JP2001141721A - Analytical method of trace metallic impurity - Google Patents

Analytical method of trace metallic impurity

Info

Publication number
JP2001141721A
JP2001141721A JP32191699A JP32191699A JP2001141721A JP 2001141721 A JP2001141721 A JP 2001141721A JP 32191699 A JP32191699 A JP 32191699A JP 32191699 A JP32191699 A JP 32191699A JP 2001141721 A JP2001141721 A JP 2001141721A
Authority
JP
Japan
Prior art keywords
container
microwave
sample
vertically long
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32191699A
Other languages
Japanese (ja)
Inventor
Hideji Baba
秀治 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP32191699A priority Critical patent/JP2001141721A/en
Publication of JP2001141721A publication Critical patent/JP2001141721A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an analytical method capable of quickly and precisely analyzing a trace metallic impurity in a sample such as an aqueous solution dissolving an easily thermally decomposable compound, easily volatile compound, extrapure water or the like. SOLUTION: In this method of analyzing a trace metallic impurity of a sample solution, the sample solution is put in a vertically long vessel consisting of a microwave transmitting material and placed in the chamber of a microwave generating device, and the gas generated in the vessel is eliminated by a gas eliminating means allowing the vertically long vessel to communicate with the outside of the chamber in the state where the vessel is sealed to the inside of the chamber while working a microwave to heat the content, and the resulting residue is taken out and analyzed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、易熱分解性化合物
を溶媒に溶解した試料中の微量金属不純物を分析するた
めの新規な方法に関する。詳しくは、上記試料中の微量
金属不純物を迅速に且つ精度良く分析することが可能な
分析方法である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel method for analyzing trace metal impurities in a sample obtained by dissolving a thermally decomposable compound in a solvent. Specifically, it is an analysis method capable of analyzing trace metal impurities in the above sample quickly and accurately.

【0002】[0002]

【従来の技術】半導体工業で使用される薬品は、半導体
基板の歩留まりを向上させるため、含まれるナトリウ
ム、カリウム、鉄、コバルト、ニッケル、銅、銀、鉛、
スズなどの金属不純物の濃度を低減する事が求められ
る。この評価のために、近年発達した各種の微量金属分
析法が使用できる。例えば、誘導結合プラズマ発光法、
誘導結合プラズマ質量分析法などが代表的である。
2. Description of the Related Art Chemicals used in the semiconductor industry include sodium, potassium, iron, cobalt, nickel, copper, silver, lead, etc. in order to improve the yield of semiconductor substrates.
It is required to reduce the concentration of metal impurities such as tin. For this evaluation, various trace metal analysis methods developed in recent years can be used. For example, inductively coupled plasma emission method,
A typical example is inductively coupled plasma mass spectrometry.

【0003】これらの場合、試料は溶液として測定装置
に導入されるのが一般的であるが、試料中の溶質である
主成分が往々にして金属不純物検出の妨害をするため
に、多量の精製水で希釈するか、該主成分を除いてから
装置に導入する方法がよく採られる。
In these cases, the sample is generally introduced into the measuring apparatus as a solution. However, a large amount of purification is required because the solute in the sample often interferes with detection of metal impurities. A method of diluting with water or removing the main component before introducing it into an apparatus is often employed.

【0004】例えば、半導体工業で使用される硫酸の場
合Semiconductor Equipment & Materials Internatio
nal (SEMI)スタンダードでは、ホットプレート上
で硫酸を蒸発乾固し、残った残渣を硝酸に溶解してフレ
ームレス原子吸光法や誘導結合プラズマ質量分析法で金
属不純物測定する方法が記載されている。
[0004] For example, in the case of sulfuric acid used in the semiconductor industry, Semiconductor Equipment & Materials Internatio
The nal (SEMI) standard describes a method in which sulfuric acid is evaporated to dryness on a hot plate, the remaining residue is dissolved in nitric acid, and metal impurities are measured by flameless atomic absorption spectrometry or inductively coupled plasma mass spectrometry. .

【0005】また、集積回路パターン形成用フォトレジ
ストの現像液として使われる水酸化テトラメチルアンモ
ニウム(以下TMAHと略記する)は、120℃以上に
加熱することにより、揮発性であるトリメチルアミン、
ジメチルエーテルなどに分解する性質を利用して、TM
AHの水溶液を220℃以上、500℃以下の温度で数
時間加熱して水と主成分を蒸発、分解して除去し、得ら
れた残渣を硝酸に溶かして金属不純物を測定する方法が
提案されている(特開平10−38873)。
Further, tetramethylammonium hydroxide (hereinafter abbreviated as TMAH), which is used as a developing solution for a photoresist for forming an integrated circuit pattern, is heated to a temperature of 120 ° C. or more to form volatile trimethylamine,
Utilizing the property of decomposing into dimethyl ether, TM
A method has been proposed in which an aqueous solution of AH is heated at a temperature of 220 ° C. or more and 500 ° C. or less for several hours to evaporate and decompose water and a main component to remove it, and dissolve the obtained residue in nitric acid to measure metal impurities. (JP-A-10-38873).

【0006】これらの方法によれば、溶質である主成分
の化合物を除去して金属不純物を高度に濃縮することが
でき、希釈法と比べて分析の精度と感度を著しく改善す
ることができる。
[0006] According to these methods, metal impurities can be highly concentrated by removing the compound of the main component as a solute, and the accuracy and sensitivity of analysis can be remarkably improved as compared with the dilution method.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、この方
法の問題点として開放系で試料を長時間高温加熱する事
による外部雰囲気による汚染や、容器からの汚染などが
懸念されること、また、分解時間が長くかかることによ
り、上記試料となる溶液等を生産設備、或いは、使用設
備内において、日常的に品質管理を行うための分析には
向かない点が挙げられる。
However, the problems of this method are that there is a concern that the sample is heated at a high temperature for a long time in an open system, and that the sample is contaminated by the external atmosphere, that the sample is contaminated from the container, and that the decomposition time is high. Takes a long time, it is not suitable for the analysis for daily quality control of the solution or the like as the sample in a production facility or a use facility.

【0008】従って、本発明の目的は、試料の汚染を抑
えながら、該試料中の溶媒と、溶質として主成分となる
前記易熱分解性の化合物を迅速に除去し、該試料中の微
量金属不純物を高い精度で検出することが可能な分析方
法を提供することにある。
Accordingly, it is an object of the present invention to quickly remove the solvent and the easily decomposable compound which is a main component as a solute in a sample while suppressing contamination of the sample, and to remove trace metals in the sample. An object of the present invention is to provide an analysis method capable of detecting impurities with high accuracy.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく鋭意研究を重ねた結果、前記TMAHを含
む溶液等の試料溶液をマイクロ波により加熱することに
より、極めて短時間で該試料溶液を分解、濃縮して残渣
を得ることができること、及びかかる処理において特定
の形状の容器を使用し、且つ特定のガス排除手段を採用
することにより、該残渣の汚染を極めて効果的に抑える
ことができ、前記試料溶液中の金属不純物を極めて高い
信頼性で分析できることを見い出し、本発明を完成する
に至った。
Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and as a result, heating a sample solution such as the solution containing TMAH by microwaves in an extremely short time. By decomposing and concentrating the sample solution to obtain a residue, and by using a container of a specific shape in this treatment and employing a specific gas exclusion means, the contamination of the residue can be extremely effectively performed. It has been found that the metal impurities in the sample solution can be analyzed with extremely high reliability, and the present invention has been completed.

【0010】即ち、本発明は、試料溶液中の微量金属不
純物を分析する方法において、上記試料溶液をマイクロ
波透過性の縦長容器に存在せしめてマイクロ波発生装置
のチャンバー内に置き、次いで、マイクロ波を作用させ
て内容物を加熱しながら、該容器内で発生するガスを、
該容器内がチャンバー内に対して密閉された状態で縦長
容器とチャンバー外とを連通するガス排除手段によって
排除した後、得られる残渣を取り出して分析することを
特徴とする微量金属不純物の分析方法である。
That is, the present invention provides a method for analyzing trace metal impurities in a sample solution, wherein the sample solution is placed in a microwave-transparent vertical container, placed in a chamber of a microwave generator, and then placed in a microwave generator. While heating the contents by applying waves, the gas generated in the container is
A method for analyzing trace metal impurities, comprising removing a residue obtained after removing the vertically elongated container and the outside of the chamber by gas removing means communicating with the inside of the chamber in a state where the inside of the container is sealed with respect to the chamber, and analyzing the residue. It is.

【0011】[0011]

【発明の実施の形態】本発明の分析方法の対象となる試
料溶液は、加熱により濃縮が可能なものであれば、特に
制限されないが、特に、前記TMAHの如き、易熱分解
性化合物を溶解した溶液に対して有効である。即ち、マ
イクロ波による加熱は、対象とする化合物を直接加熱す
ることができ、従来の外部加熱に対して短時間で熱分解
を完了することが可能である。
BEST MODE FOR CARRYING OUT THE INVENTION The sample solution to be analyzed by the method of the present invention is not particularly limited as long as it can be concentrated by heating. In particular, a sample solution containing an easily thermally decomposable compound such as TMAH is dissolved. It is effective for the used solution. That is, heating by microwaves can directly heat the target compound, and can complete the thermal decomposition in a shorter time than conventional external heating.

【0012】上記易熱分解性化合物は、500℃以下、
好ましくは300℃以下で熱分解する水溶性の化合物が
好適であり、具体的には、前記TMAHやフッ化アンモニウ
ム等が挙げられる。また、試料溶液を構成する溶媒はマ
イクロ波で加熱できるものであれば良く、特に制限はな
いが、イオン性の化合物の場合、良溶媒である水が好適
に使用される。
The above thermally decomposable compound is 500 ° C. or less,
A water-soluble compound that thermally decomposes at a temperature of 300 ° C. or less is preferable, and specific examples include the above-mentioned TMAH and ammonium fluoride. The solvent constituting the sample solution is not particularly limited as long as it can be heated by microwaves. In the case of an ionic compound, water, which is a good solvent, is preferably used.

【0013】本発明において、上記試料溶液を存在せし
める容器として縦長容器を使用すること及び該縦長容器
が、マイクロ波発生装置のチャンバー内に対して密閉さ
れた状態でチャンバー外と連通するように成したガス排
除手段を採用することが、分析の目的物である金属不純
物が蒸発物質に同伴されることにより分析精度が低下す
るのを防止し、また、得られる残渣の汚染を防止するた
めに極めて重要である。
In the present invention, a vertical container is used as a container in which the sample solution is allowed to exist, and the vertical container is configured to communicate with the outside of the microwave generator in a state where the container is sealed with respect to the chamber. In order to prevent the analysis accuracy from lowering due to the entrapment of metal impurities, which are the object of the analysis, with the evaporating substance, is important.

【0014】即ち、マイクロ波による加熱は、容器自体
が実質的に加熱されないため、容器の上方内壁は比較的
低温に保たれる。そこで、縦長容器を使用することによ
り、蒸発、分解ガスと共に同伴される金属不純物は容器
内を上昇する過程でその内壁に凝縮して止まり易くな
り、分析の精度を高く維持することができる。
That is, the heating by microwaves does not substantially heat the container itself, so that the upper inner wall of the container is kept at a relatively low temperature. Therefore, by using a vertically long container, the metal impurities entrained together with the vaporized and decomposed gas easily condense on the inner wall during the process of ascending the inside of the container and easily stop, so that the analysis accuracy can be maintained at a high level.

【0015】また、マイクロ波発生装置のチャンバー内
は、金属イオン濃度が極めて高く、容器のガスを該チャ
ンバー内に対して密閉された状態でガスを排除する手段
を設けることにより、かかる汚染が著しく低減される。
Further, the inside of the chamber of the microwave generator has a very high metal ion concentration, and by providing a means for removing gas from the container in a state where the gas is sealed in the chamber, such contamination is significantly reduced. Reduced.

【0016】図1に本発明で使用される装置の代表的な
態様を示す。
FIG. 1 shows a typical embodiment of the apparatus used in the present invention.

【0017】本発明において、縦長容器1の形状は、縦
長、即ち、径に対して高さが大きい形状であれば特に制
限されないが、好ましくは筒状体であり、特に、円筒形
であることが洗浄性の面で好適である。また、試料溶液
の加熱により発生するミスト中に同伴される金属不純物
を内壁で捉え、分析精度を向上させるために、筒の直径
に対して長く設定することが好ましい。該容器の直径に
対する長さの好適な比(L/D)は、1.5以上、好ま
しくは2〜10、さらに好ましくは、2〜5である。
In the present invention, the shape of the vertically long container 1 is not particularly limited as long as it is vertically long, that is, a shape having a large height with respect to the diameter, but it is preferably a cylindrical body, and particularly preferably a cylindrical shape. Are preferred in terms of detergency. Further, it is preferable to set the length to be longer than the diameter of the cylinder in order to capture metal impurities accompanying the mist generated by heating the sample solution on the inner wall and improve the analysis accuracy. A suitable ratio (L / D) of the length to the diameter of the container is 1.5 or more, preferably 2 to 10, and more preferably 2 to 5.

【0018】また、上記縦長容器1の材質は、マイクロ
波透過性を有するものが特に制限なく使用されるが、加
熱に対して耐熱性があり、試料に対して耐薬品性がある
ものが好適である。なかでも、金属不純物の含有量が少
ない石英とPFA、PTFEなどのフッ素樹脂が特に好適であ
る。
As the material of the vertical container 1, a material having microwave permeability is used without any particular limitation, but a material having heat resistance to heating and chemical resistance to the sample is preferable. It is. Among them, quartz having a low content of metal impurities and fluororesins such as PFA and PTFE are particularly preferable.

【0019】また、本発明において、上記ガス排除手段
を設ける態様は、マイクロ波による加熱によって、生成
する溶媒ガス、分解ガス或いは揮発ガスを吸引除去し得
る態様が特に制限なく採用される。例えば、前記図1に
おいては、縦長容器1の上部にジョイント部2を介して
キャリアガス配管3を接続し、キャリアガス配管にガス
を流すことによる押し流し効果により、縦長容器1より
前記ガスの吸引を行うようにした態様を示す。該キャリ
アガスとしては分解ガスとの反応性がない清浄なガス、
例えば、窒素、ヘリウム等の高純度ガスが好適に使用で
きる。また、他の態様として、縦長容器を排気ポンプと
接続して前記ガスを吸引、排気する態様等が挙げられる
が、吸引を余り強く行うと、分析対象となる金属がガス
に同伴されて損失したり、残渣を取り出す際、容器内に
外気が吸引される等により、汚染を招くおそれがあるた
め、前記図1に示す態様が好ましい。
Further, in the present invention, as the mode of providing the gas removing means, a mode in which a solvent gas, a decomposition gas or a volatile gas generated by heating by microwaves can be removed by suction is not particularly limited. For example, in FIG. 1 described above, a carrier gas pipe 3 is connected to the upper part of the vertically long container 1 via a joint portion 2, and the gas is sucked from the vertically long container 1 by a flushing effect by flowing the gas through the carrier gas pipe. An embodiment in which this is performed will be described. A clean gas having no reactivity with the decomposition gas as the carrier gas;
For example, a high-purity gas such as nitrogen or helium can be suitably used. As another aspect, there is an aspect in which the vertically long container is connected to an exhaust pump to suck and exhaust the gas.However, if the suction is performed too strongly, the metal to be analyzed is entrained by the gas and is lost. When the residue is taken out or the outside air is sucked into the container or the like, there is a possibility of causing contamination. Therefore, the embodiment shown in FIG. 1 is preferable.

【0020】また、吸引手段を採用する場合、減圧度は
−40パスカル程度に止め、加熱終了時には、容器内が
常圧となるように制御することが好ましい。
When a suction means is employed, it is preferable that the degree of pressure reduction be kept at about -40 Pascal, and control is performed so that the inside of the container is at normal pressure when heating is completed.

【0021】本発明において、上記縦長容器中の試料溶
液の加熱は、図1に示すように、試料溶液6を存在せし
めた縦長容器1を容器ごとマイクロ波加熱装置11のチ
ャンバー12内に置き、ガス排除手段を適応(図におい
ては、キャリアガス入り口4とキャリアガス出口5を有
するキャリアガス配管3を前記マイクロ波加熱装置11
を貫通して設けた態様である。)しながら、マイクロ波
を照射する態様が一般的である。
In the present invention, the heating of the sample solution in the vertical container is performed by placing the vertical container 1 in which the sample solution 6 is present in the chamber 12 of the microwave heating device 11 as shown in FIG. Gas removing means is applied (in the figure, the carrier gas pipe 3 having the carrier gas inlet 4 and the carrier gas outlet 5 is connected to the microwave heating device 11).
This is a mode in which the piercing is provided. ), While irradiating with microwaves.

【0022】上記マイクロ波による加熱において、マイ
クロ波の波長、強さは試料の量、種類に応じて適宜選択
すれば良いが、一般には、調理用電子レンジに使われる
波長2450MHz前後のものが好適に使用できる。ま
た、マイクロ波の強さは、一般に、試料量1ml当たり1
0〜60Wの範囲で選ぶことが好ましい。即ち、マイク
ロ波が弱過ぎる場合は処理に時間がかかり、逆に強すぎ
る場合は試料中の溶媒の急激な蒸発によりミストが大量
に生じ、これがガス吸引手段を通じて外部に流出し、金
属不純物のロスとなり分析の精度が低下する。
In the heating by the microwave, the wavelength and intensity of the microwave may be appropriately selected according to the amount and type of the sample. Generally, the wavelength of about 2450 MHz used for a cooking microwave oven is preferable. Can be used for In general, the intensity of microwave is 1 to 1 ml of sample.
It is preferable to select in the range of 0 to 60W. In other words, when the microwave is too weak, the processing takes time. On the other hand, when the microwave is too strong, a large amount of mist is generated due to rapid evaporation of the solvent in the sample, which flows out to outside through the gas suction means, and the loss of metal impurities. And the accuracy of the analysis decreases.

【0023】上記のようなマイクロ波を作用させる加熱
により、試料溶液中の成分はそれ自身が発熱するので蒸
発、熱分解等に要する時間は熱伝導や輻射による場合よ
り極めて短かくて済む。しかも、前記したように、容器
自体は、実質的に加熱されないため、容器の上方内壁は
比較的低温に保たれることにより、蒸発、分解ガスと共
に同伴される金属不純物は容器の内壁に凝縮して止まり
易くなり、分析の精度を高く維持することができる。
Since the components in the sample solution generate heat by the heating by applying the microwave as described above, the time required for evaporation, thermal decomposition, etc., is much shorter than that required by heat conduction or radiation. Moreover, as described above, since the container itself is not substantially heated, the upper inner wall of the container is kept at a relatively low temperature, so that metal impurities entrained together with evaporation and decomposition gas condense on the inner wall of the container. And the accuracy of the analysis can be kept high.

【0024】かかる効果を十分発揮させるために、容器
1に存在せしめる試料の量は、容器の容量の50%以下
とすることが好適であり、より好ましくは、5〜40
%、特に好ましくは、10〜30%である。
In order to sufficiently exhibit such an effect, the amount of the sample to be present in the container 1 is preferably 50% or less of the capacity of the container, more preferably 5 to 40%.
%, Particularly preferably 10 to 30%.

【0025】また、このように、マイクロ波発生装置の
チャンバー内及び外気と遮断された縦長容器内で、処理
することにより、加熱時における、外気による試料の汚
染がほぼ完全に防止され、分析精度を著しく向上するこ
とができる。
In addition, by performing processing in the chamber of the microwave generator and in the vertically long container which is cut off from the outside air, contamination of the sample by the outside air during heating is almost completely prevented, and the analysis accuracy is improved. Can be significantly improved.

【0026】更に、内容物である試料に対する容器から
の汚染は、試料と容器が高温度で長時間接触するほど進
行するが、マイクロ波による加熱によれば、容器は実質
的に加熱されず、試料の加熱温度より温度が上がること
はないため、容器の壁面温度が低温の状態で試料を処理
することができる。従って、マイクロ波による加熱は、
容器からの金属汚染を低減することができるというメリ
ットをも有する。
Further, the contamination of the contents of the sample from the container progresses as the sample and the container come into contact with each other at a high temperature for a long time. However, according to the heating by the microwave, the container is not substantially heated. Since the temperature does not rise above the heating temperature of the sample, the sample can be processed in a state where the wall surface temperature of the container is low. Therefore, heating by microwaves
There is also an advantage that metal contamination from the container can be reduced.

【0027】本発明において、マイクロ波による加熱
は、試料溶液中の溶媒、易熱分解性化合物が存在する場
合は該化合物の大部分が除去されるまで行うことが好ま
しい。
In the present invention, the heating by microwave is preferably performed until most of the solvent and the easily decomposable compound in the sample solution are removed.

【0028】このようにして得られた残渣は、縦長容器
中に少量の溶媒を供給してこれ溶解して取り出される。
次いで、これを既知の金属分析方法で測定することによ
って試料溶液中に含有される微量金属不純物を高い精度
で分析することができる。
The residue thus obtained is supplied by dissolving a small amount of a solvent in a vertically long container, and is then taken out.
Then, by measuring this with a known metal analysis method, trace metal impurities contained in the sample solution can be analyzed with high accuracy.

【0029】上記分析方法としては、フレームレス原子
吸光法、誘導結合プラズマ発光法誘導結合プラズマ質量
分析法などが好適に使用できる。
As the above analysis method, flameless atomic absorption spectrometry, inductively coupled plasma emission method, inductively coupled plasma mass spectrometry, etc. can be preferably used.

【0030】また、残渣を溶解する溶媒は、残渣を完全
に溶かし且つ、測定装置に適するものであればよい。例
えば、硝酸、塩酸などの水溶液が特に好適に使用でき
る。
The solvent for dissolving the residue may be any solvent that completely dissolves the residue and is suitable for the measuring device. For example, an aqueous solution such as nitric acid or hydrochloric acid can be particularly preferably used.

【0031】尚、上記溶媒量は少ないほど試料の濃縮率
が高くなり好ましく、測定に必要な量を勘案して決めれ
ばよい。
It is preferable that the smaller the amount of the solvent is, the higher the concentration rate of the sample is, and it is preferable that the amount be determined in consideration of the amount required for the measurement.

【0032】[0032]

【発明の効果】本発明によれば、試料溶液の濃縮を、短
時間で、且つ種々の要因による汚染を極めて効果的に防
止しながら行うことが可能となり、該金属不純物を高感
度、高精度に分析することができる。
According to the present invention, it is possible to concentrate a sample solution in a short period of time and very effectively prevent contamination due to various factors. Can be analyzed.

【0033】[0033]

【実施例】以下、実施例と比較例を挙げて本発明を説明
するが、本発明はこれらのものに限定されるものではな
い。
The present invention will be described below with reference to examples and comparative examples, but the present invention is not limited to these examples.

【0034】実施例1 100mlのPFA製容器(L/D=2.5)よりなる縦長
容器に20重量%のTMAH水溶液を25ml入れ、図1
に示す様に、接続管とこれと側部で接続したキャリアガ
ス配管を有した蓋をしてマイクロ波発生装置にセットし
た。キャリアガスとして、ろ過した窒素ガスを10L/
分の流量で流しながら、30分間マイクロ波を照射しT
MAH水溶液を蒸発、熱分解した。
Example 1 A 20-wt% TMAH aqueous solution (25 ml) was placed in a vertically long container composed of a 100-ml PFA container (L / D = 2.5).
As shown in (1), the microwave oven was set with a lid having a connection pipe and a carrier gas pipe connected to the side of the connection pipe. 10 L / liter of filtered nitrogen gas as carrier gas
Microwave for 30 minutes while flowing at a flow rate of
The MAH aqueous solution was evaporated and pyrolyzed.

【0035】この時のマイクロ波の波長は2450MH
z、強さは500Wであった。終了後すぐ蓋を取り、容
器を取り出して0.1M硝酸水溶液10mlで残渣を溶か
し、これを誘導結合プラズマ質量分析法で測定した。こ
の時測定した分解温度は最高160℃、分解率は99.
9%以上であった。結果を表1に示した。尚これらの操
作はすべてクリーンルーム内で実施した。
At this time, the wavelength of the microwave is 2450 MHz.
z, strength was 500W. Immediately after completion, the lid was removed, the container was taken out, and the residue was dissolved with 10 ml of a 0.1 M nitric acid aqueous solution, and this was measured by inductively coupled plasma mass spectrometry. The decomposition temperature measured at this time was a maximum of 160 ° C, and the decomposition rate was 99.
9% or more. The results are shown in Table 1. These operations were all performed in a clean room.

【0036】実施例2 実施例1と同様な縦長容器に20重量%のTMAH水溶
液50mlを入れ、図1に示す様な接続管とこれと側部で
接続したキャリアガス配管を有した蓋をしてマイクロ波
発生装置にセットした。キャリアガスとして、ろ過した
窒素ガスを10L/分の流量で流しながら、60分間マ
イクロ波を照射しTMAH水溶液を蒸発、熱分解した。
Example 2 50 ml of a 20% by weight aqueous solution of TMAH was placed in a vertically long container similar to that in Example 1, and a lid having a connecting pipe as shown in FIG. And set it in the microwave generator. While flowing a filtered nitrogen gas at a flow rate of 10 L / min as a carrier gas, a microwave was irradiated for 60 minutes to evaporate and thermally decompose the TMAH aqueous solution.

【0037】この時のマイクロ波の波長は2450MH
z、強さは500Wであった。終了後すぐ蓋を取り、容
器を取り出して0.1M硝酸水溶液10mlで残渣を溶か
し、これを誘導結合プラズマ質量分析法で測定した。こ
の時測定した分解温度は最高160℃、分解率は99.
9%以上であった。結果を同じく表1に示した。尚これ
らの操作はすべてクリーンルーム内で実施した。
At this time, the wavelength of the microwave is 2450 MHz.
z, strength was 500W. Immediately after completion, the lid was removed, the container was taken out, and the residue was dissolved with 10 ml of a 0.1 M nitric acid aqueous solution, and this was measured by inductively coupled plasma mass spectrometry. The decomposition temperature measured at this time was a maximum of 160 ° C, and the decomposition rate was 99.
9% or more. The results are also shown in Table 1. These operations were all performed in a clean room.

【0038】実施例3 実施例1と同様な縦長容器に20重量%のTMAH水溶
液50mlを入れ、図1に示す様な接続管とこれと側部で
接続したキャリアガス配管を有した蓋をしてマイクロ波
発生装置にセットした。キャリアガスとして、ろ過した
窒素ガスを10L/分の流量で流しながら、30分間マ
イクロ波を照射しTMAH水溶液を蒸発、熱分解した。
Example 3 In a vertically long container similar to that of Example 1, 50 ml of a 20% by weight aqueous solution of TMAH was put, and a lid having a connection pipe as shown in FIG. 1 and a carrier gas pipe connected to the side thereof was provided. And set it in the microwave generator. While flowing filtered nitrogen gas as a carrier gas at a flow rate of 10 L / min, microwave irradiation was performed for 30 minutes to evaporate and thermally decompose the TMAH aqueous solution.

【0039】この時のマイクロ波の波長は2450MH
z、強さは1000Wであった。終了後すぐ蓋を取り、
容器を取り出して0.1M硝酸水溶液10mlで残渣を溶
かし、これを誘導結合プラズマ質量分析法で測定した。
この時測定した分解温度は最高160℃、分解率は9
9.9%以上であった。結果を同じく表1に示した。尚
これらの操作はすべてクリーンルーム内で実施した。
At this time, the wavelength of the microwave is 2450 MHz.
z, strength was 1000W. Remove the lid immediately after the end,
The container was taken out and the residue was dissolved in 10 ml of a 0.1 M aqueous nitric acid solution, and this was measured by inductively coupled plasma mass spectrometry.
The decomposition temperature measured at this time was a maximum of 160 ° C, and the decomposition rate was 9
It was 9.9% or more. The results are also shown in Table 1. These operations were all performed in a clean room.

【0040】[0040]

【表1】 比較例1 〈希釈による方法〉100mlのPFA製メスフラスコに2
0重量%のTMAH水溶液25ml、10M硝酸5mlを入
れ、精製水で100mlとした。これを誘導結合プラズマ
質量分析法で測定した。結果を表2に示した。尚これら
の操作はすべてクリーンルーム内で実施した。
[Table 1] Comparative Example 1 <Method by Dilution> 2 in 100 ml PFA volumetric flask
25 ml of a 0 wt% TMAH aqueous solution and 5 ml of 10 M nitric acid were added, and the mixture was made up to 100 ml with purified water. This was measured by inductively coupled plasma mass spectrometry. The results are shown in Table 2. These operations were all performed in a clean room.

【0041】表2より、濃縮を行わない場合、分析精度
が著しく低いことが判る。
From Table 2, it can be seen that when no concentration is performed, the analysis accuracy is extremely low.

【0042】比較例2 〈ホットプレート加熱による方法〉白金製るつぼに20
重量%のTMAH水溶液25mlを入れ、ホットプレート
上に置き加熱を開始し、ホットプレートの表面温度が1
80℃に達した後、2℃/分の割合で昇温し330℃に
達した時点で、この温度を保ちつつ4時間加熱した。放
置冷却後残渣を0.1M硝酸水溶液10mlで残渣を溶か
し、これを誘導結合プラズマ質量分析法で測定した。こ
の時のTMAH分解率は99.9%以上であった。結果を同
じく表2に示した。尚これらの操作はすべてクリーンル
ーム内で実施した。
Comparative Example 2 <Method by Hot Plate Heating>
25% by weight of a TMAH aqueous solution was put in, placed on a hot plate, and heating was started.
After the temperature reached 80 ° C., the temperature was raised at a rate of 2 ° C./min, and when the temperature reached 330 ° C., heating was performed for 4 hours while maintaining this temperature. After cooling, the residue was dissolved in 10 ml of a 0.1 M aqueous nitric acid solution, and the residue was measured by inductively coupled plasma mass spectrometry. At this time, the TMAH decomposition rate was 99.9% or more. The results are also shown in Table 2. These operations were all performed in a clean room.

【0043】表2より、濃縮時の汚染が原因して、分析
値における特定の金属成分の値が増加していることが明
らかである。
It is apparent from Table 2 that the value of a specific metal component in the analysis value has increased due to contamination during concentration.

【0044】[0044]

【表2】 [Table 2]

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に使用される装置の代表的な態様を示
す概略図
FIG. 1 is a schematic diagram showing a typical embodiment of an apparatus used in the present invention.

【符号の説明】[Explanation of symbols]

1 縦長容器 2 ジョイント部 3 キャリアガス配管 4 キャリアガス入り口 5 キャリアガス出口 6 試料溶液 11 マイクロ波加熱装置 12 チャンバー DESCRIPTION OF SYMBOLS 1 Vertical container 2 Joint part 3 Carrier gas piping 4 Carrier gas inlet 5 Carrier gas outlet 6 Sample solution 11 Microwave heating device 12 Chamber

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 試料溶液中の微量金属不純物を分析する
方法において、上記試料をマイクロ波透過性の素材より
なる縦長容器に存在せしめてマイクロ波発生装置のチャ
ンバー内に置き、次いで、マイクロ波を作用させて内容
物を加熱しながら、該容器内で発生するガスを、該容器
内がチャンバー内に対して密閉された状態で縦長容器と
チャンバー外とを連通するガス排除手段によって排除し
た後、得られる残渣を取り出して分析することを特徴と
する微量金属不純物の分析方法。
In a method for analyzing trace metal impurities in a sample solution, the sample is placed in a vertically long container made of a microwave-permeable material, placed in a chamber of a microwave generator, and then the microwave is applied. While heating and heating the contents, the gas generated in the container is eliminated by gas elimination means communicating the vertically long container and the outside of the chamber in a state where the inside of the container is sealed with respect to the chamber, A method for analyzing trace metal impurities, wherein the obtained residue is taken out and analyzed.
【請求項2】 縦長容器に存在せしめる試料溶液の量
が、容器の容量の50%以下である、請求項1記載の分
析方法。
2. The analysis method according to claim 1, wherein the amount of the sample solution to be present in the vertically long container is 50% or less of the volume of the container.
【請求項3】 ガス排除手段が、縦長容器の上方に管を
接続し、該管の他端をキャリアガスの配管の側部に接続
することにより構成された、請求項1記載の分析方法。
3. The analysis method according to claim 1, wherein the gas removing means is constituted by connecting a pipe above the vertically long container, and connecting the other end of the pipe to a side of the pipe of the carrier gas.
【請求項4】 マイクロ波の強さが、試料溶液1ml当た
り10〜60Wである、請求項1記載の分析方法。
4. The analysis method according to claim 1, wherein the intensity of the microwave is 10 to 60 W per ml of the sample solution.
【請求項5】 試料溶液が、易熱分解性化合物を含有す
る、請求項1記載の分析方法。
5. The analysis method according to claim 1, wherein the sample solution contains a thermally decomposable compound.
【請求項6】 易熱分解性化合物が水酸化テトラメチル
アンモニウムである、請求項5記載の分析方法。
6. The method according to claim 5, wherein the easily thermally decomposable compound is tetramethylammonium hydroxide.
【請求項7】 残渣を少量の溶媒に溶解して縦長容器か
ら取り出す、請求項1記載の分析方法。
7. The method according to claim 1, wherein the residue is dissolved in a small amount of a solvent and taken out of the vertically long container.
JP32191699A 1999-11-12 1999-11-12 Analytical method of trace metallic impurity Pending JP2001141721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32191699A JP2001141721A (en) 1999-11-12 1999-11-12 Analytical method of trace metallic impurity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32191699A JP2001141721A (en) 1999-11-12 1999-11-12 Analytical method of trace metallic impurity

Publications (1)

Publication Number Publication Date
JP2001141721A true JP2001141721A (en) 2001-05-25

Family

ID=18137850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32191699A Pending JP2001141721A (en) 1999-11-12 1999-11-12 Analytical method of trace metallic impurity

Country Status (1)

Country Link
JP (1) JP2001141721A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4810436B2 (en) * 2004-11-30 2011-11-09 株式会社トクヤマ Processing method for waste developer
KR20190017219A (en) * 2017-08-10 2019-02-20 박준철 Apparatus for forming sample
JP2019066249A (en) * 2017-09-29 2019-04-25 田辺三菱製薬株式会社 Sample preparation method for elemental impurity measurement

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4810436B2 (en) * 2004-11-30 2011-11-09 株式会社トクヤマ Processing method for waste developer
KR20190017219A (en) * 2017-08-10 2019-02-20 박준철 Apparatus for forming sample
KR102015470B1 (en) * 2017-08-10 2019-08-28 박준철 Apparatus for forming sample
JP2019066249A (en) * 2017-09-29 2019-04-25 田辺三菱製薬株式会社 Sample preparation method for elemental impurity measurement

Similar Documents

Publication Publication Date Title
Fan et al. Determination of platinum, palladium and rhodium in biological and environmental samples by low temperature electrothermal vaporization inductively coupled plasma atomic emission spectrometry with diethyldithiocarbamate as chemical modifier
JP2010002371A (en) Analysis method of element component in liquid sample
JP2002005799A (en) Analytical method for trace metal impurities
López-Rouco et al. UV reduction with ultrasound-assisted gas–liquid separation for the determination of mercury in biotissues by atomic absorption spectrometry
Smichowski et al. Chemical vapour generation of transition metal volatile species for analytical purposes: Determination of Zn by inductively coupled plasma-optical emission spectrometry
JP2006253420A (en) Method for quantitating metal in semiconductor polishing slurry
JP2001141721A (en) Analytical method of trace metallic impurity
JP2002368052A (en) Method for desorbing silicon and method for analyzing impurities in silicon wafer
JP4075991B2 (en) Determination of phosphorus
JP2006184109A (en) Method for analyzing ultratrace metal in polymer
Hongchun et al. Micro-column separation/preconcentration combined with fluorinating electrothermal vaporization-inductively coupled plasma-atomic emission spectrometry for determination of ultratrace rare earth elements
JPH11281542A (en) Method for analyzing metallic impurity on silicon wafer surface and its pretreatment method
JP2014173878A (en) Method of preparing specimen for measuring mercury in coal ash and method of measuring mercury in coal ash
Matusiewicz et al. Hydride generation graphite furnace atomic absorption determination of bismuth in clinical samples with in situ preconcentration
JP4760458B2 (en) Method for analyzing metal contamination of semiconductor wafer storage container
JP2005043246A (en) Method of quantifying heavy metals in fluorocarbon resin
JP4559932B2 (en) Method for analyzing metal impurities
Grotti et al. Electrothermal atomic absorption spectrometric determination of ultratrace amounts of tellurium using a palladium-coated L'vov platform after separation and concentration by hydride generation and liquid anion exchange
JP4877897B2 (en) Method for removing impurities from silicon wafer and analysis method
Shao et al. Determination of mercury in mainstream cigarette smoke with on-line oxidation coupled to atomic fluorescence spectrometry
JP3891783B2 (en) Liquid sample concentration method
Recchia et al. Understanding microwave vessel contamination by chloride species
JP4602070B2 (en) Sample pretreatment method for arsenic analysis by chemical form
JP2000292326A (en) Method for manufacturing analyzing sample for metal impurity contained in synthetic resin, and measuring method of metal impurity using it
JP2667920B2 (en) A1F Method for separating metallic impurities in bottom 3