for the absorption amount to decrease to the desired amount is measured to determine the concentration of hydrogen peroxide. is determined, and the decomposition rate of the hydrogen peroxide is determined based on the concentration of the hydrogen peroxide.

また、本発明の洗浄液の清浄度評価装置は、洗浄液の組
成変化を測定し、該組成変化により洗浄液の清浄度を評
価する評価装置であって、前記洗浄液を一定量採取し、
該採取された洗浄液中の亜硝酸イオンによる紫外線吸光
度を検出する亜硝酸イオン濃度測定部を備え、前転亜硝
酸イオン濃度測定部により洗浄液中で生成される亜硝酸
イオンの生成量を測定し、該亜硝酸イオンの生成量より
前記洗浄液の清浄度を評価するものである。
Further, the cleaning liquid cleanliness evaluation apparatus of the present invention is an evaluation apparatus that measures a change in the composition of the cleaning liquid and evaluates the cleanliness of the cleaning liquid based on the composition change, wherein a certain amount of the cleaning liquid is sampled,
comprising a nitrite ion concentration measurement unit that detects ultraviolet absorbance due to nitrite ions in the collected cleaning liquid, and a forward nitrite ion concentration measurement unit that measures the amount of nitrite ions generated in the cleaning liquid; The cleanliness of the cleaning liquid is evaluated based on the amount of nitrite ions produced.

さらに、本発明の他の清浄度評価装置は、洗浄液の組成
変化を測定し、該組成変化により洗浄液の洗浄度を評価
する評価装置であって、前記洗浄液を一定量採取し、該
採取された洗浄液と純水とを希釈混合し、該希釈混合さ
れた洗浄液の酸素による紫外線吸光度を検出する過酸化
水素濃度測定部を備え、前記過酸化水素濃度測定部によ
り洗浄液中の過酸化水素の分解速度を求め、該過酸化水
素の分解速度より前記洗浄液の清浄度を評価するように
したものである。
Furthermore, another cleanliness evaluation device of the present invention is an evaluation device that measures a change in the composition of a cleaning solution and evaluates the cleanliness of the cleaning solution based on the composition change, wherein a certain amount of the cleaning solution is sampled, and the A hydrogen peroxide concentration measuring section is provided which dilutes and mixes a cleaning solution and pure water and detects the ultraviolet absorbance of the diluted and mixed cleaning solution due to oxygen, and the hydrogen peroxide concentration measuring section measures the decomposition rate of hydrogen peroxide in the cleaning solution. The cleanliness of the cleaning liquid is evaluated based on the decomposition rate of hydrogen peroxide.

[作用] 前言己した洗浄液の清浄度評価方法および装置は、洗浄
液を一定量採取し、この採取された洗浄液中の亜硝酸イ
オンによる紫外線吸光度を検出する亜硝酸イオン濃度測
定部を備えることにより、この亜硝酸イオン濃度測定部
で洗浄液の組成変化により洗浄液中で生成される亜硝酸
イオンの生成量を測定することができる。これにより、
洗浄液の清浄度を亜硝酸イオンの生成量より間接的に評
価することができる。
[Function] The method and device for evaluating the cleanliness of a cleaning liquid described above includes a nitrite ion concentration measuring section that collects a certain amount of the cleaning liquid and detects the ultraviolet absorbance due to nitrite ions in the collected cleaning liquid. This nitrite ion concentration measuring section can measure the amount of nitrite ions generated in the cleaning solution due to changes in the composition of the cleaning solution. This results in
The cleanliness of the cleaning solution can be indirectly evaluated from the amount of nitrite ions produced.

また、前記した他の洗浄液の清浄度評価方法および装置
は、洗浄液を一定量採取し、この採取された洗浄液と純
水とを希釈混合し、この希釈混合された洗浄液の酸素に
よる紫外線吸光度を検出する過酸化水素濃度測定部を備
えることにより、この過酸化水素濃度測定部で純水によ
り希釈された洗浄液の紫外線吸光度が所望の吸収量に減
少するのに要する時間を測定し、この時間により洗浄液
の組成変化による洗浄液中の過酸化水素の分解速度を求
tことができる。これにより、洗浄液の清浄度を過酸化
水素の分解速度より間接的に評価することができる。
In addition, the other method and device for evaluating the cleanliness of a cleaning solution described above collects a certain amount of cleaning solution, dilutes and mixes the collected cleaning solution with pure water, and detects the ultraviolet absorbance of the diluted and mixed cleaning solution due to oxygen. By being equipped with a hydrogen peroxide concentration measuring section, the hydrogen peroxide concentration measuring section measures the time required for the ultraviolet absorbance of the cleaning solution diluted with pure water to decrease to the desired amount of absorption, and uses this time to determine whether the cleaning solution The decomposition rate of hydrogen peroxide in the cleaning solution can be determined by changing the composition of t. Thereby, the cleanliness of the cleaning liquid can be indirectly evaluated from the decomposition rate of hydrogen peroxide.

[実施例] 第1図は本発明の一実施例である洗浄液の清浄度評価装
置を示す概略構成図、第2図は本実施例の清浄度評価装
置の検出部を示す概略構成図、第3図は洗浄液中の亜硝
酸イオンによる紫外線吸光度と測定時間との関係を示す
測定図、第4図は洗浄液中の過酸化水素による紫外線吸
光度と測定時間との関係を示す測定図である。
[Example] FIG. 1 is a schematic configuration diagram showing a cleaning liquid cleanliness evaluation device according to an embodiment of the present invention, and FIG. FIG. 3 is a measurement diagram showing the relationship between ultraviolet absorbance due to nitrite ions in the cleaning solution and measurement time, and FIG. 4 is a measurement diagram showing the relationship between ultraviolet absorbance due to hydrogen peroxide in the cleaning solution and measurement time.

まず、第1図により本実施例の洗浄液の清浄度評価装置
の構成を説明する。
First, the configuration of the cleaning liquid cleanliness evaluation apparatus of this embodiment will be explained with reference to FIG.

本実施例の清浄度評価装置は、たとえば被洗浄物の一例
として半導体ウェハが洗浄される洗浄液の清浄度評価装
置とされ、単導体ウエノ\1が浸漬され、洗浄液2が循
環される処理槽3と、この処理槽3内の一定量の洗浄液
2を採取し、洗浄液2中の亜硝酸イオンによる紫外線吸
光度を検出する亜硝酸イオン濃度測定部4、および採取
された洗浄液2と純水とを希釈混合し、この混合された
洗浄液2の酸素による紫外線吸光度を検出する過酸化水
素濃度測定部5を備えたモニタ部6とから構成されてい
る。そして、処理槽3の上部から亜硝酸イオン濃度測定
部4および過酸化水素濃度測定部5に流通経路が形成さ
れている。
The cleanliness evaluation device of this embodiment is a cleanliness evaluation device for a cleaning liquid used to clean a semiconductor wafer as an example of an object to be cleaned. A nitrite ion concentration measuring section 4 collects a certain amount of the cleaning liquid 2 in the processing tank 3 and detects the ultraviolet absorbance due to nitrite ions in the cleaning liquid 2, and dilutes the collected cleaning liquid 2 and pure water. and a monitor section 6 equipped with a hydrogen peroxide concentration measuring section 5 for detecting the ultraviolet absorbance of the mixed cleaning liquid 2 due to oxygen. A flow path is formed from the upper part of the treatment tank 3 to the nitrite ion concentration measuring section 4 and the hydrogen peroxide concentration measuring section 5.

処理槽3は、洗浄液2を循環させるために処理槽3の上
部と底部間に流通経路が形成され、この流通経路内に処
理槽3の上部からオーツく−フローした洗浄液を処理槽
3の底部に圧送するための圧送ポンプ7と、洗浄液2に
含まれる不純物を除去するフィルタ8と、オーバーフロ
ーした洗浄液2を一時的に貯えるオーバーフロー槽9と
が設けられている。また、処理槽3内の洗浄液2中には
半導体ウェハ1が浸漬され、洗浄液2の循環によって単
導体ウェハ1が洗浄されるものである。
In the processing tank 3, a flow path is formed between the top and bottom of the processing tank 3 in order to circulate the cleaning liquid 2, and the cleaning liquid that has automatically flowed from the top of the processing tank 3 into the flow path is transferred to the bottom of the processing tank 3. A pressure pump 7 for force-feeding the cleaning liquid 2, a filter 8 for removing impurities contained in the cleaning liquid 2, and an overflow tank 9 for temporarily storing the overflowing cleaning liquid 2 are provided. Further, the semiconductor wafer 1 is immersed in the cleaning liquid 2 in the processing tank 3, and the single conductor wafer 1 is cleaned by the circulation of the cleaning liquid 2.

亜硝酸イオン濃度測定部4は、洗浄液2を一定量採取す
るマニホルド10と、この7ニホルド10に洗浄液2を
導くための採取ポンプ11と、採取された洗浄液2中の
亜硝酸イオンによる紫外線吸光度を検出する検出部12
とから構成されてし)る。そして、検出部12は、たと
えば第2図に示すように紫外線光源13、フローセル1
4および紫外線検出器15とを備え、フローセル14内
を流れる洗浄液2に紫外線が照射され、亜硝酸イオンに
よる紫外線の吸光度を紫外線検出器15によって検出す
るものである。
The nitrite ion concentration measurement unit 4 includes a manifold 10 for collecting a certain amount of cleaning liquid 2, a collection pump 11 for guiding the cleaning liquid 2 to this seven-fold 10, and a measuring unit 4 for measuring ultraviolet absorbance due to nitrite ions in the collected cleaning liquid 2. Detection unit 12 to detect
It consists of The detection unit 12 includes, for example, an ultraviolet light source 13 and a flow cell 1 as shown in FIG.
4 and an ultraviolet detector 15, the cleaning liquid 2 flowing through the flow cell 14 is irradiated with ultraviolet rays, and the ultraviolet detector 15 detects the absorbance of the ultraviolet rays by nitrite ions.

また、採取ポンプ11によって採取された洗浄液2は、
気泡を脱泡する脱泡セル16に圧送され、脱泡された洗
浄液2のみがマニホルド10に導かれ、残りの気泡を含
む洗浄液2が電磁弁17を介して処理槽3のオーバーフ
ロー槽9に送られる。
In addition, the cleaning liquid 2 collected by the collection pump 11 is
Only the degassed cleaning liquid 2 is sent under pressure to the degassing cell 16 for defoaming air, and the degassed cleaning liquid 2 is led to the manifold 10, and the remaining cleaning liquid 2 containing air bubbles is sent to the overflow tank 9 of the processing tank 3 via the electromagnetic valve 17. It will be done.

過酸化水素濃度測定部5は、採取された洗浄液2と純水
18とを希釈混合するミキシング室19と、このミキシ
ング室19に定量的に混合された洗浄液2を導くための
送液ポンプ20と、希釈混合された洗浄液2中の酸素に
よる紫外線吸光度を検出する検出部21とから構成され
ている。そして、検出部21は亜硝酸イオン濃度測定部
4と同様に紫外線光源13、フローセル14および紫外
線検出器15を備え、フローセル14内を流れる希釈混
合された洗浄液2の酸素による紫外線の吸光度を検出す
るものである。
The hydrogen peroxide concentration measurement unit 5 includes a mixing chamber 19 for diluting and mixing the collected cleaning liquid 2 and pure water 18, and a liquid feeding pump 20 for guiding the quantitatively mixed cleaning liquid 2 into the mixing chamber 19. , and a detection unit 21 that detects the ultraviolet absorbance due to oxygen in the diluted and mixed cleaning liquid 2. The detection unit 21 includes an ultraviolet light source 13, a flow cell 14, and an ultraviolet detector 15 similarly to the nitrite ion concentration measurement unit 4, and detects the absorbance of ultraviolet rays due to oxygen in the diluted and mixed cleaning liquid 2 flowing inside the flow cell 14. It is something.

次に、本実施例の作用について説明する。Next, the operation of this embodiment will be explained.

始めに、処理槽3内は、フィルタ8によって不純物が除
去され、オーバーフローされた洗浄液2が圧送ポンプ7
によって循環されている。そして、この処理槽3内に洗
浄を行う半導体ウニノー1を所定の時間浸漬して洗浄処
理を行う。
First, impurities are removed from the processing tank 3 by the filter 8, and the overflow cleaning liquid 2 is sent to the pressure pump 7.
is circulated by Then, the semiconductor unit 1 to be cleaned is immersed in this processing tank 3 for a predetermined period of time to perform the cleaning process.

そして、インラインにおける所定の洗浄処理の終了毎、
または所定の時間経過毎に処理槽3内の洗浄液2を採取
ポンプ11によってモニタ部6内の脱泡セル16に導き
、開かれている電磁弁17を介して気泡を含んだ余剰の
洗浄液2をオーバーフロー槽9に送る。
Then, each time a predetermined in-line cleaning process is completed,
Alternatively, every predetermined period of time, the cleaning liquid 2 in the processing tank 3 is guided to the degassing cell 16 in the monitor unit 6 by the collection pump 11, and the excess cleaning liquid 2 containing air bubbles is removed through the opened electromagnetic valve 17. Send to overflow tank 9.

その後、電磁弁17を閉じて洗浄液2をマニホルド10
のサンプルループ内に導く。そして、マニホルド10の
流路を切り換えてサンプルループ内の洗浄液2を送液ポ
ンプ20によって亜硝酸イオン濃度測定部4の検出部1
2に送り、亜硝酸イオンの濃度を測定する。
After that, the solenoid valve 17 is closed and the cleaning liquid 2 is transferred to the manifold 10.
into the sample loop. Then, the flow path of the manifold 10 is switched and the cleaning liquid 2 in the sample loop is transferred to the detection unit 1 of the nitrite ion concentration measurement unit 4 by the liquid sending pump 20.
2 and measure the concentration of nitrite ions.

この方法としては、第3図のように紫外線の吸光度と亜
硝酸イオン(NO2−)の濃度とが比例関係にあること
を利用し、たとえば波長が354nmの紫外線の吸光度
を測定することによって、予め測定された吸光度と濃度
との測定結果に基づいて亜硝酸イオンの濃度を求と、洗
浄液2中に含まれる亜硝酸イオンの生成量、すなわち亜
硝酸イオンの生成量と比例関係にある金属および還元性
の不純物である特に銅イオンの共存量を算出し、洗浄液
2の清浄度を間接的に求めることができる。
This method takes advantage of the fact that there is a proportional relationship between the absorbance of ultraviolet rays and the concentration of nitrite ions (NO2-) as shown in Figure 3. For example, by measuring the absorbance of ultraviolet rays with a wavelength of 354 nm, The concentration of nitrite ions is calculated based on the measured absorbance and concentration, and the amount of nitrite ions produced in the cleaning solution 2, that is, the amount of metals and reductions that are proportional to the amount of nitrite ions produced, is determined. The cleanliness of the cleaning liquid 2 can be indirectly determined by calculating the amount of coexisting physical impurities, especially copper ions.

この場合に、銅イオンの共存量が予め設定した値より小
さければ、洗浄液2を取り替えることなく半導体ウェハ
1の洗浄処理を続け、一方法浄液2が設定値より大きい
場合には、洗浄液2を取り替えて清浄な洗浄液2にお′
、J)で半導体ウェハ1の洗浄処理を行う。
In this case, if the coexisting amount of copper ions is smaller than the preset value, the cleaning process of the semiconductor wafer 1 is continued without replacing the cleaning liquid 2; Replace with clean cleaning solution 2'
, J), the semiconductor wafer 1 is cleaned.

続し1て、亜硝酸イオンの濃度が測定された洗浄液2の
送液とともに、一定量の純水18を送液ポンプ20によ
ってミキシング室19に送る。そして、ミキシング室1
9内において希釈混合された洗浄液2を過酸化水素濃度
測定部5の検出部21に送り、過酸化水素の濃度を測定
する。
Next, along with the cleaning liquid 2 whose concentration of nitrite ions has been measured, a certain amount of pure water 18 is sent to the mixing chamber 19 by the liquid feeding pump 20. And mixing room 1
The cleaning liquid 2 diluted and mixed in the hydrogen peroxide concentration measuring section 9 is sent to the detection section 21 of the hydrogen peroxide concentration measuring section 5, and the concentration of hydrogen peroxide is measured.

この方法は、第4図のように紫外線の吸光度のピーク幅
り、 、  h、  と過酸化水素の濃度とが下記(2
)式で示されることを利用し、たとえば波長が300n
mの紫外線の吸光度のピーク幅Hを測定することによっ
て、予め測定された吸光度のピーク幅と濃度との測定結
果に基づいて過酸化水素の濃度を間接的に求めることが
できる。
In this method, as shown in Figure 4, the peak width of the ultraviolet absorbance, h, and the concentration of hydrogen peroxide are as follows (2
), for example, if the wavelength is 300n
By measuring the peak width H of the absorbance of ultraviolet rays of m, the concentration of hydrogen peroxide can be indirectly determined based on the measurement result of the absorbance peak width and concentration measured in advance.

H= (V/Q)l n 10 ・i o gC−A・
・・ (2) ただし、v;ミキシング室19の容量[m1]Q;送液
ポンプ20の純水18の送液 流量Em1/minコ C:洗浄液2中の過酸化水素の濃度 [%:。
H= (V/Q) l n 10 ・io gC-A・
... (2) However, v: Capacity of the mixing chamber 19 [m1] Q: Liquid feeding flow rate of the pure water 18 from the liquid feeding pump 20 Em1/min C: Concentration of hydrogen peroxide in the cleaning liquid 2 [%:.

A°定数 を示すものとする。A° constant shall be shown.

すなわち、吸光度のピーク幅り、 、  h、における
洗浄液2中の過酸化水素の濃度C,,C2を求e、 h
l 、 C+ 、  h2. Ca のそれぞれの値を
(1)式に代入することによって過酸化水素の分解速度
定数k、すなわち洗浄液2中に含まれる特に鉄、ニッケ
ルまたは銅イオンなどの金属および還元性の不純物の共
存量を算出し、洗浄液2の清浄度を間接的に評価するこ
とができる。
That is, the concentration of hydrogen peroxide in the cleaning solution 2 at the absorbance peak width, e, h, is determined.
l, C+, h2. By substituting each value of Ca into equation (1), the decomposition rate constant k of hydrogen peroxide, that is, the coexisting amount of metals and reducing impurities, especially iron, nickel, or copper ions, contained in cleaning solution 2 can be calculated. The cleanliness of the cleaning liquid 2 can be indirectly evaluated.

この場合に、上記の亜硝酸イオン濃度設定と同様に金属
性不純物の共存量が予め設定した値より小さければ、洗
浄液2を取り替えることなく半導体ウェハ1の洗浄処理
を続け、−刃金属性不純物の共存量が設定値より大きい
場合には、洗浄液2を取り替えて清浄な洗浄液において
半導体ウェハ1の洗浄処理を行う。
In this case, if the coexistence amount of metallic impurities is smaller than the preset value, similar to the nitrite ion concentration setting described above, the cleaning process of the semiconductor wafer 1 is continued without replacing the cleaning liquid 2, and the - blade metallic impurities are removed. If the amount of coexistence is larger than the set value, the cleaning liquid 2 is replaced and the semiconductor wafer 1 is cleaned using the clean cleaning liquid.

従って、本実施例の洗浄液2の清浄度評価装置によれば
、洗浄液2を一定量採取し、この採取された洗浄液2中
の亜硝酸イオンによる紫外線吸光度を検出する亜硝酸イ
オン濃度測定部4を備えることにより、この亜硝酸イオ
ン濃度測定部4で洗浄液2の組成変化により洗浄液2中
で生成される亜硝酸イオンの生成量を測定することがで
きる。
Therefore, according to the cleanliness evaluation apparatus of the cleaning liquid 2 of this embodiment, the nitrite ion concentration measuring section 4 is configured to collect a certain amount of the cleaning liquid 2 and detect the ultraviolet absorbance due to nitrite ions in the collected cleaning liquid 2. By providing this, the nitrite ion concentration measuring section 4 can measure the amount of nitrite ions generated in the cleaning liquid 2 due to a change in the composition of the cleaning liquid 2.

これにより、洗浄液2の清浄度を亜硝酸イオンの生成量
よりインライン測定で間接的に評価することができる。
Thereby, the cleanliness of the cleaning liquid 2 can be indirectly evaluated from the amount of nitrite ions produced by in-line measurement.

また、採取された洗浄液2と純水18とを希釈混合し、
この希釈混合された洗浄液2の酸素による紫外線吸光度
を検出する過酸化水素濃度測定部5を備えることにより
、この過酸化水素濃度測定部5で純水18により希釈さ
れた洗浄液2の紫外線吸光度が所望の吸収量に減少する
のに要する時間を測定し、この時間により洗浄液2の組
成変化による洗浄液2中の過酸化水素の分解速度を求め
ことができる。これにより、洗浄液2の清浄度を過酸化
水素の分解速度よりインライン測定で間接的に評価する
ことができる。
Further, the collected cleaning liquid 2 and pure water 18 are diluted and mixed,
By providing the hydrogen peroxide concentration measuring section 5 that detects the ultraviolet absorbance of the diluted and mixed cleaning liquid 2 due to oxygen, the hydrogen peroxide concentration measuring section 5 can adjust the ultraviolet absorbance of the cleaning liquid 2 diluted with pure water 18 to a desired value. The time required for the amount of hydrogen peroxide absorbed to decrease to 1 is measured, and the decomposition rate of hydrogen peroxide in the cleaning liquid 2 due to a change in the composition of the cleaning liquid 2 can be determined from this time. Thereby, the cleanliness of the cleaning liquid 2 can be indirectly evaluated from the decomposition rate of hydrogen peroxide by in-line measurement.

以上、本発明者によってなされた発明を実施例に基づき
具体的に説明したが、本発明は前記実施例に限定される
ものではなく、その要旨を逸脱しない範囲で種々変更可
能であることはいうまでもない。
As above, the invention made by the present inventor has been specifically explained based on Examples, but it should be noted that the present invention is not limited to the Examples and can be modified in various ways without departing from the gist thereof. Not even.

たとえば、本実施例の清浄度評価装置については、洗浄
液2を採取ポンプ11によってモニタ部6内に導く場合
について説明したが、本発明は前記実施例に限定される
ものではなく、たとえばアスピレータなどの吸引装置に
より吸引してモニタ部6内に導く場合についても適用可
能である。
For example, with regard to the cleanliness evaluation device of this embodiment, a case has been described in which the cleaning liquid 2 is guided into the monitor section 6 by the collection pump 11, but the present invention is not limited to the above embodiment. It is also applicable to the case where the liquid is sucked into the monitor section 6 by suction using a suction device.

また、本実施例の清浄度評価装置の亜硝酸イオンおよび
過酸化水素の濃度測定については、各濃度測定部4.5
を処理槽3の上部からモニタ部6に導かれた流体経路に
設けた場合について説明したが、たとえば処理槽3内の
洗浄液2を循環させるたtの流体経路の途中に設ける場
合についても適用可能とされ、また洗浄液2の各濃度測
定方法についても、洗浄液2の一部をサンプリングして
酸化還元滴定法またはイオンクロマトグラフィによって
測定することも可能である。
In addition, regarding the concentration measurement of nitrite ions and hydrogen peroxide in the cleanliness evaluation device of this example, each concentration measuring section 4.5
Although the case has been described in which the filter is provided in the fluid path leading from the upper part of the processing tank 3 to the monitor unit 6, it is also applicable to the case where it is provided in the middle of the fluid path t for circulating the cleaning liquid 2 in the processing tank 3, for example. Furthermore, regarding each method of measuring the concentration of the cleaning liquid 2, it is also possible to sample a part of the cleaning liquid 2 and measure it by redox titration or ion chromatography.

サラニ、洗浄液2につし)では、過酸化水素が含有され
たアンモニア性アルカリ溶液の洗浄液2について説明し
たが、たとえば純水に近?)水溶性の洗浄液2に過酸化
水素およびアンモニアを添加して、水溶性の洗浄液2の
清浄度を評価する場合についても適用可能である。
Sarani, Cleaning Solution 2) explained about the cleaning solution 2, which is an ammoniacal alkaline solution containing hydrogen peroxide, but is it close to pure water? ) It is also applicable to the case where hydrogen peroxide and ammonia are added to the water-soluble cleaning liquid 2 and the cleanliness of the water-soluble cleaning liquid 2 is evaluated.

以上の説明では、主として本発明者によってなされた発
明をその利用分野である半導体集積回路装置の製造工程
における半導体ウニ/Xlの洗浄に用いられる洗浄液2
の清浄度評価装置に適用した場合について説明したが、
これに限定されるものではなく、たとえばガラス基板の
マスク、セラミック基板、さらに半導体ウェハ1につい
ても、S】ウェハまたはGaAsなどの化合物半導体ウ
ェハなどの被洗浄物を洗浄する洗浄液2の清浄度評価装
置についても広く適用可能である。
In the above description, the invention made by the present inventor will mainly be described as a cleaning liquid 2 used for cleaning semiconductor urchins/Xl in the manufacturing process of semiconductor integrated circuit devices, which is the field of application of the invention.
We explained the case where it was applied to a cleanliness evaluation device.
The cleanliness evaluation device for the cleaning liquid 2 for cleaning objects to be cleaned such as masks of glass substrates, ceramic substrates, and even semiconductor wafers 1 is not limited to this. It is also widely applicable.

[発明の効果] 本願において開示される発明のうち、代表的なものによ
って得られる効果を簡単に説明すれば、下記のとおりで
ある。
[Effects of the Invention] Among the inventions disclosed in this application, the effects obtained by typical inventions are briefly described below.

すなわち、洗浄液の組成変化を測定し、この組成変化に
より洗浄液の清浄度を評価する評価方法および装置にお
り)で、洗浄液を一定量採取し、この採取された洗浄液
中の亜硝酸イオンによる紫外線吸光度を検出する亜硝酸
イオン濃度測定部を備えることにより、この亜硝酸イオ
ン濃度測定部で洗浄液に持ち込まれた金属および還元性
の不純物量を洗浄液の組成変化により洗浄液中で生成さ
れる亜硝酸イオンの生成量より間接的に測定することが
できるので、洗浄液の清浄度を亜硝酸イオンの生成量よ
りインライン測定で評価することができる。
In other words, using an evaluation method and apparatus that measures changes in the composition of the cleaning solution and evaluates the cleanliness of the cleaning solution based on this compositional change, a certain amount of the cleaning solution is collected, and the ultraviolet absorbance due to nitrite ions in the collected cleaning solution is measured. By being equipped with a nitrite ion concentration measuring section that detects nitrite ions, the nitrite ion concentration measuring section measures the amount of metal and reducing impurities brought into the cleaning solution by measuring the amount of nitrite ions generated in the cleaning solution due to changes in the composition of the cleaning solution. Since the amount of nitrite ions produced can be measured indirectly, the cleanliness of the cleaning solution can be evaluated by in-line measurement from the amount of nitrite ions produced.

また、洗浄液を一定量採取し、この採取された洗浄液と
純水とを希釈混合し、この希釈混合された洗浄液の酸素
による紫外線吸光度を検出する過酸化水素濃度測定部を
備えることにより、この過酸化水素濃度測定部で洗浄液
に持ち込まれた金属および還元性の不純物量を純水によ
り希釈された洗浄液の紫外線吸光度が所望の吸収量に減
少するのに要する時間を測定し、この時間により洗浄液
の組成変化による洗浄液中の過酸化水素の分解速度を間
接的に求めことができるので、洗浄液の清浄度を過酸化
水素の分解速度よりインライン測定で評価することがで
きる。
In addition, it is equipped with a hydrogen peroxide concentration measuring section that collects a certain amount of cleaning fluid, dilutes and mixes the collected cleaning fluid with pure water, and detects the ultraviolet absorbance of the diluted and mixed cleaning fluid due to oxygen. The hydrogen oxide concentration measurement unit measures the amount of metal and reducing impurities brought into the cleaning solution by measuring the time required for the ultraviolet absorbance of the cleaning solution diluted with pure water to decrease to the desired absorption amount, and using this time to determine the amount of metal and reducing impurities brought into the cleaning solution. Since the decomposition rate of hydrogen peroxide in the cleaning liquid due to compositional changes can be determined indirectly, the cleanliness of the cleaning liquid can be evaluated by in-line measurement from the decomposition rate of hydrogen peroxide.

さらに、洗浄液中の過酸化水素の濃度を純水の希釈混合
により測定することができるので、測定上で問題となる
気泡および洗浄液のPH変化による緩衝作用の影響を受
けることなく、洗浄液の高精度な清浄度の評価が可能で
ある。
Furthermore, since the concentration of hydrogen peroxide in the cleaning solution can be measured by diluting and mixing with pure water, the concentration of hydrogen peroxide in the cleaning solution can be measured with high accuracy without being affected by the buffering effect caused by air bubbles and pH changes in the cleaning solution. It is possible to evaluate cleanliness.

この結果、洗浄液に持ち込まれた金属および還元性の不
純物による汚染、およびこの不純物による被洗浄物の再
汚染が低減されるので、半導体集積回路装置の歩留りが
向上され、高品質な半導体集積回路装置の製造が可能と
される洗浄液の清浄度評価方法および装置を得ることが
できる。
As a result, contamination by metals and reducing impurities brought into the cleaning solution and recontamination of the object to be cleaned by these impurities are reduced, improving the yield of semiconductor integrated circuit devices and producing high-quality semiconductor integrated circuit devices. It is possible to obtain a method and apparatus for evaluating the cleanliness of a cleaning liquid, which enables the production of a cleaning liquid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である洗浄液の清浄度評価装
置を示す概略構成図、 第2図は本実施例の清浄度評価装置の検出部を示す概略
構成図、 第3図は洗浄液中の亜硝酸イオンによる紫外線吸光度と
測定時間との関係を示す説明図、第4図は洗浄液中の過
酸化水素による紫外線吸光度と測定時間との関係を示す
説明図、第5図は洗浄液中に共存する金属イオンと過酸
化水素の分解速度との関係を示す説明図、第6図は洗浄
液中の銅イオンの共存量と亜硝酸イオンの生成量との関
係を示す説明図である。 1・・・半導体ウェハ(被洗浄物)、2・・・洗浄液、
3・・・処理槽、4・・・亜硝酸イオン濃度測定部、5
・・・過酸化水素濃度測定部、6・・・モニタ部、7・
・・圧送ポンプ、8・・・フィルタ、9・・・オーバー
フロー槽、10・・・マニホルド、11・・・採取ポン
プ、12・・・検出部、13・・・紫外線光源、14・
・・フローセル、15・・・紫外線検出器、16・・・
脱泡セル、17・・・電磁弁、18・・・純水、19・
・・ミキシング室、20・・・送液ポンプ、21・・・
検出部。 第 図 第 図 時 間 第 図 時 間 を 第 図 洗浄液組成 洗浄液液温 NH,0H H2O2: H,0 80℃
FIG. 1 is a schematic configuration diagram showing a cleaning liquid cleanliness evaluation device according to an embodiment of the present invention. FIG. 2 is a schematic configuration diagram showing a detection section of the cleanliness evaluation device of this embodiment. FIG. 3 is a cleaning liquid Figure 4 is an explanatory diagram showing the relationship between ultraviolet absorbance due to nitrite ions in the cleaning liquid and measurement time. FIG. 6 is an explanatory diagram showing the relationship between the coexisting metal ions and the decomposition rate of hydrogen peroxide, and FIG. 6 is an explanatory diagram showing the relationship between the amount of coexisting copper ions in the cleaning solution and the amount of nitrite ions produced. 1... Semiconductor wafer (object to be cleaned), 2... Cleaning liquid,
3... Processing tank, 4... Nitrite ion concentration measuring section, 5
...Hydrogen peroxide concentration measurement section, 6.Monitor section, 7.
... Pressure pump, 8 ... Filter, 9 ... Overflow tank, 10 ... Manifold, 11 ... Collection pump, 12 ... Detection section, 13 ... Ultraviolet light source, 14.
...Flow cell, 15...Ultraviolet detector, 16...
Defoaming cell, 17... Solenoid valve, 18... Pure water, 19.
...Mixing chamber, 20...Liquid pump, 21...
Detection unit. Figure Figure Time Figure Time Figure Cleaning liquid composition Cleaning liquid temperature NH, 0H H2O2: H, 0 80℃

Claims (1)

【特許請求の範囲】 1、被洗浄物の洗浄に使用される洗浄液の清浄度を評価
する評価方法であって、前記洗浄液の組成変化を測定す
ることにより清浄度を評価することを特徴とする洗浄液
の清浄度評価方法。 2、前記洗浄液が過酸化水素水、アンモニア水および水
からなることを特徴とする請求項1記載の洗浄液の清浄
度評価方法。 3、前記洗浄液中で生成される亜硝酸イオンの生成量を
測定することにより清浄度を評価することを特徴とする
請求項1記載の洗浄液の清浄度評価方法。 4、前記洗浄液中の過酸化水素の分解速度を求めること
により清浄度を評価することを特徴とする請求項1記載
の洗浄液の清浄度評価方法。 5、前記洗浄液中の酸素による紫外線吸収量が一定流量
で送液した純水により希釈されて減少し、所望の吸収量
に減少するのに要する時間を測定して過酸化水素の濃度
を求め、該過酸化水素の濃度により前記過酸化水素の分
解速度を求めることを特徴とする請求項4記載の洗浄液
の清浄度評価方法。 6、洗浄液の組成変化を測定し、該組成変化により洗浄
液の清浄度を評価する評価装置であって、前記洗浄液を
一定量採取し、該採取された洗浄液中の亜硝酸イオンに
よる紫外線吸光度を検出する亜硝酸イオン濃度測定部を
備え、前記亜硝酸イオン濃度測定部により洗浄液中で生
成される亜硝酸イオンの生成量を測定し、該亜硝酸イオ
ンの生成量より前記洗浄液の清浄度を評価することを特
徴とする洗浄液の清浄度評価装置。 7、洗浄液の組成変化を測定し、該組成変化により洗浄
液の洗浄度を評価する評価装置であって、前記洗浄液を
一定量採取し、該採取された洗浄液と純水とを希釈混合
し、該希釈混合された洗浄液の酸素による紫外線吸光度
を検出する過酸化水素濃度測定部を備え、前記過酸化水
素濃度測定部により洗浄液中の過酸化水素の分解速度を
求め、該過酸化水素の分解速度より前記洗浄液の清浄度
を評価することを特徴とする洗浄液の清浄度評価装置。
[Claims] 1. An evaluation method for evaluating the cleanliness of a cleaning liquid used for cleaning an object to be cleaned, characterized in that the cleanliness is evaluated by measuring a change in the composition of the cleaning liquid. Method for evaluating cleanliness of cleaning fluid. 2. The cleaning liquid cleanliness evaluation method according to claim 1, wherein the cleaning liquid comprises hydrogen peroxide solution, ammonia water, and water. 3. The cleaning liquid cleanliness evaluation method according to claim 1, wherein the cleanliness is evaluated by measuring the amount of nitrite ions generated in the cleaning liquid. 4. The cleaning liquid cleanliness evaluation method according to claim 1, wherein the cleanliness is evaluated by determining the decomposition rate of hydrogen peroxide in the cleaning liquid. 5. Determine the concentration of hydrogen peroxide by measuring the time required for the amount of ultraviolet light absorbed by oxygen in the cleaning solution to be diluted and reduced by pure water fed at a constant flow rate and to reduce to the desired amount of absorption; 5. The cleaning liquid cleanliness evaluation method according to claim 4, wherein the decomposition rate of the hydrogen peroxide is determined based on the concentration of the hydrogen peroxide. 6. An evaluation device that measures changes in the composition of a cleaning solution and evaluates the cleanliness of the cleaning solution based on the composition changes, wherein a certain amount of the cleaning solution is collected and the ultraviolet absorbance due to nitrite ions in the collected cleaning solution is detected. a nitrite ion concentration measuring section, the nitrite ion concentration measuring section measures the amount of nitrite ions generated in the cleaning solution, and the cleanliness of the cleaning solution is evaluated based on the amount of nitrite ions produced. A cleaning liquid cleanliness evaluation device characterized by: 7. An evaluation device that measures changes in the composition of a cleaning solution and evaluates the degree of cleaning of the cleaning solution based on the changes in composition, wherein a certain amount of the cleaning solution is collected, the collected cleaning solution and pure water are diluted and mixed, and the cleaning solution is diluted and mixed with pure water. A hydrogen peroxide concentration measuring section is provided to detect the ultraviolet absorbance of the diluted and mixed cleaning solution due to oxygen, and the hydrogen peroxide concentration measuring section determines the decomposition rate of hydrogen peroxide in the cleaning solution, and from the decomposition rate of the hydrogen peroxide. A cleanliness evaluation device for a cleaning liquid, characterized in that the cleanliness of the cleaning liquid is evaluated.
JP10421090A 1990-04-19 1990-04-19 Method and device for evaluating cleanliness of washing liquid Pending JPH043425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10421090A JPH043425A (en) 1990-04-19 1990-04-19 Method and device for evaluating cleanliness of washing liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10421090A JPH043425A (en) 1990-04-19 1990-04-19 Method and device for evaluating cleanliness of washing liquid

Publications (1)

Publication Number Publication Date
JPH043425A true JPH043425A (en) 1992-01-08

Family

ID=14374605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10421090A Pending JPH043425A (en) 1990-04-19 1990-04-19 Method and device for evaluating cleanliness of washing liquid

Country Status (1)

Country Link
JP (1) JPH043425A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04278529A (en) * 1991-03-07 1992-10-05 Nec Corp Silicon wafer cleaning equipment
US6725119B1 (en) 1999-09-30 2004-04-20 Nec Electronics Corporation Cleaning-apparatus line configuration and designing process therefor
US20120234355A1 (en) * 2009-12-02 2012-09-20 Lely Patent N.V. Milking device and method of cleaning same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04278529A (en) * 1991-03-07 1992-10-05 Nec Corp Silicon wafer cleaning equipment
US6725119B1 (en) 1999-09-30 2004-04-20 Nec Electronics Corporation Cleaning-apparatus line configuration and designing process therefor
US20120234355A1 (en) * 2009-12-02 2012-09-20 Lely Patent N.V. Milking device and method of cleaning same
US10051833B2 (en) * 2009-12-02 2018-08-21 Lely Patent N.V. Milking device and method of cleaning same

Similar Documents

Publication Publication Date Title
US5364510A (en) Scheme for bath chemistry measurement and control for improved semiconductor wet processing
US20010023700A1 (en) Method and apparatus for immersion treatment of semiconductor and other devices
US20110030722A1 (en) Cleaning water for electronic material, method for cleaning electronic material and system for supplying water containing dissolved gas
TWI439571B (en) Sulfuric acid electrolysis device, electrolysis method and substrate processing device
KR101791490B1 (en) Method for measuring total oxidizing-substance concentration, substrate cleaning method, and substrate cleaning system
CN1224840C (en) Pulsed-flow total organic carbon analyzer
JP5206120B2 (en) Metal analysis method and semiconductor wafer manufacturing method
KR101263537B1 (en) Point-of-use process control blender systems and corresponding methods
EP0718872B1 (en) Semiconductor substrate cleaning method
CN102042925B (en) Method and apparatus for removing chloride from samples containing volatile organic carbon
JPH043425A (en) Method and device for evaluating cleanliness of washing liquid
US8268162B2 (en) Voltammetric device having sample degassing system
JP2001053066A (en) Ozone processor and ozone processing method
JPS61281532A (en) Concentration adjustment of washing liquid for semiconductor and its device
KR100411615B1 (en) Ozone generating apparatus
JP4450117B2 (en) Water quality evaluation method for silicon substrate cleaning ultrapure water
JP5198187B2 (en) Liquid processing apparatus and processing liquid supply method
US7387720B2 (en) Electrolytic method and apparatus for trace metal analysis
JPH0737851A (en) Cleaning device
US20110039347A1 (en) Analytical Method and Apparatus
JPH0634890B2 (en) Preparation method of chemicals
JP2002005799A (en) Analytical method for trace metal impurities
JP2003130846A (en) Minute amount metal continuous measuring device and method for semiconductor chemical
WO2006049239A1 (en) Method of real-time/inline detection of ultratrace metallic element contained in sample liquid and apparatus therefor
JP2888957B2 (en) Water evaluation method, pure water production method and its apparatus