JP2005043246A - Method of quantifying heavy metals in fluorocarbon resin - Google Patents

Method of quantifying heavy metals in fluorocarbon resin Download PDF

Info

Publication number
JP2005043246A
JP2005043246A JP2003278352A JP2003278352A JP2005043246A JP 2005043246 A JP2005043246 A JP 2005043246A JP 2003278352 A JP2003278352 A JP 2003278352A JP 2003278352 A JP2003278352 A JP 2003278352A JP 2005043246 A JP2005043246 A JP 2005043246A
Authority
JP
Japan
Prior art keywords
sample
heavy metals
flask
fluororesin
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003278352A
Other languages
Japanese (ja)
Inventor
Kazufuyu Sudo
藤 和 冬 須
Kazuhiro Tanaka
中 一 博 田
Yoshihiro Yoneshige
重 嘉 寛 米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemical Analysis and Consulting Service Inc
Original Assignee
Mitsui Chemical Analysis and Consulting Service Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemical Analysis and Consulting Service Inc filed Critical Mitsui Chemical Analysis and Consulting Service Inc
Priority to JP2003278352A priority Critical patent/JP2005043246A/en
Publication of JP2005043246A publication Critical patent/JP2005043246A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of quantifying the content of Hg or Cd and/or Pb, especially Hg, as minute impurities contained in fluorocarbon resin, such as PTFE and PFA with high precision. <P>SOLUTION: The method of quantifying heavy metals in fluorocarbon resin quantifies Hg, or Hg, Cd and/or Pb out of heavy metals as trace impurities contained in fluorocarbon resin such as PTFE and PFA, wherein a fluorocarbon resin sample to be quantified is subjected to pretreatment by the oxygen flask combustion method using a 0.1 to 80% nitric acid containing liquid. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、フッ素樹脂中の重金属の定量方法に関し、さらに詳しくは、フッ素樹脂中に微量不純物(重金属)として含まれるHg、またはHgとCdおよび/またはPb、特にHgの含有量を高精度で測定することができるようなフッ素樹脂中の重金属の定量方法に関する。   The present invention relates to a method for quantifying heavy metals in a fluororesin, and more specifically, Hg contained as a trace impurity (heavy metal) in the fluororesin, or the content of Hg and Cd and / or Pb, particularly Hg, with high accuracy. The present invention relates to a method for quantifying heavy metals in a fluororesin that can be measured.

最近、我が国の電機メーカーがヨーロッパなどへ製品輸出に伴い、製品原料中に表記の重金属が含有しないことの証明が求められるようになった。一部の電機メーカーでは、重金属の定量分析に使用される合成樹脂試料の前処理、分析装置などの分析法を指定し、各金属の検出下限値の明記を求めるようになった。   Recently, as Japanese electrical manufacturers export their products to Europe and other countries, it has been required to prove that the listed heavy metals are not contained in the raw materials. Some electronics manufacturers have specified analysis methods such as pretreatment of synthetic resin samples used for quantitative analysis of heavy metals, analyzers, etc., and have required the specification of detection limits for each metal.

一般に、重金属の含有量を検出下限〜数ppmのレベルで測定するには、原子吸光分析装置、ICP発光分光分析装置またはICP質量分析装置などの装置が用いられる。これらの装置を用いて重金属を測定するには、(水)溶液を装置に導入する必要がある。したがって、製品や原料である合成樹脂は、下記のような方法(1)〜(6)で溶液にされる。これは、一般に、「前処理」と称されている。
(1)乾式灰化法
試料に濃硫酸を添加・加熱し、試料を炭化させた後、電気炉に入れて灰化する。灰化した試料を放冷した後、硝酸などの酸で溶解・希釈し、メスフラスコで定容とする。
(2)湿式灰化法
試料を、硝酸や過酸化水素などの酸化剤と硫酸などの鉱酸とともに加熱し、分解する。分解した試料を放冷後、希釈し、メスフラスコで定容とする。この湿式灰化法は、揮散し易い、金属の分析に用いられるが、試料の分解には長時間を要する。
(3)マイクロ波分解法
試料をフッ素樹脂製の密閉容器に入れ、湿式分解に用いられる酸化剤および酸を添加し、マイクロ波分解する。このマイクロ波分解法は、揮散し易い、金属の分析に用いられるが、試料の分解は短時間で完了し、密閉容器内で試料が分解されるため揮散することはない。
(4)アルカリあるいは酸融解法
試料と酸化ホウ素、炭酸ソーダ、硫酸水素カリなどの融解剤を添加して低融点塩を形成し、放冷後、純水あるいは酸に溶解する。
(5)酸素フラスコ燃焼法
ガラス製または石英製のフラスコに、吸収液として過酸化水素水、純水、硝酸などを入れ、純酸素をフラスコ内に充満させておく。次に、導火線付き試料の導火線に点火し、このフラスコ内に装入して密閉し、完全燃焼させる。発生したガスを吸収した吸収液をメスフラスコで定容とする。このような酸素フラスコ燃焼法に類似した方法として、フラスコ内に加圧酸素を充満させる「酸素ポンプ法」がある。
(6)燃焼ガス吸収法
石英製燃焼管に、石英製または白金製ボートに載せた試料を装入し、酸素混合ガスを流通させて加熱燃焼させる。発生ガスを吸収液に吸収させたり、ボートに残った残さを酸などに溶解し、メスフラスコで定容とする。
In general, in order to measure the heavy metal content at a level of the detection lower limit to several ppm, an apparatus such as an atomic absorption spectrometer, an ICP emission spectrometer, or an ICP mass spectrometer is used. In order to measure heavy metals using these apparatuses, it is necessary to introduce a (water) solution into the apparatus. Therefore, the synthetic resin which is a product or a raw material is made into a solution by the following methods (1) to (6). This is generally referred to as “preprocessing”.
(1) Dry ashing method Concentrated sulfuric acid is added to the sample and heated to carbonize the sample, and then put into an electric furnace for ashing. Allow the incinerated sample to cool, then dissolve and dilute with an acid such as nitric acid, and make it constant in a volumetric flask.
(2) Wet ashing method A sample is heated and decomposed together with an oxidizing agent such as nitric acid or hydrogen peroxide and a mineral acid such as sulfuric acid. The decomposed sample is allowed to cool, diluted, and made up to volume with a volumetric flask. This wet ashing method is used for analysis of metals that are easily volatilized, but it takes a long time to decompose the sample.
(3) Microwave decomposition method A sample is put into a sealed container made of fluororesin, and an oxidant and an acid used for wet decomposition are added to perform microwave decomposition. This microwave decomposition method is used for analysis of metals that are easily volatilized, but the sample is completely decomposed in a short time and does not volatilize because the sample is decomposed in a sealed container.
(4) Alkali or acid melting method A sample and a melting agent such as boron oxide, sodium carbonate and potassium hydrogen sulfate are added to form a low melting point salt, which is allowed to cool and then dissolved in pure water or acid.
(5) Oxygen flask combustion method Hydrogen peroxide water, pure water, nitric acid or the like is added as an absorbing solution to a glass or quartz flask, and the flask is filled with pure oxygen. Next, the lead wire of the sample with the lead wire is ignited, charged into the flask, sealed, and completely burned. The absorption liquid that has absorbed the generated gas is made constant in a volumetric flask. As a method similar to such an oxygen flask combustion method, there is an “oxygen pump method” in which pressurized oxygen is filled in the flask.
(6) Combustion gas absorption method A sample placed on a quartz or platinum boat is inserted into a quartz combustion tube, and an oxygen mixed gas is circulated and heated and burned. The generated gas is absorbed in the absorbing solution, or the residue remaining in the boat is dissolved in acid or the like, and the volume is adjusted with a volumetric flask.

上記のような前処理を施して得られた検液は、原子吸光分析装置、ICP発光分光分析装置またはICP質量分析装置などによる測定に供される。   The test solution obtained by performing the pretreatment as described above is subjected to measurement by an atomic absorption spectrometer, an ICP emission spectrometer, an ICP mass spectrometer, or the like.

上記の前処理方法のうち、揮発し易い重金属、特にHgの前処理に適した方法は、(2
)湿式灰化法、(3)マイクロ波分解法および(5)酸素フラスコ燃焼法である。しかしながら、この(2)湿式灰化法あるいは(3)マイクロ波分解法による前処理において、BSEN1122:2001「プラスチック・カドミウムの定量−湿式分解」では、フッ素樹脂はその対象から外されている。また、フッ素樹脂の前処理として可能な方法は、(1)乾式灰化法、(4)アルカリあるいは酸融解法、(5)酸素フラスコ燃焼法および(6)燃焼ガス吸収法である。
Among the pretreatment methods described above, methods suitable for pretreatment of volatile heavy metals, particularly Hg, are (2
A wet ashing method, (3) a microwave decomposition method, and (5) an oxygen flask combustion method. However, in this pretreatment by (2) wet ashing method or (3) microwave decomposition method, BSEN1122: 2001 “Plastic Cadmium Determination—Wet Decomposition” excludes fluororesin. Possible methods for pretreatment of the fluororesin are (1) dry ashing method, (4) alkali or acid melting method, (5) oxygen flask combustion method, and (6) combustion gas absorption method.

したがって、フッ素樹脂中のCd、PbおよびHgの重金属の定量、特にHgの定量に供するフッ素樹脂の前処理方法として、上記(5)の酸素フラスコ燃焼法が考えられる。   Therefore, the oxygen flask combustion method of (5) above can be considered as a pretreatment method of fluororesin used for quantification of heavy metals such as Cd, Pb and Hg in the fluororesin, particularly Hg.

本願発明者らは、フッ素樹脂中に微量不純物として含まれる重金属のうち、Cd、PbおよびHgの少なくとも1種、特にHgの含有量を高精度で測定できる重金属の定量方法として、上記(5)の酸素フラスコ燃焼法を採用し、フッ素樹脂であるPTFE粉末に対し、吸収液として超純水または5%過酸化水素水を用いる酸素フラスコ燃焼法による前処理を施し、得られた検液を誘導結合プラズマ発光分析法(ICP−AES)で分析し、PTFE中のCd、PbおよびHgの含有量を測定したところ、Cd、PbおよびHgのいずれも満足できるような回収率は得られなかった。   As a heavy metal quantification method capable of measuring the content of at least one of Cd, Pb and Hg, particularly Hg, among heavy metals contained as trace impurities in a fluororesin with high accuracy, the inventors of the present application (5) The PTFE powder, which is a fluororesin, is pretreated by the oxygen flask combustion method using ultrapure water or 5% hydrogen peroxide as the absorbent, and the resulting test solution is derived. When the content of Cd, Pb and Hg in PTFE was measured by analysis by coupled plasma emission analysis (ICP-AES), a recovery rate that could satisfy all of Cd, Pb and Hg was not obtained.

そこで、本願発明者らは、フッ素樹脂の前処理としての酸素フラスコ燃焼法について、さらに鋭意研究し、PTFE粉末またはPFA粉末に対し、吸収液として特定濃度の硝酸たとえば10%硝酸を用いる酸素フラスコ燃焼法による前処理し、得られた検液をICP−AESで分析し、PTFEまたはPFA中のCd、PbおよびHgの含有量を測定したところ、いずれのフッ素樹脂においても、これらの重金属について満足できる回収率が得られ、Cd、PbおよびHgの含有量を高精度で測定できることを見出し、本発明を完成するに至った。   Therefore, the inventors of the present invention have further studied earnestly about the oxygen flask combustion method as a pretreatment of the fluororesin, and the oxygen flask combustion using a specific concentration of nitric acid, for example, 10% nitric acid, as an absorbing solution for PTFE powder or PFA powder. Pretreatment by the method, the obtained test solution was analyzed by ICP-AES, and the contents of Cd, Pb and Hg in PTFE or PFA were measured. A recovery rate was obtained, and it was found that the contents of Cd, Pb and Hg could be measured with high accuracy, and the present invention was completed.

本発明は、PTFE、PFA等のフッ素樹脂中に微量不純物として含まれるHg、またはCdおよび/またはPb、特にHgの含有量を高精度で測定することができるフッ素樹脂中の重金属の定量方法を提供することを目的としている。   The present invention provides a method for quantifying heavy metals in fluororesins that can measure the content of Hg, or Cd and / or Pb, particularly Hg, contained as trace impurities in fluororesins such as PTFE and PFA with high accuracy. It is intended to provide.

本発明に係るフッ素樹脂中の重金属の定量方法は、
フッ素樹脂中に微量不純物として含まれる重金属のうち、Hg、またはHgとCdおよび/またはPbとを定量するに際し、該定量に供するフッ素樹脂試料に対して、0.1〜80%硝酸吸収液を用いる酸素フラスコ燃焼法により前処理を行なうことを特徴としている。
The method for quantifying heavy metals in a fluororesin according to the present invention is as follows:
Among heavy metals contained as trace impurities in the fluororesin, when quantifying Hg or Hg and Cd and / or Pb, a 0.1 to 80% nitric acid absorbing solution is added to the fluororesin sample to be used for the quantification. The pretreatment is performed by the oxygen flask combustion method used.

本発明によれば、PTFE、PFA等のフッ素樹脂中に微量不純物として含まれるHg、またはHgとCdおよび/またはPb、特にHgの含有量を高精度で測定することができる。   According to the present invention, it is possible to measure the content of Hg, or Hg and Cd and / or Pb, particularly Hg, contained as trace impurities in fluororesins such as PTFE and PFA with high accuracy.

以下、本発明に係るフッ素樹脂中の重金属の定量方法について具体的に説明する。   Hereinafter, the method for quantifying heavy metals in the fluororesin according to the present invention will be specifically described.

本発明に係るフッ素樹脂中の重金属の定量方法では、フッ素樹脂中のHg、またはHgとCdおよび/またはPbの含有量を測定する。   In the method for quantifying heavy metals in a fluororesin according to the present invention, the content of Hg or Hg and Cd and / or Pb in the fluororesin is measured.

フッ素樹脂としては、たとえば、PTFE(ポリテトラフルオロエチレン)、PFA(テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体)、FEP(テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体)、PCTFE(ポリクロロトリフルオロエチレン)、PVDF(ポリフッ化ビニリデン)、PVF(ポリフッ化ビニル)、ETFE樹脂(エチレン/テトラフルオロエチレン共重合体)、ECTFE(エチレン/クロロトリフルオロエチレン共重合体)などが挙げられる。   Examples of the fluororesin include PTFE (polytetrafluoroethylene), PFA (tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer), FEP (tetrafluoroethylene / hexafluoropropylene copolymer), and PCTFE (polychlorotrifluoroethylene). Ethylene), PVDF (polyvinylidene fluoride), PVF (polyvinyl fluoride), ETFE resin (ethylene / tetrafluoroethylene copolymer), ECTFE (ethylene / chlorotrifluoroethylene copolymer), and the like.

本発明においては、フッ素樹脂試料に対し、酸素フラスコ燃焼法による前処理を行なうが、その際に、特定の吸収液を使用する。本発明で用いられる吸収液は硝酸であり、その濃度は通常0.1〜80%、好ましくは1〜60%、さらに好ましくは5〜30%であることが望ましい。フッ素樹脂試料に対して、上記範囲内の濃度の硝酸を吸収液として酸素フラスコ燃焼法による前処理を行なうと、得られた検液を原子吸光分析装置、ICP発光分析装置またはICP質量分析装置を使用して、フッ素樹脂中のCd、Pb、Hgの含有量を高精度で測定することができる。   In the present invention, the fluororesin sample is pretreated by the oxygen flask combustion method, and at that time, a specific absorbent is used. The absorbing solution used in the present invention is nitric acid, and its concentration is usually 0.1 to 80%, preferably 1 to 60%, more preferably 5 to 30%. When a fluororesin sample is pretreated by an oxygen flask combustion method using nitric acid having a concentration within the above range as an absorbing solution, the obtained sample solution is subjected to an atomic absorption spectrometer, ICP emission spectrometer, or ICP mass spectrometer. By using it, the content of Cd, Pb and Hg in the fluororesin can be measured with high accuracy.

原子吸光分析装置、ICP発光分析装置およびICP質量分析装置としては、特に制限はなく、従来公知の分析装置を用いることができる。   The atomic absorption spectrometer, ICP emission spectrometer, and ICP mass spectrometer are not particularly limited, and conventionally known analyzers can be used.

以下、本発明を実施例により説明するが、本発明は、これらの実施例により何ら限定されるものではない。
[実施例1]
〔前処理:酸素フラスコ燃焼法〕
内部に濾紙を粘着させたセロハン製カプセル内にPTFE粉試料を50mg入れ、さらに、Cd、PbおよびHgの各金属標準液の所定量(20ppm)を添加し、このカプセルを封じて燃焼用試料とした。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited at all by these Examples.
[Example 1]
[Pretreatment: Oxygen flask combustion method]
50 mg of PTFE powder sample is put in a cellophane capsule with a filter paper adhered inside, and a predetermined amount (20 ppm) of each metal standard solution of Cd, Pb and Hg is added, and the capsule is sealed to prepare a sample for combustion. did.

次いで、燃焼用フラスコに10%HNO3 吸収液を入れ、純酸素を充満させた後、共栓の先端のPtバスケットに燃焼用試料をセットして導火線付き試料とし、その導火線を点火し、その試料をフラスコ内に装入して密閉し、完全燃焼させた。その後、このフラスコを数回振り混ぜ、30分間放置し、発生したガスを吸収した吸収液をメスフラスコで定容(50ml)とし、検液とした。この検液を誘導結合プラズマ発光分析法(ICP−AES)で分析した。 Next, 10% HNO 3 absorbing solution is put into the combustion flask and filled with pure oxygen. Then, the combustion sample is set in the Pt basket at the tip of the stopper to make a sample with a lead wire, and the lead wire is ignited. The sample was placed in a flask, sealed, and burned completely. Then, this flask was shaken several times and allowed to stand for 30 minutes, and the absorption liquid that absorbed the generated gas was made constant in a volumetric flask (50 ml) to prepare a test solution. This test solution was analyzed by inductively coupled plasma optical emission spectrometry (ICP-AES).

その結果を表1に示す。Cd、PbおよびHgは満足できる回収率であった。   The results are shown in Table 1. Cd, Pb and Hg were satisfactory recoveries.

[実施例2]
〔前処理:酸素フラスコ燃焼法〕
内部に濾紙を粘着させたセロハン製カプセル内にPFAペレット試料を50mg入れ、さらに、Cd、PbおよびHgの各金属標準液の所定量(20ppm)を添加し、このカプセルを封じて燃焼用試料とした。
[Example 2]
[Pretreatment: Oxygen flask combustion method]
50 mg of PFA pellet sample is put in a cellophane capsule with a filter paper adhered inside, and a predetermined amount (20 ppm) of each metal standard solution of Cd, Pb and Hg is added, and the capsule is sealed to prepare a sample for combustion. did.

次いで、燃焼用フラスコに10%HNO3 吸収液を入れ、純酸素を充満させた後、共栓
の先端のPtバスケットに燃焼用試料をセットして導火線付き試料とし、その導火線を点火し、その試料をフラスコ内に装入して密閉し、完全燃焼させた。その後、このフラスコを数回振り混ぜ、30分間放置し、発生したガスを吸収した吸収液をメスフラスコで定容(50ml)とし、検液とした。この検液をICP-AESで分析した。
その結果を表2に示す。Cd、PbおよびHgは満足できる回収率であった。
Next, 10% HNO 3 absorbing solution is put into the combustion flask and filled with pure oxygen. Then, the combustion sample is set in the Pt basket at the tip of the stopper to make a sample with a lead wire, and the lead wire is ignited. The sample was placed in a flask, sealed, and burned completely. Then, this flask was shaken several times and allowed to stand for 30 minutes, and the absorption liquid that absorbed the generated gas was made constant in a volumetric flask (50 ml) to prepare a test solution. This test solution was analyzed by ICP-AES.
The results are shown in Table 2. Cd, Pb and Hg were satisfactory recoveries.

[実施例3]
〔前処理:酸素フラスコ燃焼法〕
内部に濾紙を粘着させたセロハン製カプセル内にPTFE粉試料を50mg入れ、このカプセルを封じて燃焼用試料とした。
[Example 3]
[Pretreatment: Oxygen flask combustion method]
50 mg of PTFE powder sample was put in a cellophane capsule having a filter paper adhered inside, and the capsule was sealed to prepare a sample for combustion.

次いで、燃焼用フラスコに10%HNO3 吸収液を入れ、純酸素を充満させた後、共栓の先端のPtバスケットに燃焼用試料をセットして導火線付き試料とし、その導火線を点火し、その試料をフラスコ内に装入して密閉し、完全燃焼させた。その後、このフラスコを数回振り混ぜ、30分間放置し、発生したガスを吸収した吸収液をメスフラスコで定容(50ml)とし、検液とした。この検液をICP-AESで分析した。 Next, 10% HNO 3 absorbing solution is put into the combustion flask and filled with pure oxygen. Then, the combustion sample is set in the Pt basket at the tip of the stopper to make a sample with a lead wire, and the lead wire is ignited. The sample was placed in a flask, sealed, and burned completely. Then, this flask was shaken several times and allowed to stand for 30 minutes, and the absorption liquid that absorbed the generated gas was made constant in a volumetric flask (50 ml) to prepare a test solution. This test solution was analyzed by ICP-AES.

その結果を表3に示す。   The results are shown in Table 3.

[比較例1]
〔前処理:酸素フラスコ燃焼法(超純水)〕
内部に濾紙を粘着させたセロハン製カプセル内にPTFE粉試料を50mg入れ、さらに、Cd、PbおよびHgの各金属標準液の所定量(20ppm)を添加し、このカプセルを封じて燃焼用試料とした。
[Comparative Example 1]
[Pretreatment: Oxygen flask combustion method (ultra pure water)]
50 mg of PTFE powder sample is put in a cellophane capsule with a filter paper adhered inside, and a predetermined amount (20 ppm) of each metal standard solution of Cd, Pb and Hg is added, and the capsule is sealed to prepare a sample for combustion. did.

次いで、燃焼用フラスコに超純水を吸収液として入れ、純酸素を充満させた後、共栓の先端のPtバスケットに燃焼用試料をセットして導火線付き試料とし、その導火線を点火し、その試料をフラスコ内に装入して密閉し、完全燃焼させた。その後、このフラスコを数回振り混ぜ、30分間放置し、発生したガスを吸収した吸収液をメスフラスコで定容(50ml)とし、検液とした。この検液をICP-AESで分析した。   Next, after putting ultrapure water into the combustion flask as an absorbing liquid and filling with pure oxygen, set the combustion sample in the Pt basket at the tip of the stopper to make a sample with a lead, ignite the lead, The sample was placed in a flask, sealed, and burned completely. Then, this flask was shaken several times and allowed to stand for 30 minutes, and the absorption liquid that absorbed the generated gas was made constant in a volumetric flask (50 ml) to prepare a test solution. This test solution was analyzed by ICP-AES.

その結果を表4に示す。Cd、PbおよびHgのいずれも満足できる回収率ではなかった。   The results are shown in Table 4. None of Cd, Pb and Hg was satisfactory.

[比較例2]
〔前処理:酸素フラスコ燃焼法(5%過酸化水素水)〕
内部に濾紙を粘着させたセロハン製カプセル内にPTFE粉試料を50mg入れ、さらに、Cd、PbおよびHgの各金属標準液の所定量(20ppm)を添加し、このカプセルを封じて燃焼用試料とした。
[Comparative Example 2]
[Pretreatment: Oxygen flask combustion method (5% hydrogen peroxide solution)]
50 mg of PTFE powder sample is put in a cellophane capsule with a filter paper adhered inside, and a predetermined amount (20 ppm) of each metal standard solution of Cd, Pb and Hg is added, and the capsule is sealed to prepare a sample for combustion. did.

次いで、燃焼用フラスコに5%過酸化水素水を吸収液として入れ、純酸素を充満させた後、共栓の先端のPtバスケットに燃焼用試料をセットして導火線付き試料とし、その導火線を点火し、その試料をフラスコ内に装入して密閉し、完全燃焼させた。その後、このフラスコを数回振り混ぜ、30分間放置し、発生したガスを吸収した吸収液をメスフラスコで定容(50ml)とし、検液とした。この検液をICP-AESで分析した。   Next, after 5% hydrogen peroxide solution is added to the combustion flask as an absorbing solution and filled with pure oxygen, the sample for combustion is set in the Pt basket at the tip of the stopper to make a sample with a lead, and the lead is ignited. The sample was placed in a flask, sealed, and burned completely. Then, this flask was shaken several times and allowed to stand for 30 minutes, and the absorption liquid that absorbed the generated gas was made constant in a volumetric flask (50 ml) to prepare a test solution. This test solution was analyzed by ICP-AES.

その結果を表5に示す。Cd、PbおよびHgのいずれも満足できる回収率ではなかった。   The results are shown in Table 5. None of Cd, Pb and Hg was satisfactory.

[比較例3]
〔前処理:乾式灰化法〕
白金製皿にPTFEペレット試料500mgを精秤し、濃硫酸2mlで湿らせ、加熱し
た。しかし、硫酸ヒュームが発生し、その発生が治まった後も試料は炭化も灰化もされていなかった。そこで、その試料を500℃の電気炉で加熱分解し、放冷後、希硝酸に加温しながら溶解させ、メスフラスコで定容(50ml)とし、検液とした。この検液をICP-AESで分析した。
[Comparative Example 3]
[Pretreatment: Dry ashing method]
A PTFE pellet sample of 500 mg was precisely weighed on a platinum dish, moistened with 2 ml of concentrated sulfuric acid, and heated. However, sulfuric acid fumes were generated, and the samples were neither carbonized nor incinerated even after the generation had subsided. Therefore, the sample was thermally decomposed in an electric furnace at 500 ° C., allowed to cool, dissolved in dilute nitric acid while heating, made constant volume (50 ml) in a volumetric flask, and used as a test solution. This test solution was analyzed by ICP-AES.

その結果を表6に示す。   The results are shown in Table 6.

[比較例4]
〔前処理:乾式灰化法〕
白金製皿にPTFEペレット試料500mgを精秤し、Cd、PbおよびHgの各金属標準液の所定量(20ppm)を添加し、濃硫酸2mlで湿らせ、加熱した。しかし、硫酸ヒュームが発生し、その発生が治まった後も試料は炭化も灰化もされていなかった。そこで、その試料を500℃の電気炉で加熱分解し、放冷後、希硝酸に加温しながら溶解させ、メスフラスコで定容(50ml)とし、検液とした。この検液をICP-AESで分
析した。
[Comparative Example 4]
[Pretreatment: Dry ashing method]
A PTFE pellet sample of 500 mg was precisely weighed on a platinum dish, a predetermined amount (20 ppm) of each metal standard solution of Cd, Pb and Hg was added, moistened with 2 ml of concentrated sulfuric acid, and heated. However, sulfuric acid fumes were generated, and the samples were neither carbonized nor incinerated even after the generation had subsided. Therefore, the sample was thermally decomposed in an electric furnace at 500 ° C., allowed to cool, dissolved in dilute nitric acid while heating, made constant volume (50 ml) in a volumetric flask, and used as a test solution. This test solution was analyzed by ICP-AES.

その結果を表7に示す。CdおよびPbは満足できる回収率であったが、Hgは満足できる回収率ではなかった。   The results are shown in Table 7. Cd and Pb were satisfactory recovery rates, but Hg was not a satisfactory recovery rate.

[比較例5]
〔前処理:燃焼ガス吸収法〕
石英ボートにPTFEペレット試料500mgを精秤し、二重石英燃焼管中でアルゴンと酸素との混合ガスを通じながら900℃で燃焼分解し、分解ガスを5%過酸化水素水(吸収液)に吸収させた。更に、この石英ボートを希硝酸で加温洗浄し、希硝酸を吸収液とともに定容(50ml)とし、検液とした。この検液をICP-AESで分析した。
[Comparative Example 5]
[Pretreatment: Combustion gas absorption method]
A PTFE pellet sample of 500 mg is precisely weighed in a quartz boat and burned and decomposed at 900 ° C. while passing a mixed gas of argon and oxygen in a double quartz combustion tube, and the decomposition gas is absorbed in 5% hydrogen peroxide solution (absorbing liquid). I let you. Furthermore, this quartz boat was heated and washed with dilute nitric acid, and the dilute nitric acid together with the absorbing solution was brought to a constant volume (50 ml) to prepare a test solution. This test solution was analyzed by ICP-AES.

その結果を表8に示す。   The results are shown in Table 8.

[比較例6]
〔前処理:燃焼ガス吸収法〕
石英ボートにPTFEペレット試料500mgを精秤し、Cd、PbおよびHgの各金属標準液の所定量(20ppm)を添加し、二重石英燃焼管中でアルゴンと酸素との混合ガスを通じながら900℃で燃焼分解し、分解ガスを5%過酸化水素水(吸収液)に吸収させた。更に、この石英ボートを希硝酸で加温洗浄し、希硝酸を吸収液とともに定容(50ml)とし、検液とした。この検液をICP-AESで分析した。
[Comparative Example 6]
[Pretreatment: Combustion gas absorption method]
A PTFE pellet sample of 500 mg is precisely weighed in a quartz boat, a predetermined amount (20 ppm) of each of Cd, Pb and Hg metal standard solutions is added, and 900 ° C. while passing a mixed gas of argon and oxygen in a double quartz combustion tube. And the decomposition gas was absorbed in 5% hydrogen peroxide solution (absorbing liquid). Furthermore, this quartz boat was heated and washed with dilute nitric acid, and the dilute nitric acid together with the absorbing solution was brought to a constant volume (50 ml) to prepare a test solution. This test solution was analyzed by ICP-AES.

その結果を表9に示す。CdおよびPbは満足できる回収率であったが、Hgは満足できる回収率ではなかった。   The results are shown in Table 9. Cd and Pb were satisfactory recovery rates, but Hg was not a satisfactory recovery rate.

[比較例7]
〔前処理:燃焼ガス吸収法〕
石英ボートにPFAペレット試料500mgを精秤し、Cd、PbおよびHgの各金属標準液の所定量(20ppm)を添加し、二重石英燃焼管中でアルゴンと酸素との混合ガスを通じながら900℃で燃焼分解し、分解ガスを10%硝酸(吸収液)に吸収させた。更に、この石英ボートを希硝酸で加温洗浄し、希硝酸を吸収液とともに定容(50ml)とし、検液とした。この検液をICP-AESで分析した。
[Comparative Example 7]
[Pretreatment: Combustion gas absorption method]
A PFA pellet sample of 500 mg is precisely weighed in a quartz boat, a predetermined amount (20 ppm) of each metal standard solution of Cd, Pb and Hg is added, and 900 ° C. while passing a mixed gas of argon and oxygen in a double quartz combustion tube. And the decomposition gas was absorbed in 10% nitric acid (absorbing liquid). Furthermore, this quartz boat was heated and washed with dilute nitric acid, and the dilute nitric acid together with the absorbing solution was brought to a constant volume (50 ml) to prepare a test solution. This test solution was analyzed by ICP-AES.

その結果を表10に示す。CdおよびPbは満足できる回収率であったが、Hgは満足できる回収率ではなかった。   The results are shown in Table 10. Cd and Pb were satisfactory recovery rates, but Hg was not a satisfactory recovery rate.

Claims (3)

フッ素樹脂中に微量不純物として含まれる重金属のうち、Hg、またはHgとCdおよび/またはPbとを定量するに際し、該定量に供するフッ素樹脂試料に対して、0.1〜80%硝酸吸収液を用いる酸素フラスコ燃焼法により前処理を行なうことを特徴とするフッ素樹脂中の重金属の定量方法。   Among heavy metals contained as trace impurities in the fluororesin, when quantifying Hg or Hg and Cd and / or Pb, a 0.1 to 80% nitric acid absorbing solution is added to the fluororesin sample to be used for the quantification. A method for quantifying heavy metals in a fluororesin, wherein pretreatment is performed by an oxygen flask combustion method used. 前記フッ素樹脂が、PTFEまたはPFAであることを特徴とする請求項1に記載の重金属の定量方法。   The method for quantifying heavy metals according to claim 1, wherein the fluororesin is PTFE or PFA. 前記定量は、原子吸光分析装置、ICP発光分光分析装置またはICP質量分析装置を用いて行なうことを特徴とする請求項1または2に記載の重金属の定量方法。   3. The heavy metal quantification method according to claim 1, wherein the quantification is performed using an atomic absorption spectrometer, an ICP emission spectrometer, or an ICP mass spectrometer.
JP2003278352A 2003-07-23 2003-07-23 Method of quantifying heavy metals in fluorocarbon resin Pending JP2005043246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003278352A JP2005043246A (en) 2003-07-23 2003-07-23 Method of quantifying heavy metals in fluorocarbon resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003278352A JP2005043246A (en) 2003-07-23 2003-07-23 Method of quantifying heavy metals in fluorocarbon resin

Publications (1)

Publication Number Publication Date
JP2005043246A true JP2005043246A (en) 2005-02-17

Family

ID=34264785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003278352A Pending JP2005043246A (en) 2003-07-23 2003-07-23 Method of quantifying heavy metals in fluorocarbon resin

Country Status (1)

Country Link
JP (1) JP2005043246A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308474A (en) * 2005-04-28 2006-11-09 Kanagawa Acad Of Sci & Technol Mass analyzing reagent for measuring heavy metal ion, and mass-analyzing method of heavy metal ion and mass analyzing system for analyzing heavy metal ion using it
EP1872123B1 (en) * 2005-03-31 2011-10-26 Kabushiki Kaisha Toshiba Method for quantitative analysis of metal element contained in resin material
CN103543113A (en) * 2013-10-31 2014-01-29 大连大公环境检测有限公司 Method for detecting heavy metal in seawater
CN103604683A (en) * 2013-10-25 2014-02-26 浙江大学 Method for determining occurrence state of mercury in desulfurization by-product
CN108760654A (en) * 2018-04-28 2018-11-06 首钢京唐钢铁联合有限责任公司 Method for rapidly determining content of lead element in tin plate coating
CN112665933A (en) * 2020-12-04 2021-04-16 安徽大学 Pretreatment method for mercury isotope determination of environmental sample
CN114397156A (en) * 2021-12-30 2022-04-26 山东东岳高分子材料有限公司 Sample pretreatment method for detecting trace metal ions in PTFE (polytetrafluoroethylene) and application thereof
CN114739926A (en) * 2022-04-08 2022-07-12 新疆维吾尔自治区产品质量监督检验研究院 Method for measuring residual quantity of harmful heavy metals in printing ink

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1872123B1 (en) * 2005-03-31 2011-10-26 Kabushiki Kaisha Toshiba Method for quantitative analysis of metal element contained in resin material
JP2006308474A (en) * 2005-04-28 2006-11-09 Kanagawa Acad Of Sci & Technol Mass analyzing reagent for measuring heavy metal ion, and mass-analyzing method of heavy metal ion and mass analyzing system for analyzing heavy metal ion using it
CN103604683A (en) * 2013-10-25 2014-02-26 浙江大学 Method for determining occurrence state of mercury in desulfurization by-product
CN103543113A (en) * 2013-10-31 2014-01-29 大连大公环境检测有限公司 Method for detecting heavy metal in seawater
CN108760654A (en) * 2018-04-28 2018-11-06 首钢京唐钢铁联合有限责任公司 Method for rapidly determining content of lead element in tin plate coating
CN112665933A (en) * 2020-12-04 2021-04-16 安徽大学 Pretreatment method for mercury isotope determination of environmental sample
CN114397156A (en) * 2021-12-30 2022-04-26 山东东岳高分子材料有限公司 Sample pretreatment method for detecting trace metal ions in PTFE (polytetrafluoroethylene) and application thereof
CN114739926A (en) * 2022-04-08 2022-07-12 新疆维吾尔自治区产品质量监督检验研究院 Method for measuring residual quantity of harmful heavy metals in printing ink
CN114739926B (en) * 2022-04-08 2022-11-22 新疆维吾尔自治区产品质量监督检验研究院 Method for measuring residual quantity of harmful heavy metals in printing ink

Similar Documents

Publication Publication Date Title
Wang et al. Design modification of a solution-cathode glow discharge-atomic emission spectrometer for the determination of trace metals in titanium dioxide
JP2005043246A (en) Method of quantifying heavy metals in fluorocarbon resin
JP2018066627A (en) Pretreatment equipment for elementary analysis and elementary analysis system, and pretreatment method for elementary analysis and elementary analysis method
US20150111304A1 (en) Carbon analysis using ferrate oxidation
Costa et al. Use of factorial design for optimization of microwave-assisted digestion of lubricating oil
Miller et al. Quantitative electrodeposition of plutonium
JP2011214977A (en) Method of analyzing metal element in resin material
JP2016095288A (en) Flow apparatus for automatic analysis of halogen and sulfur in organic compound, automatic analyzer using the flow apparatus, and method for automatic analysis
Aroza et al. Combination of hydride generation and graphite furnace atomic absorption spectrometry for the determination of lead in biological samples
JP6112914B2 (en) Method for preparing sample for measuring mercury in coal ash and measuring method for mercury in coal ash
WO1990005911A1 (en) Method and apparatus for analyzing oxygen
EP0653623A1 (en) Method of determining trace metallic impurities in fluoropolymer and process for producing fluoropolymer thereby
JP2019066249A (en) Sample preparation method for elemental impurity measurement
JP2006184109A (en) Method for analyzing ultratrace metal in polymer
JP2010197183A (en) Analysis method of trace element in alloy
JP3804864B2 (en) Impurity analysis method
Tsujii Differential determination of antimony (III) and antimony (V) by non-dispersive atomic fluorescence spectrometry using a sodium borohydride reduction technique
JP4305849B2 (en) Organic substance analysis pretreatment method, heavy metal analysis method in organic substance, reaction vessel and batch hydrothermal decomposition apparatus
JP2017015580A (en) Method for analyzing iodine or bromine in fluorine-based polymer
JP2005300198A (en) Low-concentration hydrogen sulfide analysis method
JP2018054535A (en) Method of analyzing solution
Watanabe et al. Determination of impurity elements in graphite by acid decomposition–inductively coupled plasma atomic emission spectrometry
Xia et al. Sensitive detection of caffeic acid and rutin via the enhanced anodic electrochemiluminescence signal of luminol
WO2014115552A1 (en) Device for elemental analysis in liquid
JP2004271202A (en) Method for quantifying volatile element in sample containing organic material