JP2002005799A - Analytical method for trace metal impurities - Google Patents

Analytical method for trace metal impurities

Info

Publication number
JP2002005799A
JP2002005799A JP2000185200A JP2000185200A JP2002005799A JP 2002005799 A JP2002005799 A JP 2002005799A JP 2000185200 A JP2000185200 A JP 2000185200A JP 2000185200 A JP2000185200 A JP 2000185200A JP 2002005799 A JP2002005799 A JP 2002005799A
Authority
JP
Japan
Prior art keywords
container
heating
sample solution
gas
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000185200A
Other languages
Japanese (ja)
Inventor
Hideji Baba
秀治 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2000185200A priority Critical patent/JP2002005799A/en
Publication of JP2002005799A publication Critical patent/JP2002005799A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an analytical method capable of quickly, accurately analyzing trace metal impurities in a sample of, for example, an aqueous solution in which an easily heat decomposable compound or an easily volatile compound is dissolved, or ultra-pure water. SOLUTION: In the analytical method of the trace metal impurities in a sample solution 15, the sample solution is put into a longitudinally long container made of a microwave permeable material, the container is put in a chamber having a usual heating means such as a microwave generating device 13 and a hot air generating device 14, heating by microwaves and the wall surface heating of the sample container are simultaneously or sequentially conducted to vaporize and/or decompose the sample solution, and the obtained residue is taken out and analyzed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蒸発性の溶液試
料、または易熱分解性化合物を溶媒に溶解した試料中の
微量金属不純物を分析するための新規な方法に関する。
詳しくは、上記試料中の微量金属不純物を迅速に且つ精
度良く分析することが可能な分析方法である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel method for analyzing trace metal impurities in an evaporable solution sample or a sample obtained by dissolving a thermally decomposable compound in a solvent.
Specifically, it is an analysis method capable of analyzing trace metal impurities in the above sample quickly and accurately.

【0002】[0002]

【従来の技術】半導体工業で使用される薬品は、半導体
基板の歩留まりを向上させるため、含まれるナトリウ
ム、カリウム、鉄、コバルト、ニッケル、銅、銀、鉛、
スズなどの金属不純物の濃度を低減する事が求められ
る。この評価のために、近年発達した各種の微量金属分
析法が使用できる。例えば、誘導結合プラズマ発光法、
誘導結合プラズマ質量分析法などが代表的である。
2. Description of the Related Art Chemicals used in the semiconductor industry include sodium, potassium, iron, cobalt, nickel, copper, silver, lead, etc. in order to improve the yield of semiconductor substrates.
It is required to reduce the concentration of metal impurities such as tin. For this evaluation, various trace metal analysis methods developed in recent years can be used. For example, inductively coupled plasma emission method,
A typical example is inductively coupled plasma mass spectrometry.

【0003】これらの場合、試料は溶液として測定装置
に導入されるのが一般的であるが、試料中の溶質である
主成分が往々にして金属不純物検出の妨害をするため
に、多量の精製水で希釈するか、該主成分を除いてから
装置に導入する方法がよく採られる。例えば、半導体工
業で使用される硫酸の場合Semiconductor Equipment &
Materials International (SEMI)スタンダード
では、ホットプレート上で硫酸を蒸発乾固し、残った残
渣を硝酸に溶解してフレームレス原子吸光法や誘導結合
プラズマ質量分析法で金属不純物測定する方法が記載さ
れている。
In these cases, the sample is generally introduced into the measuring apparatus as a solution. However, a large amount of purification is required because the solute in the sample often interferes with detection of metal impurities. A method of diluting with water or removing the main component before introducing it into an apparatus is often employed. For example, in the case of sulfuric acid used in the semiconductor industry, Semiconductor Equipment &
The Materials International (SEMI) standard describes a method of evaporating sulfuric acid on a hot plate to dryness, dissolving the remaining residue in nitric acid, and measuring metal impurities by flameless atomic absorption spectrometry or inductively coupled plasma mass spectrometry. I have.

【0004】このように、試料中の主成分を加熱により
除去して、残った微量金属不純物を分析する方法は前記
硫酸以外にも、易熱分解性化合物の溶液の如き試料中
の、微量金属不純物の分析に応用することができる。こ
の例として集積回路パターン形成用フォトレジストの現
像液として使われる水酸化テトラメチルアンモニウム
(以下TMAHと略記する)の水溶液を、耐熱性のある
容器に入れ、220℃以上、500℃以下の温度で数時
間加熱して水と主成分を蒸発、分解して除去し、残渣を
硝酸に溶かして金属不純物を測定する方法が提案されて
いる。(特開平10−38873号公報)この方法によれば、
溶質である主成分の化合物を完全に除去して主成分によ
る金属不純物検出の妨害を排除するとともに、金属不純
物を高度に濃縮することができることから、希釈法と比
べて分析の精度と感度を著しく改善することができる。
As described above, a method of analyzing the remaining trace metal impurities by removing the main components in the sample by heating is not limited to the above-mentioned sulfuric acid. It can be applied to the analysis of impurities. As an example of this, an aqueous solution of tetramethylammonium hydroxide (hereinafter abbreviated as TMAH) used as a developing solution for a photoresist for forming an integrated circuit pattern is placed in a heat-resistant container at a temperature of 220 ° C. or more and 500 ° C. or less. There has been proposed a method of heating for several hours to evaporate and decompose water and main components to remove them, dissolve the residue in nitric acid, and measure metal impurities. (JP-A-10-38873) According to this method,
The solute main component is completely removed to eliminate the interference of detection of metal impurities by the main component, and the metal impurities can be highly concentrated, thereby significantly improving the accuracy and sensitivity of analysis compared to the dilution method. Can be improved.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この方
法の問題点として開放系で試料を長時間高温加熱する事
による外部雰囲気による汚染や、容器からの汚染などが
懸念されること、また、処理時間が長くかかることによ
り、生産設備、或いは、使用設備内において、上記試料
となる溶液等の日常的な品質管理を行うための分析には
向かない点が挙げられる。
However, as a problem of this method, there is a concern that contamination by an external atmosphere due to heating the sample at a high temperature for a long time in an open system, contamination from a container, etc. Is not suitable for analysis for performing daily quality control of the solution or the like as the sample in a production facility or a use facility.

【0006】本発明の目的は、試料の汚染を抑えなが
ら、該試料中の溶媒と、溶質として主成分となる化合物
とを迅速に蒸発および/又は分解除去し、該試料中の微
量金属不純物を高い精度で検出することが可能な、日常
的品質管理に使える分析方法を提供することにある。
An object of the present invention is to quickly evaporate and / or decompose and remove a solvent and a compound which is a main component as a solute in a sample while suppressing contamination of the sample to remove trace metal impurities in the sample. An object of the present invention is to provide an analytical method that can be detected with high accuracy and that can be used for daily quality control.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく鋭意研究を重ねた結果、蒸発性の溶液試
料、または易熱分解性化合物を溶媒に溶解した試料に対
して、マイクロ波による加熱と試料容器の壁面加熱とを
同時或いは順次実施することにより、極めて短時間で該
試料溶液を完全に蒸発および/又は分解して残渣を得る
ことができること、かかる処理において特定の形状の容
器を使用し、且つ特定のガス排除手段を採用することに
より、該試料中の微量金属不純物のロスを減らし、かつ
汚染を極めて効果的に抑えることができ、該金属不純物
を極めて高い信頼性で分析できることを見い出し、本発
明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, have found that evaporable solution samples or samples in which a thermally decomposable compound is dissolved in a solvent are used. Simultaneous or sequential heating of the microwave and heating of the wall surface of the sample container can completely evaporate and / or decompose the sample solution in a very short time to obtain a residue. By using a container of the above type and employing a specific gas elimination means, the loss of trace metal impurities in the sample can be reduced and the contamination can be suppressed very effectively, and the metal impurities can be extremely highly reliable. And found that the present invention was completed.

【0008】即ち、本発明は、試料溶液中の微量金属不
純物を分析する方法において、該試料溶液を、マイクロ
波透過性の素材よりなる縦長容器に存在せしめてマイク
ロ波発生装置のチャンバー内に置き、次いで加熱により
該縦長容器内で発生するガスを縦長容器がチャンバー内
に対して密閉された状態で縦長容器とチャンバー外とを
連通するガス排除手段によって排除しながら、該試料溶
液のマイクロ波による加熱と縦長容器の壁面加熱とを同
時或いは順次実施して試料溶液を蒸発及び/又は分解
し、得られる残渣を取り出して分析することを特徴とす
る試料溶液中の微量金属不純物の分析方法である。
That is, according to the present invention, in a method for analyzing trace metal impurities in a sample solution, the sample solution is placed in a vertically long container made of a microwave-permeable material and placed in a chamber of a microwave generator. Then, the gas generated in the vertical container by heating is removed by the microwave of the sample solution while gas is removed by gas removing means communicating the vertical container and the outside of the chamber in a state where the vertical container is sealed in the chamber. A method for analyzing trace metal impurities in a sample solution, wherein heating and wall heating of a vertically long container are performed simultaneously or sequentially to evaporate and / or decompose a sample solution, and take out and analyze the obtained residue. .

【0009】[0009]

【発明の実施の形態】本発明の分析方法の対象となる試
料溶液は、加熱により蒸発及び/又は分解が可能なもの
であれば、特に制限されないが、特に、前記TMAHの
如き、易熱分解性化合物を溶解した溶液に対して有効で
ある。また、試料溶液を構成する溶媒はマイクロ波で加
熱できるものであれば良く、特に制限はないが、溶質で
ある主成分がイオン性の化合物の場合、良溶媒である水
が好適に使用される。
BEST MODE FOR CARRYING OUT THE INVENTION The sample solution to be analyzed by the present invention is not particularly limited as long as it can be evaporated and / or decomposed by heating. It is effective for a solution in which an active compound is dissolved. The solvent constituting the sample solution is not particularly limited as long as it can be heated by microwaves. However, when the main component as a solute is an ionic compound, water as a good solvent is preferably used. .

【0010】本発明において、上記試料溶液を存在せし
める容器として縦長容器を使用すること及び該縦長容器
に、マイクロ波発生装置のチャンバー内に対して密閉さ
れた状態でチャンバー外と連通するように成したガス排
除手段を設けることが、分析の目的物である金属不純物
を極めて高い信頼性で分析する上で重要である。
In the present invention, a vertical container is used as a container in which the sample solution is allowed to exist, and the vertical container is configured to communicate with the outside of the microwave generator in a state where the container is sealed with respect to the chamber. It is important to provide such a gas exclusion means in order to analyze metal impurities as an object of analysis with extremely high reliability.

【0011】即ち、試料溶液の加熱による蒸発の際に生
成する溶媒ガス、分解ガス或いは揮発ガスに同伴するミ
スト中には、該試料中の微量金属不純物が含まれるた
め、分析の信頼性の点で、容器からのミストの損失を最
小限に抑える必要がある。縦長容器の場合、ミストは容
器の壁面で凝縮し、回収されるためミストの損失は抑制
される。しかし、容器形状が縦長でない場合、ミストが
容器から上記ガスに同伴して排出され、分析の信頼性が
低下する。
That is, trace metal impurities in the sample are contained in the mist accompanying the solvent gas, the decomposition gas, or the volatile gas generated when the sample solution is evaporated by heating. Therefore, it is necessary to minimize the loss of mist from the container. In the case of a vertically long container, the mist condenses on the wall surface of the container and is collected, so that the loss of the mist is suppressed. However, if the container is not vertically long, mist is discharged from the container along with the gas, and the reliability of analysis is reduced.

【0012】また、マイクロ波発生装置のチャンバー内
は、金属で構成されており、そのままでは金属汚染が懸
念される。しかし試料溶液の蒸発及び/又は分解で生ず
る容器内のガスを該チャンバー内に対して密閉された状
態でガスを排除する手段を設けることにより、かかる汚
染が著しく低減される。
Further, the inside of the chamber of the microwave generating apparatus is made of metal, and there is a concern that metal contamination will occur as it is. However, such contamination is significantly reduced by providing a means for removing the gas in the container from the evaporation and / or decomposition of the sample solution while keeping the gas sealed in the chamber.

【0013】図1に本発明で使用される器具の代表的な
態様を示す。
FIG. 1 shows a typical embodiment of the instrument used in the present invention.

【0014】本発明において、縦長容器1の形状は、縦
長、即ち、径に対して高さが大きい形状であれば特に制
限されないが、好ましくは筒状体であり、特に、円筒形
であることが洗浄性の面で好適である。また、試料溶液
の加熱により発生するミスト中に同伴される金属不純物
を内壁で捉え、分析精度を向上させるために、縦長容器
の直径に対する高さの比(L/D)を大きく設定するこ
とが好ましい。該容器の直径に対する高さの好適な比
(L/D)は、1.5以上、好ましくは2〜10、さら
に好ましくは、2〜5である。
In the present invention, the shape of the vertically long container 1 is not particularly limited as long as it is vertically long, that is, a shape having a large height relative to the diameter, but it is preferably a cylindrical body, and particularly preferably a cylindrical shape. Are preferred in terms of detergency. In addition, in order to capture the metal impurities entrained in the mist generated by heating the sample solution on the inner wall and improve the analysis accuracy, the height ratio (L / D) to the diameter of the vertically long container may be set to be large. preferable. A suitable ratio of height to diameter (L / D) of the container is 1.5 or more, preferably 2 to 10, more preferably 2 to 5.

【0015】また、上記縦長容器1の材質は、マイクロ
波透過性を有するものが特に制限なく使用されるが、加
熱に対して耐熱性があり、試料に対して耐薬品性がある
ものが好適である。なかでも、金属不純物の含有量が少
ない石英やPFA、PTFEなどのフッ素樹脂が特に好適であ
る。
As the material of the vertical container 1, a material having microwave permeability is used without any particular limitation, but a material having heat resistance to heating and chemical resistance to the sample is preferable. It is. Among them, a fluororesin such as quartz or PFA or PTFE having a low content of metal impurities is particularly preferable.

【0016】また、本発明において、上記ガス排除手段
を設ける態様は、加熱によって、生成する溶媒ガス、分
解ガス或いは揮発ガスを吸引除去し得る態様が特に制限
なく採用される。例えば、前記図1においては、縦長容
器1の上部のジョイント部2に設けたガス排出用配管3
をキャリアガス配管4の側部に接続し、キャリアガス配
管にガスを流すことによる押し流し効果により、縦長容
器1より前記ガスの吸引を行うようにした態様を示す。
該キャリアガスとしては分解ガスとの反応性がない清浄
なガス、例えば、窒素、ヘリウム等の高純度ガスが好適
に使用できる。
In the present invention, a mode in which the above-mentioned gas removing means is provided is not particularly limited, and a mode in which a solvent gas, a decomposition gas or a volatile gas generated by heating can be removed by suction is adopted. For example, in FIG. 1 described above, a gas discharge pipe 3
Is connected to the side of the carrier gas pipe 4, and the gas is sucked from the vertically long container 1 by a flushing effect by flowing the gas through the carrier gas pipe.
As the carrier gas, a clean gas having no reactivity with the decomposition gas, for example, a high-purity gas such as nitrogen or helium can be suitably used.

【0017】また、他の態様として、縦長容器を排気ポ
ンプと接続して前記ガスを吸引、排気する態様等が挙げ
られるが、吸引を余り強く行うと、分析対象となる金属
がガスに同伴されて損失したり、残渣を取り出す際、容
器内に外気が吸引される等により、汚染を招くおそれが
あるため、前記図1に示す態様が好ましい。またジョイ
ント部2には処理終了後、該縦長容器1に残っている溶
媒ガス、分解ガス或いは揮発ガスをパージするためのパ
ージガス用配管5が接続されている。
As another mode, there is a mode in which the vertical container is connected to an exhaust pump to suck and exhaust the gas, but if the suction is performed too strongly, the metal to be analyzed is accompanied by the gas. When the residue is taken out or the residue is taken out, contamination may be caused due to the outside air being sucked into the container. Therefore, the embodiment shown in FIG. 1 is preferable. Further, a purge gas pipe 5 for purging a solvent gas, a decomposition gas or a volatile gas remaining in the vertically long container 1 after the processing is completed is connected to the joint portion 2.

【0018】本発明において、試料溶液のマイクロ波加
熱と縦長容器の壁面加熱とは、同時に、或いは順次実施
すれば良い。このとき、壁面加熱の方法は通常の加熱手
段が特に制限なく使われるが、電熱ヒーターを利用した
輻射方式や熱風加熱方式が操作性の容易さから望まし
い。
In the present invention, the microwave heating of the sample solution and the wall heating of the vertically long container may be performed simultaneously or sequentially. At this time, a normal heating means is used without any particular limitation for the method of heating the wall surface, but a radiation method using an electric heater or a hot air heating method is preferable from the viewpoint of operability.

【0019】縦長容器中の試料溶液のマイクロ波加熱及
び縦長容器の壁面加熱は、図2に示すように、試料溶液
15を存在せしめた縦長容器1を容器ごとマイクロ波発
生装置13と熱風発生装置14を設けた加熱装置11の
チャンバー12内に置き、ガス排除手段を適用(図にお
いては、キャリアガス入り口16とキャリアガス出口1
7を有するキャリアガス配管4を前記加熱装置11を貫
通して設けた態様である。)しながら、マイクロ波加熱
と熱風による壁面加熱を同時或いは順次実施する態様が
一般的である。
As shown in FIG. 2, the microwave heating of the sample solution in the vertically long container and the wall heating of the vertically long container are performed by combining the vertically elongated container 1 in which the sample solution 15 is present with the microwave generator 13 and the hot air generator. 14 is placed in the chamber 12 of the heating device 11 and a gas elimination means is applied (in the figure, a carrier gas inlet 16 and a carrier gas outlet 1
This is an embodiment in which a carrier gas pipe 4 having a through hole 7 is provided through the heating device 11. However, it is common practice to simultaneously or sequentially perform microwave heating and wall heating with hot air.

【0020】上記マイクロ波による加熱において、マイ
クロ波の波長、強さは試料の量、種類に応じて適宜選択
すれば良いが、一般には、調理用電子レンジに使われる
波長2450MHz前後のものが好適に使用できる。ま
た、マイクロ波の強さは、一般に、試料量1ml当たり1
0〜60Wの範囲で選ぶことが好ましい。即ち、マイク
ロ波が弱過ぎる場合は処理に時間がかかり、逆に強すぎ
る場合は試料中の溶媒の急激な蒸発によりミストが大量
に生じ、これがガス吸引手段を通じて外部に流出し、金
属不純物のロスとなり分析の精度が低下する。
In the heating by microwaves, the wavelength and intensity of the microwaves may be appropriately selected according to the amount and type of the sample. Generally, those having a wavelength of about 2450 MHz used in a microwave oven for cooking are preferred. Can be used for In general, the intensity of microwave is 1 to 1 ml of sample.
It is preferable to select in the range of 0 to 60W. In other words, when the microwave is too weak, the processing takes time. On the other hand, when the microwave is too strong, a large amount of mist is generated due to rapid evaporation of the solvent in the sample, which flows out to outside through the gas suction means, and the loss of metal impurities. And the accuracy of the analysis decreases.

【0021】また、マイクロ波加熱と同時或いは順次実
施する壁面加熱の温度は試料溶液の沸点あるいは分解温
度より高くする必要があるが、高すぎると容器が破損す
る恐れがある。特にPFA、PTFEなどのフッ素樹脂を試料
容器として用いる場合、最高使用温度が260℃とされて
おり、これらの容器を用いる場合、これ以下の加熱温度
で使用する必要がある。また試料容器からの汚染物溶出
は温度が高いほど起こりやすい。この点から壁面加熱温
度は、沸点あるいは分解温度を越え、沸点あるいは分解
温度+40℃以下の範囲にすることが好ましい。
The temperature of the wall heating performed simultaneously or sequentially with the microwave heating needs to be higher than the boiling point or decomposition temperature of the sample solution, but if it is too high, the container may be damaged. In particular, when a fluorocarbon resin such as PFA or PTFE is used as a sample container, the maximum operating temperature is 260 ° C. When these containers are used, it is necessary to use a heating temperature lower than this. Elution of contaminants from the sample container is more likely to occur at higher temperatures. From this point, it is preferable that the wall heating temperature is in a range exceeding the boiling point or the decomposition temperature and not more than the boiling point or the decomposition temperature + 40 ° C.

【0022】マイクロ波加熱と壁面加熱は同時、或いは
順次行えば良い。マイクロ波加熱と壁面加熱を同時或い
は順次実施することにより、ホットプレート等の加熱体
上での試料溶液の加熱と比べて、試料溶液を短時間で完
全に蒸発及び/又は分解することができる。
The microwave heating and the wall heating may be performed simultaneously or sequentially. By simultaneously or sequentially performing the microwave heating and the wall heating, the sample solution can be completely evaporated and / or decomposed in a short time as compared with heating the sample solution on a heating body such as a hot plate.

【0023】順次に加熱を実施する場合、まずマイクロ
波加熱を実施し、大部分の試料溶液を蒸発及び/又は分
解した後、残った試料溶液を壁面加熱により完全に蒸発
及び/又は分解する方法が好適であるが、逆の場合有効
性は期待できない。また同時に実施する場合には、壁面
加熱がマイクロ波加熱の効果を高める事ができ、順次に
実施する場合よりも処理時間が短縮できるのでより好ま
しい。
When heating is performed sequentially, microwave heating is first performed to evaporate and / or decompose most of the sample solution, and then the remaining sample solution is completely evaporated and / or decomposed by wall heating. Is preferred, but the opposite is not expected to be effective. In addition, it is more preferable to perform the heating at the same time because the wall heating can enhance the effect of the microwave heating, and the processing time can be shortened as compared with the case where the heating is performed sequentially.

【0024】容器1に存在せしめる試料溶液の量は、ミ
ストの発生による微量金属不純物のロスを抑えるために
容器の容量の50%以下とすることが好適であり、より
好ましくは、5〜40%、特に好ましくは、10〜30
%である。
The amount of the sample solution to be present in the container 1 is preferably 50% or less, more preferably 5 to 40% of the volume of the container in order to suppress the loss of trace metal impurities due to the generation of mist. And particularly preferably, 10 to 30
%.

【0025】このように、加熱装置のチャンバー内及び
外気と遮断された縦長容器内で試料溶液を処理すること
により、加熱時における外気による試料溶液の汚染がほ
ぼ完全に防止され、分析精度を著しく向上することがで
きる。
As described above, by treating the sample solution in the chamber of the heating device and in the vertical container which is shut off from the outside air, contamination of the sample solution by the outside air during heating is almost completely prevented, and the analysis accuracy is remarkably improved. Can be improved.

【0026】更に、内容物である試料溶液に対する容器
からの汚染は、試料溶液と容器が高温度で長時間接触す
るほど進行するが、マイクロ波加熱と壁面加熱とを同時
及び/又は順次行うことにより、高温となった容器壁面
と試料溶液との接触時間を著しく短縮して処理すること
ができる。従って、マイクロ波加熱と壁面加熱との同時
及び/又は順次実施は、容器からの金属汚染を低減する
ことができるというメリットをも有する。
Further, the contamination of the sample solution, which is the content, from the container progresses as the sample solution and the container come into contact with each other at a high temperature for a long time. However, simultaneous and / or sequential microwave heating and wall heating are required. Thereby, the contact time between the container wall surface, which has become hot, and the sample solution can be remarkably shortened to perform the treatment. Therefore, simultaneous and / or sequential execution of the microwave heating and the wall heating also has an advantage that metal contamination from the container can be reduced.

【0027】本発明においてマイクロ波加熱と壁面加熱
とは、試料溶液中の溶媒、易熱分解性化合物が存在する
場合は該化合物が完全に除去されるまで行うことが好ま
しい。
In the present invention, the microwave heating and the wall heating are preferably performed until the solvent and the easily decomposable compound in the sample solution are completely removed.

【0028】蒸発及び/又は分解処理後の試料容器内に
は溶媒ガス、分解ガス或いは揮発ガスが残留している。
これらのガスは人体に有害であったり、臭気を有してい
る場合があるので、不活性ガスで置換することが望まし
く、このための手段として試料容器にパージガス用配管
を設け、ここから不活性ガスを吹き込むことができるよ
うにすることが好ましい。
A solvent gas, a decomposition gas or a volatile gas remains in the sample container after the evaporation and / or decomposition treatment.
Since these gases may be harmful to the human body or have an odor, it is desirable to replace them with an inert gas.As a means for this, a purge gas pipe is provided in the sample container, and an inert gas is supplied from the pipe. Preferably, the gas can be blown.

【0029】このようにして得られた残渣は、縦長容器
中に少量の溶媒を供給して溶解して取り出される。次い
で、これを既知の金属分析方法で測定することによって
試料溶液中に含有される微量金属不純物を高い精度で分
析することができる。
The residue thus obtained is dissolved and taken out by supplying a small amount of solvent into a vertically long container. Then, by measuring this with a known metal analysis method, trace metal impurities contained in the sample solution can be analyzed with high accuracy.

【0030】上記分析方法としては、フレームレス原子
吸光法、誘導結合プラズマ発光法誘導結合プラズマ質量
分析法などが好適に使用できる。
As the above analysis method, flameless atomic absorption spectrometry, inductively coupled plasma emission method, inductively coupled plasma mass spectrometry, etc. can be preferably used.

【0031】また、残渣を溶解する溶媒は、残渣を完全
に溶かし且つ、測定装置に適するものであればよい。例
えば、硝酸、塩酸などの水溶液が特に好適に使用でき
る。
The solvent for dissolving the residue may be any solvent that can completely dissolve the residue and is suitable for the measuring device. For example, an aqueous solution such as nitric acid or hydrochloric acid can be particularly preferably used.

【0032】尚、上記溶媒量は少ないほど試料の濃縮率
が高くなり好ましく、測定に必要な量を勘案して決めれ
ばよい。
The smaller the amount of the solvent is, the higher the concentration of the sample is, and the more preferable it is. The amount may be determined in consideration of the amount required for the measurement.

【0033】[0033]

【発明の効果】本発明によれば、試料溶液の蒸発及び/
又は分解を、短時間で、且つ種々の要因による汚染を極
めて効果的に防止しながら行うことが可能となり、該金
属不純物を高感度、高精度に分析することができる。
According to the present invention, evaporation of a sample solution and / or
Alternatively, the decomposition can be performed in a short time while preventing contamination due to various factors extremely effectively, and the metal impurities can be analyzed with high sensitivity and high accuracy.

【0034】[0034]

【実施例】以下、実施例と比較例を挙げて本発明を説明
するが、本発明はこれらのものに限定されるものではな
い。
The present invention will be described below with reference to examples and comparative examples, but the present invention is not limited to these examples.

【0035】実施例1 100mlのPFA製容器(L/D=2.5)よりなる縦長
容器に20重量%のTMAH水溶液を25ml入れ、図2
に示す様に、キャリアガス配管の側部に接続したガス排
出用配管を有した蓋をして加熱装置にセットした。キャ
リアガスとして、ろ過した窒素ガスを10L/分の流量
で流しながら、波長は2450MHz、強さ500Wで
30分間マイクロ波を照射しTMAH水溶液を蒸発、熱
分解した。
Example 1 In a vertically long container composed of a 100 ml PFA container (L / D = 2.5), 25 ml of a 20% by weight aqueous solution of TMAH was placed, and FIG.
As shown in (1), the heating apparatus was set with a lid having a gas discharge pipe connected to the side of the carrier gas pipe. While flowing a filtered nitrogen gas as a carrier gas at a flow rate of 10 L / min, a microwave was irradiated at a wavelength of 2450 MHz and an intensity of 500 W for 30 minutes to evaporate and thermally decompose the TMAH aqueous solution.

【0036】続いて、TMAHが完全に分解するよう、
設定温度170℃で20分間熱風加熱を行った後、パー
ジガス用配管5を通じて窒素ガスを縦長容器内に導入し
容器内のガスを完全にパージした。このときのTMAH
の分解率は100%であり、完全に分解されていた。
尚、分解率は重量法で求めた。
Subsequently, TMAH is completely decomposed,
After heating with hot air at a set temperature of 170 ° C. for 20 minutes, nitrogen gas was introduced into the vertically long container through the purge gas pipe 5, and the gas in the container was completely purged. TMAH at this time
Was 100%, and was completely decomposed.
The decomposition rate was determined by a gravimetric method.

【0037】以上の操作終了後、容器を取り出して0.
1M硝酸水溶液10mlで残渣を溶かし、これを誘導結合
プラズマ質量分析法で測定した。
After the above operation is completed, the container is taken out, and the container is set at 0.
The residue was dissolved in 10 ml of a 1M aqueous nitric acid solution, and this was measured by inductively coupled plasma mass spectrometry.

【0038】分析結果を表1に示した。尚、これらの操
作はすべてクリーンルーム内で実施した。
The results of the analysis are shown in Table 1. These operations were all performed in a clean room.

【0039】実施例2 実施例1と同様な縦長容器に20重量%のTMAH水溶
液を25ml入れ、図2に示す様に、キャリアガス配管の
側部に接続したガス排出用配管を有した蓋をして加熱装
置にセットした。キャリアガスとして、ろ過した窒素ガ
スを10L/分の流量で流しながら、波長は2450M
Hz、強さ500Wでマイクロ波を照射しながら、設定
温度170℃で30分間熱風加熱を行いTMAHを分解
した後、パージガス用配管5を通じて窒素ガスを導入し
容器内のガスを完全にパージした。このときのTMAH
の分解率は100%であり、完全に分解されていた。
尚、分解率は重量法で求めた。
Example 2 In a vertically long container similar to that in Example 1, 25 ml of a 20% by weight aqueous solution of TMAH was placed, and as shown in FIG. 2, a lid having a gas discharge pipe connected to the side of a carrier gas pipe was placed. And set in a heating device. The wavelength is 2450 M while flowing the filtered nitrogen gas as a carrier gas at a flow rate of 10 L / min.
TMAH was decomposed by heating with hot air at a set temperature of 170 ° C. for 30 minutes while irradiating microwaves at a frequency of 500 W with a frequency of 500 W, and nitrogen gas was introduced through a purge gas pipe 5 to completely purge the gas in the container. TMAH at this time
Was 100%, and was completely decomposed.
The decomposition rate was determined by a gravimetric method.

【0040】以上の操作終了後、容器を取り出して0.
1M硝酸水溶液10mlで残渣を溶かし、これを誘導結合
プラズマ質量分析法で測定した。
After the above operation is completed, the container is taken out, and the container is set to 0.
The residue was dissolved in 10 ml of a 1M aqueous nitric acid solution, and this was measured by inductively coupled plasma mass spectrometry.

【0041】分析結果を表1に示した。尚、これらの操
作はすべてクリーンルーム内で実施した。
The results of the analysis are shown in Table 1. These operations were all performed in a clean room.

【0042】実施例3 実施例1と同様な縦長容器に20重量%のTMAH水溶
液を50ml入れ、図2に示す様に、キャリアガス配管の
側部に接続したガス排出用配管を有した蓋をして加熱装
置にセットした。キャリアガスとして、ろ過した窒素ガ
スを10L/分の流量で流しながら、波長は2450M
Hz、強さ500Wでマイクロ波を照射しながら、設定
温度170℃で50分間熱風加熱を行いTMAHを分解
した後、パージガス用配管5を通じて窒素ガスを導入し
容器内のガスを完全にパージした。このときのTMAH
の分解率は100%であり、完全に分解されていた。
尚、分解率は重量法で求めた。
Example 3 50 ml of a 20% by weight aqueous solution of TMAH was placed in a vertically long container similar to that in Example 1, and a lid having a gas discharge pipe connected to the side of a carrier gas pipe was used as shown in FIG. And set in a heating device. The wavelength is 2450 M while flowing the filtered nitrogen gas as a carrier gas at a flow rate of 10 L / min.
TMAH was decomposed by heating with hot air at a set temperature of 170 ° C. for 50 minutes while irradiating microwaves at a frequency of 500 W at a frequency of 500 Hz, and nitrogen gas was introduced through a purge gas pipe 5 to completely purge the gas in the container. TMAH at this time
Was 100%, and was completely decomposed.
The decomposition rate was determined by a gravimetric method.

【0043】以上の操作終了後、容器を取り出して0.
1M硝酸水溶液10mlで残渣を溶かし、これを誘導結合
プラズマ質量分析法で測定した。
After the above operation is completed, the container is taken out, and the container is set at 0.
The residue was dissolved in 10 ml of a 1M aqueous nitric acid solution, and this was measured by inductively coupled plasma mass spectrometry.

【0044】分析結果を表1に示した。尚、これらの操
作はすべてクリーンルーム内で実施した。
The results of the analysis are shown in Table 1. These operations were all performed in a clean room.

【0045】[0045]

【表1】 [Table 1]

【0046】比較例1 (ホットプレート加熱による方法)白金製るつぼに20
重量%のTMAH水溶液25mlを入れ、ホットプレート
上に置き加熱を開始し、ホットプレートの表面温度が1
80℃に達した後、2℃/分の割合で昇温し330℃に
達した時点で、この温度を保ちつつ4時間加熱し、その
後放置冷却した。このときのTMAHの分解率は100
%であり、完全に分解されていた。尚、分解率は重量法
で求めた。その後残渣を0.1M硝酸水溶液10mlで残
渣を溶かし、これを誘導結合プラズマ質量分析法で測定
した。結果を表2に示した。尚、これらの操作はすべて
クリーンルーム内で実施した。
Comparative Example 1 (Method by heating on a hot plate)
25% by weight of a TMAH aqueous solution was put in, placed on a hot plate, and heating was started.
After the temperature reached 80 ° C., the temperature was raised at a rate of 2 ° C./min, and when the temperature reached 330 ° C., the mixture was heated for 4 hours while maintaining this temperature, and then allowed to cool. At this time, the decomposition rate of TMAH was 100.
%, And had been completely decomposed. The decomposition rate was determined by a gravimetric method. Thereafter, the residue was dissolved in 10 ml of a 0.1 M aqueous nitric acid solution, and measured by inductively coupled plasma mass spectrometry. The results are shown in Table 2. These operations were all performed in a clean room.

【0047】比較例2 (希釈による方法)100mlのPFA製メスフラスコに2
0重量%のTMAH水溶液25ml、10M硝酸5mlを入
れ、精製水で100mlとした。これを誘導結合プラズマ
質量分析法で測定した。結果を表2に示した。尚、これ
らの操作はすべてクリーンルーム内で実施した。
Comparative Example 2 (Method by Dilution)
25 ml of a 0 wt% TMAH aqueous solution and 5 ml of 10 M nitric acid were added, and the mixture was made up to 100 ml with purified water. This was measured by inductively coupled plasma mass spectrometry. The results are shown in Table 2. These operations were all performed in a clean room.

【0048】比較例3 (原液による方法)20重量%のTMAH水溶液を直
接、誘導結合プラズマ質量分析法で測定した。結果を表
2に示した。尚、これらの操作はすべてクリーンルーム
内で実施した。
Comparative Example 3 (Method using stock solution) A 20% by weight aqueous TMAH solution was directly measured by inductively coupled plasma mass spectrometry. The results are shown in Table 2. These operations were all performed in a clean room.

【0049】表2より、ホットプレート上で加熱した場
合、蒸発及び/又は分解に長時間要するうえ、加熱時の
汚染が原因して、分析値における特定の金属成分の値が
増加していることが明らかである。また、試料溶液を直
接分析した場合には、主成分であるTMAHが妨害して
分析が不可能であり、希釈した後分析した場合には、分
析精度が著しく低いことが判る。
From Table 2, it can be seen that when heated on a hot plate, evaporation and / or decomposition takes a long time, and the value of a specific metal component in the analytical value increases due to contamination during heating. Is evident. In addition, when the sample solution is directly analyzed, the analysis is impossible because TMAH as the main component interferes, and when the analysis is performed after dilution, the analysis accuracy is remarkably low.

【0050】[0050]

【表2】 [Table 2]

【0051】[0051]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に使用される縦長容器の代表的な態様
を示す概略図
FIG. 1 is a schematic view showing a typical embodiment of a vertically long container used in the present invention.

【図2】 本発明に使用される装置の代表的な態様を示
す概略図
FIG. 2 is a schematic diagram showing a typical embodiment of the apparatus used in the present invention.

【符号の説明】[Explanation of symbols]

1 縦長容器 2 ジョイント部 3 ガス排出用配管 4 キャリアガス配管 5 パージガス用配管 11 加熱装置 12 チャンバー 13 マイクロ波発生装置 14 熱風発生装置 15 試料溶液 16 キャリアガス入り口 17 キャリアガス出口 18 パージガス入り口 DESCRIPTION OF SYMBOLS 1 Vertical container 2 Joint part 3 Gas discharge piping 4 Carrier gas piping 5 Purge gas piping 11 Heating device 12 Chamber 13 Microwave generator 14 Hot air generator 15 Sample solution 16 Carrier gas inlet 17 Carrier gas outlet 18 Purge gas inlet

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 31/00 G01N 1/28 K Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) G01N 31/00 G01N 1/28 K

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 試料溶液中の微量金属不純物を分析する
方法において、該試料溶液を、マイクロ波透過性の素材
よりなる縦長容器に存在せしめてマイクロ波発生装置の
チャンバー内に置き、次いで加熱により該縦長容器内で
発生するガスを縦長容器がチャンバー内に対して密閉さ
れた状態で縦長容器とチャンバー外とを連通するガス排
除手段によって排除しながら、該試料溶液のマイクロ波
による加熱と縦長容器の壁面加熱とを同時或いは順次実
施して試料溶液を蒸発及び/又は分解し、得られる残渣
を取り出して分析することを特徴とする試料溶液中の微
量金属不純物の分析方法。
In a method for analyzing trace metal impurities in a sample solution, the sample solution is placed in a vertically long container made of a microwave-permeable material, placed in a chamber of a microwave generator, and then heated. While the gas generated in the vertical container is excluded by gas exclusion means communicating the vertical container and the outside of the chamber in a state where the vertical container is sealed with respect to the inside of the chamber, heating of the sample solution by microwave and vertical container And / or sequentially performing the heating of the wall surface to evaporate and / or decompose the sample solution, and take out and analyze the obtained residue to analyze trace metal impurities in the sample solution.
【請求項2】 縦長容器が、該容器の直径に対する高さ
の比が1.5以上の縦長容器であることを特徴とする請
求項1記載の分析方法。
2. The analysis method according to claim 1, wherein the vertical container has a height ratio to the diameter of the container of 1.5 or more.
【請求項3】 試料溶液の蒸発及び/又は分解後に、不
活性ガスにより縦長容器中の残留ガスを排出し、縦長容
器内部を不活性ガスで置換して、得られた残渣を取り出
して分析することを特徴とする請求項1記載の分析方
法。
3. After evaporating and / or decomposing the sample solution, the residual gas in the vertical container is discharged with an inert gas, the inside of the vertical container is replaced with an inert gas, and the obtained residue is taken out and analyzed. The analysis method according to claim 1, wherein:
JP2000185200A 2000-06-20 2000-06-20 Analytical method for trace metal impurities Pending JP2002005799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000185200A JP2002005799A (en) 2000-06-20 2000-06-20 Analytical method for trace metal impurities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000185200A JP2002005799A (en) 2000-06-20 2000-06-20 Analytical method for trace metal impurities

Publications (1)

Publication Number Publication Date
JP2002005799A true JP2002005799A (en) 2002-01-09

Family

ID=18685553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000185200A Pending JP2002005799A (en) 2000-06-20 2000-06-20 Analytical method for trace metal impurities

Country Status (1)

Country Link
JP (1) JP2002005799A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150764A (en) * 2007-12-20 2009-07-09 Tohoku Univ Hydrothermal reaction visualizing method by microwave, and hydrothermal reaction visualizing cell used for method
US8158072B2 (en) 2008-08-12 2012-04-17 Mitsubishi Materials Corporation Analysis apparatus and analysis method of chlorosilanes
JP2013031835A (en) * 2011-07-01 2013-02-14 Japan Organo Co Ltd Method of evaluating filter
CN103954677A (en) * 2014-05-08 2014-07-30 浙江中烟工业有限责任公司 Detection method for measuring trace Cr in tobacco and tobacco products
JP2014190873A (en) * 2013-03-27 2014-10-06 Taiyo Nippon Sanso Corp Method for sampling impurity metal and method for analyzing metal component in solution
CN105466749A (en) * 2016-01-13 2016-04-06 中国科学院武汉岩土力学研究所 Consolidation container suitable for soft plastic soil and sandy soil consolidation test
CN108885412A (en) * 2016-03-31 2018-11-23 富士胶片株式会社 Semiconductors manufacture treatment fluid and pattern forming method
CN114199979A (en) * 2020-09-16 2022-03-18 中国石油化工股份有限公司 Digestion and evaporation device and method for measuring content of trace elements
US11429018B2 (en) 2016-03-31 2022-08-30 Fujifilm Corporation Method of manufacturing chemical fluid for manufacturing electronic material, pattern forming method, method of manufacturing semiconductor device, chemical fluid for manufacturing electronic material, container, and quality inspection method
US11693321B2 (en) 2016-03-31 2023-07-04 Fujifilm Corporation Treatment liquid for manufacturing semiconductor, storage container storing treatment liquid for manufacturing semiconductor, pattern forming method, and method of manufacturing electronic device
CN114199979B (en) * 2020-09-16 2024-04-30 中国石油化工股份有限公司 Digestion and evaporation device and method for measuring trace element content

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150764A (en) * 2007-12-20 2009-07-09 Tohoku Univ Hydrothermal reaction visualizing method by microwave, and hydrothermal reaction visualizing cell used for method
US8158072B2 (en) 2008-08-12 2012-04-17 Mitsubishi Materials Corporation Analysis apparatus and analysis method of chlorosilanes
JP2013031835A (en) * 2011-07-01 2013-02-14 Japan Organo Co Ltd Method of evaluating filter
JP2014190873A (en) * 2013-03-27 2014-10-06 Taiyo Nippon Sanso Corp Method for sampling impurity metal and method for analyzing metal component in solution
CN103954677A (en) * 2014-05-08 2014-07-30 浙江中烟工业有限责任公司 Detection method for measuring trace Cr in tobacco and tobacco products
CN105466749A (en) * 2016-01-13 2016-04-06 中国科学院武汉岩土力学研究所 Consolidation container suitable for soft plastic soil and sandy soil consolidation test
US11256173B2 (en) 2016-03-31 2022-02-22 Fujifilm Corporation Treatment liquid for manufacturing semiconductor and pattern forming method
JPWO2017169834A1 (en) * 2016-03-31 2019-01-31 富士フイルム株式会社 Semiconductor manufacturing treatment liquid and pattern forming method
CN108885412A (en) * 2016-03-31 2018-11-23 富士胶片株式会社 Semiconductors manufacture treatment fluid and pattern forming method
CN108885412B (en) * 2016-03-31 2022-04-05 富士胶片株式会社 Processing liquid for semiconductor manufacturing and pattern forming method
US11429018B2 (en) 2016-03-31 2022-08-30 Fujifilm Corporation Method of manufacturing chemical fluid for manufacturing electronic material, pattern forming method, method of manufacturing semiconductor device, chemical fluid for manufacturing electronic material, container, and quality inspection method
US11693321B2 (en) 2016-03-31 2023-07-04 Fujifilm Corporation Treatment liquid for manufacturing semiconductor, storage container storing treatment liquid for manufacturing semiconductor, pattern forming method, and method of manufacturing electronic device
TWI820641B (en) * 2016-03-31 2023-11-01 日商富士軟片股份有限公司 Manufacturing methods of electronic devices
US11892775B2 (en) 2016-03-31 2024-02-06 Fujifilm Corporation Storage container storing treatment liquid for manufacturing semiconductor
CN114199979A (en) * 2020-09-16 2022-03-18 中国石油化工股份有限公司 Digestion and evaporation device and method for measuring content of trace elements
CN114199979B (en) * 2020-09-16 2024-04-30 中国石油化工股份有限公司 Digestion and evaporation device and method for measuring trace element content

Similar Documents

Publication Publication Date Title
JP2002005799A (en) Analytical method for trace metal impurities
JP6530289B2 (en) Analysis pretreatment unit
JP4857973B2 (en) Method for analyzing polishing slurry of silicon wafer
JP2012135378A (en) Concentrator and hydrogen peroxide gas generation apparatus therewith
JP2001141721A (en) Analytical method of trace metallic impurity
JPH11281542A (en) Method for analyzing metallic impurity on silicon wafer surface and its pretreatment method
JP3616060B2 (en) Organic halide concentration calibration system
JP2006184109A (en) Method for analyzing ultratrace metal in polymer
JP4075991B2 (en) Determination of phosphorus
JP4760458B2 (en) Method for analyzing metal contamination of semiconductor wafer storage container
JP2014173878A (en) Method of preparing specimen for measuring mercury in coal ash and method of measuring mercury in coal ash
JPH11344440A (en) Method and instrument for analyzing organic substance for impurity
JP4877897B2 (en) Method for removing impurities from silicon wafer and analysis method
JP2004109072A (en) Analysis method for metal impurity in solution
JP4559932B2 (en) Method for analyzing metal impurities
JP2004101261A (en) Pretreating apparatus and metal analyzing apparatus
JPH11316220A (en) Method and apparatus for high-accuracy analysis of trace element in metal
JP2002328090A (en) Concentration measuring device for trace amount of component
JP4653357B2 (en) Method and apparatus for analyzing metal carbonyl compound
JPH06177103A (en) Removal method of optical stimulus of trace metal
Recchia et al. Understanding microwave vessel contamination by chloride species
JP2000221185A (en) Method and apparatus for analyzing boron in steel
Takenaka et al. Determination of ultratrace amounts of metallic and chloride ion impurities in organic materials for microelectronics devices after a microwave digestion method
JP4719012B2 (en) Ionization gas detection apparatus and ionization gas detection method
JPH0661217A (en) Method for removal of metal contaminant