JP4305849B2 - Organic substance analysis pretreatment method, heavy metal analysis method in organic substance, reaction vessel and batch hydrothermal decomposition apparatus - Google Patents

Organic substance analysis pretreatment method, heavy metal analysis method in organic substance, reaction vessel and batch hydrothermal decomposition apparatus Download PDF

Info

Publication number
JP4305849B2
JP4305849B2 JP2004101414A JP2004101414A JP4305849B2 JP 4305849 B2 JP4305849 B2 JP 4305849B2 JP 2004101414 A JP2004101414 A JP 2004101414A JP 2004101414 A JP2004101414 A JP 2004101414A JP 4305849 B2 JP4305849 B2 JP 4305849B2
Authority
JP
Japan
Prior art keywords
decomposition
analysis
heavy metal
reaction vessel
organic substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004101414A
Other languages
Japanese (ja)
Other versions
JP2005283508A (en
Inventor
政憲 今野
朝夫 中塚
秀夫 菊地
宏 曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyagi Prefectural Government.
Original Assignee
Miyagi Prefectural Government.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyagi Prefectural Government. filed Critical Miyagi Prefectural Government.
Priority to JP2004101414A priority Critical patent/JP4305849B2/en
Publication of JP2005283508A publication Critical patent/JP2005283508A/en
Application granted granted Critical
Publication of JP4305849B2 publication Critical patent/JP4305849B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

本発明は、プラスチック類、生体試料、環境試料等の有機物中の重金属成分を分析する際の前処理方法、有機物中の重金属分析方法、有機物分析前処理方法に用いる反応容器およびバッチ式水熱分解装置に関するものである。   The present invention relates to a pretreatment method for analyzing heavy metal components in organic substances such as plastics, biological samples, environmental samples, etc., a heavy metal analysis method in organic substances, a reaction vessel used for the organic substance analysis pretreatment method, and batch hydrothermal decomposition It relates to the device.

環境保全に関する認識が高まる昨今、工業製品、工業材料、廃電子電気機器等に含まれる有害物質に関する規制強化が進んでいる。具体的には欧州官報においてカドミウムや鉛などの重金属類の使用制限に関する指令が発効され、日本国内でも2003年1月から土壌汚染対策法が施行される等、世界的に有害物質の使用や廃棄に関する規制が強化されている。   With the recent increase in awareness of environmental conservation, regulations on toxic substances contained in industrial products, industrial materials, waste electronic and electrical equipment, etc. are being strengthened. Specifically, a directive on the restriction of heavy metals such as cadmium and lead came into effect in the European Official Gazette, and the use and disposal of hazardous substances worldwide, including the enforcement of the Soil Contamination Countermeasures Law in January 2003. Regulations on are being strengthened.

このような状況の中、前記有害性重金属類の分析に関する需要が急増し、公設試験研究機関や計量証明事業所には製品や材料中の重金属類分析に関する試験の依頼が殺到している。   Under such circumstances, demand for the analysis of harmful heavy metals is rapidly increasing, and public testing research institutions and measurement certification establishments are inundated with requests for tests regarding the analysis of heavy metals in products and materials.

従来実施されている、重金属類分析における有機化合物の分解処理法としては、
(1)日本薬局法―プラスチック製医薬品容器試験法、生活用品試験法―器具・容器包装および玩具試験法、食品衛生検査指針―合成樹脂およびゴム製品の材質試験、などに記載されている乾式分解法、
(2)農用地土壌対策地域の指定要件に係るカドミウムの量の検定の方法を定める省令(非特許文献1参照)やPlastics-Determination of cadmium-Wet decomposition method(非特許文献2参照)、に記載されている湿式分解法。
(3)湿式分解における加熱操作を、密閉系のマイクロ波で行なうことにより、分解時間の短縮化を図ったマイクロ波加熱分解法、などがある。
As a conventional method for decomposing organic compounds in heavy metal analysis,
(1) Dry disassembly described in the Japanese Pharmacy Law-Plastic Drug Container Test Method, Living Goods Test Method-Equipment / Container Packaging and Toy Test Method, Food Hygiene Inspection Guidelines-Synthetic Resin and Rubber Product Material Test, etc. Law,
(2) Described in ministerial ordinances (see Non-Patent Document 1) and Plastics-Determination of cadmium-Wet decomposition method (see Non-Patent Document 2), which determine the method of cadmium testing according to the designated requirements for agricultural land and soil control areas Wet decomposition method.
(3) There is a microwave heat decomposition method for shortening the decomposition time by performing a heating operation in wet decomposition with a closed microwave.

ところで、水のイオン積(Kw)は常温では10-14であるが、臨界点である374.1℃、22.1Mpaを超えた超臨界水、あるいは、その近傍の高温高圧下では水の解離が進み、酸やアルカリとしての機能を有するようになることが古くから知られており、1980年代初頭に、MITのModellらは超臨界水による酸化分解プロセスを提案している。 Incidentally, the ion product of water (Kw) is at normal temperature is 10 -14, a critical point 374.1 ° C., supercritical water exceeds 22.1 MPa, or, in the high pressure and high temperature in the vicinity thereof proceeds dissociation of water, It has long been known to function as an acid or alkali, and in the early 1980s, Model of MIT proposed an oxidative decomposition process using supercritical water.

日本国内においても、1990年代初頭から有機性廃棄物の無害化処理や再資源化を中心として、超臨界水の特性を利用した特許が公開されはじめ、現在の環境負荷の大きいプロセスに代替した環境適合型の超臨界水利用技術が開発・実用化されつつある。   In Japan, since the beginning of the 1990s, patents using supercritical water characteristics began to be published, focusing on the detoxification and recycling of organic waste. Adaptive supercritical water utilization technology is being developed and put into practical use.

農用地土壌対策地域の指定要件に係るカドミウムの量の検定の方法を定める省令(昭和46年農林水産省令第47号)Ministerial Ordinance (Ministry of Agriculture, Forestry and Fisheries Ordinance No. 47 of 1971) that stipulates the method of examination of the amount of cadmium pertaining to designated requirements for agricultural land and soil countermeasure areas Plastics-Determination of cadmium-Wet decomposition method(European Standard EN1122:2001)Plastics-Determination of cadmium-Wet decomposition method (European Standard EN1122: 2001)

しかしながら、上述した従来の分解法にはそれぞれ一長一短がある。
第一に乾式分解法は、一度に多数試料を分解処理できるとともに、分解操作に使用する試薬量が少ない等、操作性が簡便である長所がある。一方で加熱分解処理時の低沸点元素の揮散可能性が高いという短所があり、このことを抑制するためには、低温灰化法などに代表されるような分解時間が比較的長時間を要する分析法を採用することが必要となる。
However, each of the conventional decomposition methods described above has advantages and disadvantages.
First, the dry decomposition method has the advantage of being easy to operate, such as being able to decompose a large number of samples at a time and using a small amount of reagent for the decomposition operation. On the other hand, there is a disadvantage that low boiling point elements are likely to be volatilized during the thermal decomposition treatment, and in order to suppress this, a decomposition time represented by a low temperature ashing method or the like requires a relatively long time. It is necessary to adopt analytical methods.

第二に湿式分解法は、低沸点元素の揮散可能性が少なく回収率の良い分析操作ができるという長所がある。一方で分解操作に使用する試薬の種類や量が比較的多いこと、難分解性の試料においては分解時間が長時間を要するなどの短所がある。   Secondly, the wet decomposition method has the advantage that it can perform an analytical operation with a low recovery rate and low volatility of low boiling point elements. On the other hand, there are disadvantages in that the types and amounts of reagents used in the decomposition operation are relatively large, and in the case of difficult-to-decompose samples, a long decomposition time is required.

上述した湿式分解法の分解時間を短縮化するために開発された技術が、マイクロ波加熱分解法であるが、分解装置の多くは同時に分解処理できる試料数が比較的少なく、分解処理の前後の操作性が煩雑であるため、試料の分解にかかる時間は短縮できても、単位時間あたり処理可能な試料数については大幅な効果を示してはいない。   The technology developed to shorten the decomposition time of the above-described wet decomposition method is the microwave heating decomposition method, but many of the decomposition apparatuses have a relatively small number of samples that can be simultaneously decomposed, and before and after the decomposition treatment. Since the operability is complicated, the number of samples that can be processed per unit time has not shown a significant effect even though the time required for sample decomposition can be shortened.

また、重金属成分の定性・定量分析における試料の前処理として、超臨界水を利用して有機物を分解する技術は開発されていない。   In addition, as a pretreatment of samples in the qualitative / quantitative analysis of heavy metal components, a technique for decomposing organic substances using supercritical water has not been developed.

本発明は、このような従来の課題に着目してなされたもので、高温高圧水または超臨界水を用いて有機物を簡便かつ迅速に分解することが可能な有機物中の重金属成分を分析する際の前処理方法、有機物中の重金属分析方法、有機物分析前処理方法に用いる反応容器およびバッチ式水熱分解装置を提供することを目的とする。   The present invention has been made by paying attention to such a conventional problem. When analyzing a heavy metal component in an organic substance capable of easily and rapidly decomposing the organic substance using high-temperature high-pressure water or supercritical water. An object of the present invention is to provide a pretreatment method, a heavy metal analysis method in organic matter, a reaction vessel and a batch hydrothermal decomposition apparatus used in the organic matter analysis pretreatment method.

有機化合物の分解に関して、多数試料を同時に処理し元素の揮散を防止可能でかつ迅速な処理技術が求められており、本発明者らは、超臨界水あるいは臨界点近傍の高圧熱水により試料である有機化合物を分解し、分解物中に含まれる重金属物質類を分析する方法を見出し、本発明を完成した。   With regard to the decomposition of organic compounds, there is a need for a rapid processing technique that can process a large number of samples at the same time to prevent the volatilization of elements. A method for decomposing an organic compound and analyzing heavy metal substances contained in the decomposition product was found, and the present invention was completed.

すなわち、本発明に係る有機物分析前処理方法は、有機物中の重金属成分を分析する際の前処理方法であって、有機物を200℃以上かつ10MPa以上の高温高圧水または超臨界水により分解することを特徴とする。
有機物中の重金属成分を分析する際に、有機物を374.1℃以上かつ22.1MPa以上の超臨界水または200℃以上かつ10MPa以上の高温高圧水、特に、臨界点(374.1℃・22.1MPa)近傍の高温高圧水により分解する方法を適用することで、分解処理を迅速に行うことが可能となる。なお、有機物を分解処理後の重金属成分の定性・定量分析操作は、従来一般的に行われている、化学分析、機器分析等により行うことができる。
That is, the organic matter analysis pretreatment method according to the present invention is a pretreatment method for analyzing heavy metal components in an organic matter, and decomposes the organic matter with high-temperature high-pressure water or supercritical water at 200 ° C. or higher and 10 MPa or higher. It is characterized by.
When analyzing heavy metal components in organic matter, the organic matter should be supercritical water at 374.1 ° C or higher and 22.1MPa or high-temperature high-pressure water at 200 ° C or higher and 10MPa or higher, especially at high temperatures near the critical point (374.1 ° C · 22.1MPa). By applying the method of decomposing with high-pressure water, it becomes possible to perform the decomposing process quickly. In addition, the qualitative / quantitative analysis operation of the heavy metal component after the organic substance is decomposed can be performed by chemical analysis, instrumental analysis, and the like that are generally performed conventionally.

本発明に係る有機物分析前処理方法で、前記高温高圧水または超臨界水は酸化剤を含んでもよい。
試料が付加重合型ポリマーなどの高温高圧水では分解が進行しにくい有機化合物等(例えば、ポリエチレン等)の場合には、純水に加えて、過酸化水素水などの酸化剤を添加することにより処理時間の短縮化を図ることができる。
In the organic matter analysis pretreatment method according to the present invention, the high-temperature high-pressure water or supercritical water may contain an oxidizing agent.
If the sample is an organic compound that does not easily decompose in high-temperature and high-pressure water such as an addition polymerization type polymer (for example, polyethylene), add an oxidizing agent such as hydrogen peroxide in addition to pure water. The processing time can be shortened.

本発明に係る有機物分析前処理方法は、分解処理後に生じた分解残さを酸またはアルカリ剤により分解してもよい。
水熱分解終了後の分解溶液に未分解残さが生じた際は、まず、残さごと分解溶液をビーカーなどの別容器に移し、塩酸、硝酸、硫酸、燐酸、フッ化水素酸などの酸を単独または混合して加えるか、あるいは水酸化ナトリウムなどのアルカリ剤を単独または混合して加え、未分解残さを溶解した後に希釈・定容操作を実施することによって、より正確な定量分析を行なうことができる。
In the organic matter analysis pretreatment method according to the present invention, the decomposition residue generated after the decomposition treatment may be decomposed with an acid or an alkali agent.
When undecomposed residue is generated in the decomposition solution after hydrothermal decomposition, first transfer the decomposition solution together with the residue to another container such as a beaker, and use acid such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, hydrofluoric acid alone. Alternatively, it is possible to perform more accurate quantitative analysis by adding a mixture or adding an alkali agent such as sodium hydroxide alone or in combination to dissolve the undegraded residue and then diluting and measuring the volume. it can.

本発明に係る有機物中の重金属分析方法は、前述の有機物分析前処理方法により有機物を分解した後、有機物中の重金属成分を分析することを特徴とする。
図1は、本発明に係る有機物中の重金属分析方法の代表例の分析フローである。図1に示す方法では、はじめに、分析対象となる試料1、溶媒である純水2を任意の量で耐圧性の反応容器3に採り、水熱分解装置4により分解処理操作を行う。分解試料5に未分解残さが生じた場合には、酸添加等により溶解処理し(ステップ6)、未分解残さを溶解した後に希釈・定容操作を実施する(ステップ7)。
The method for analyzing heavy metals in organic matter according to the present invention is characterized in that after the organic matter is decomposed by the organic matter analysis pretreatment method described above, the heavy metal component in the organic matter is analyzed.
FIG. 1 is an analysis flow of a typical example of the method for analyzing heavy metals in organic substances according to the present invention. In the method shown in FIG. 1, first, a sample 1 to be analyzed and pure water 2 as a solvent are taken in a pressure-resistant reaction vessel 3 in an arbitrary amount, and a decomposition treatment operation is performed by a hydrothermal decomposition apparatus 4. When an undecomposed residue is generated in the decomposed sample 5, a dissolution treatment is performed by adding an acid or the like (step 6), and after the undecomposed residue is dissolved, a dilution / volumetric operation is performed (step 7).

分解処理の際の温度および圧力は、高圧熱水を利用する場合には、水のイオン積(Kw)が極大値を示す200〜300℃の温度範囲が好ましい。超臨界水を利用する場合には、水の臨界点となる374.1℃以上かつ22.1MPa以上である。   In the case of using high-pressure hot water, the temperature and pressure during the decomposition treatment are preferably in the temperature range of 200 to 300 ° C. at which the ionic product (Kw) of water shows a maximum value. When supercritical water is used, the temperature is 374.1 ° C. or higher and 22.1 MPa or higher, which is the critical point of water.

この際の容器内の圧力は、圧力計を用いて計測してもよいが、圧力は容器内に導入する溶媒の量(g)および分解温度(℃)により決定されるため、容器内に導入する溶媒の量により調整してもよい。圧力計等を用いることなく比較的簡便に操作が可能だからである。表1は反応容器の内容積が10cm3とした際に、所定の圧力を設定するために必要な水量(g)である。 The pressure in the container at this time may be measured using a pressure gauge, but the pressure is determined by the amount of the solvent (g) introduced into the container and the decomposition temperature (° C.). You may adjust with the quantity of the solvent to carry out. This is because the operation can be performed relatively easily without using a pressure gauge or the like. Table 1 shows the amount of water (g) necessary to set a predetermined pressure when the internal volume of the reaction vessel is 10 cm 3 .

Figure 0004305849
Figure 0004305849

本発明に係る反応容器は、前述の有機物分析前処理方法に用いる反応容器であって、有機物および水を収容する容器内壁面がニッケル合金または金合金から成ることを特徴とする。   The reaction container according to the present invention is a reaction container used in the organic matter analysis pretreatment method described above, and is characterized in that the inner wall surface of the container for containing the organic matter and water is made of a nickel alloy or a gold alloy.

分解処理工程における反応容器の材質は、一般に使用されているSUS316製のものでも使用は可能である。但し、稼動とともに高温高圧水や含ハロゲン系有機化合物により反応容器が徐々に腐食し安全性が損なわれるおそれがある。また、容器材質成分に分析目的の元素を含んでいない場合や分析目的の元素と容器中の成分の解析ピーク位置とが重なっていない場合には問題は小さいが、そうでない場合には、容器中の成分が分解試料中にコンタミネーションすると分析値の定量性を損なうおそれがある。
たとえば有機化合物中のカドミウムを分析するにあたり、装置材料がSUS316材で構成されていたとして、水熱反応による有機化合物の分解液中に、装置材料の鉄が多量に溶出された場合、鉄の存在は、カドミウムの精確な定量に対して大きな妨げとなるおそれがある。
The material of the reaction vessel in the decomposition treatment step can be used even if it is generally made of SUS316. However, the reaction vessel may gradually corrode with high-temperature and high-pressure water or a halogen-containing organic compound during operation, and safety may be impaired. The problem is small if the container material component does not contain the element for analysis or if the element for analysis does not overlap with the analysis peak position of the component in the container. Contamination of the components in the decomposed sample may impair the quantitativeness of the analysis value.
For example, when analyzing cadmium in an organic compound, if the equipment material is composed of SUS316 material, if a large amount of iron in the equipment material is eluted in the hydrolyzed organic compound decomposition solution, the presence of iron Can be a major hindrance to the accurate determination of cadmium.

したがって、上述の分解処理を行う反応容器は、有機物および水を収容する容器内壁面がニッケル合金または金合金から成ることが好ましい。この場合、容器の材質がニッケル合金または金合金で構成されていても、あるいは有機物および水を収容する容器内壁面にニッケルメッキ層、金メッキ層などの耐食層が施されていてもよい。これにより、容器材質によりコンタミネーションすることを抑制することができる。   Therefore, in the reaction vessel that performs the above-described decomposition treatment, the inner wall surface of the vessel that contains the organic matter and water is preferably made of a nickel alloy or a gold alloy. In this case, the material of the container may be made of a nickel alloy or a gold alloy, or a corrosion resistant layer such as a nickel plating layer or a gold plating layer may be provided on the inner wall surface of the container that contains the organic matter and water. Thereby, it can suppress that it contaminates with a container material.

水熱分解終了後は処理溶液6をメスフラスコ等の定容容器に移し、一定量に希釈・定容(ステップ8)した後、従来一般的に行われている化学分析、機器分析等により重金属類の定性・定量分析を行えばよい(ステップ9,10)。   After completion of hydrothermal decomposition, the treatment solution 6 is transferred to a constant volume container such as a volumetric flask, diluted to a constant volume (step 8), and then subjected to heavy metals by conventional chemical analysis, instrumental analysis, etc. Qualitative / quantitative analysis may be performed (steps 9 and 10).

本発明に係るバッチ式水熱分解装置は、有機物中の重金属成分を分析する際の前処理方法に用いるバッチ式水熱分解装置であって、前述の反応容器と、前記反応容器の内部を200℃以上に加熱可能な加熱部と、前記加熱部の温度制御部とを有することを特徴とする。   A batch-type hydrothermal decomposition apparatus according to the present invention is a batch-type hydrothermal decomposition apparatus used in a pretreatment method for analyzing heavy metal components in organic matter, and includes the above-described reaction vessel and the inside of the reaction vessel at 200. It has a heating part which can be heated above ° C, and a temperature control part of the heating part.

前述の有機物分析前処理方法および有機物中の重金属分析方法は、本発明に係るバッチ式水熱分解装置を用いて実施することが好ましい。バッチ式とすることで高温高圧水との接触部分が反応容器の内壁面のみとなり、さらに、前述の反応容器を用いることにより、分解液中に容器材料物質がコンタミネーションすることを抑制することが可能となる。   It is preferable to implement the organic substance analysis pretreatment method and the heavy metal analysis method in the organic substance using the batch hydrothermal decomposition apparatus according to the present invention. By making it a batch type, the contact part with the high-temperature high-pressure water becomes only the inner wall surface of the reaction vessel, and further, by using the above-mentioned reaction vessel, it is possible to suppress contamination of the container material substance in the decomposition solution. It becomes possible.

本発明によれば、種々の有機化合物系材料や製品等を、水熱反応により簡便かつ迅速に分解することが可能となり、そのため、材料や製品等に含まれるカドミウムや鉛等の重金属類の定性・定量分析を迅速かつ精確に実施することができる。
また、本発明に係る反応容器によれば、分解溶液中への容器材料のコンタミネーションを抑制することが可能となり、そのため、さらに定性・定量分析を精確に実施することができる。
According to the present invention, various organic compound materials and products can be easily and quickly decomposed by a hydrothermal reaction. Therefore, the qualitative properties of heavy metals such as cadmium and lead contained in materials and products can be reduced.・ Quantitative analysis can be performed quickly and accurately.
In addition, according to the reaction container of the present invention, it becomes possible to suppress the contamination of the container material into the decomposition solution, and therefore, qualitative / quantitative analysis can be performed more accurately.

以下に、添付図面を参照しながら、本発明の実施の形態を具体的かつ詳細に説明する。
図2は本実施形態の水熱分解装置の構成を示す図である。
水熱分解装置4は、容器本体11の容器収納部12の内部に反応容器3と、加熱源13とを有し、上蓋14により容器収納部12を閉じることができるようになっている。水熱分解装置4は、さらに、熱伝対15と、温度制御部16と、制御通信部17とを有している。
Hereinafter, embodiments of the present invention will be described specifically and in detail with reference to the accompanying drawings.
FIG. 2 is a diagram showing the configuration of the hydrothermal decomposition apparatus of this embodiment.
The hydrothermal decomposition apparatus 4 includes a reaction container 3 and a heating source 13 inside a container storage unit 12 of the container main body 11, and the container storage unit 12 can be closed by an upper lid 14. The hydrothermal decomposition apparatus 4 further includes a thermocouple 15, a temperature control unit 16, and a control communication unit 17.

試料および所定量の超純水を反応容器3に導入し、反応容器3は分解装置4の容器収納部12にセットする。容器収納部12は加熱源13が装備された装置外装に覆われている。分解装置4の上蓋14を締め、水熱分解操作の準備は完了となる。   A sample and a predetermined amount of ultrapure water are introduced into the reaction container 3, and the reaction container 3 is set in the container storage unit 12 of the decomposition apparatus 4. The container storage unit 12 is covered with an apparatus exterior equipped with a heating source 13. The upper cover 14 of the decomposition apparatus 4 is tightened, and the preparation for the hydrothermal decomposition operation is completed.

次に、容器収納部12の温度を熱伝対15で測定しながら、温度制御部16により制御通信部17を通して、加熱源の加温を行ない、容器収納部12の温度制御を行う。   Next, while measuring the temperature of the container storage unit 12 with the thermocouple 15, the temperature control unit 16 heats the heating source through the control communication unit 17 to control the temperature of the container storage unit 12.

図3は本実施形態例の反応容器の詳細を示す断面図である。反応容器3は、容器本体21と、容器上蓋22と、容器下蓋23とを有し、密閉可能である。容器下蓋23を容器本体21に取付けた後、所定量の試料および超純水を封入する。異径ユニオン製の容器上蓋22を取り付け、不活性ガスで容器内をパージ後、容器上蓋22を閉め、密閉する。   FIG. 3 is a cross-sectional view showing details of the reaction vessel of this embodiment. The reaction vessel 3 has a vessel body 21, a vessel upper lid 22, and a vessel lower lid 23, and can be sealed. After the container lower lid 23 is attached to the container body 21, a predetermined amount of sample and ultrapure water are sealed. A container upper lid 22 made of a different diameter union is attached, and after purging the inside of the container with an inert gas, the container upper lid 22 is closed and sealed.

本実施形態では、温度制御装置によって反応容器の温度を常温〜600℃までに制御し、反応容器内のプラスチック等有機化合物を、超臨界水あるいは超臨界点近傍の高圧熱水により分解する。分解後は必要に応じて酸溶解法により分解液を調整し、従来の高周波プラズマ発光分光分析装置や原子吸光分析装置により重金属類を定量する。   In this embodiment, the temperature of the reaction vessel is controlled from room temperature to 600 ° C. by the temperature control device, and the organic compound such as plastic in the reaction vessel is decomposed by supercritical water or high-pressure hot water near the supercritical point. After decomposition, if necessary, the decomposition solution is adjusted by an acid dissolution method, and heavy metals are quantified using a conventional high-frequency plasma emission spectrometer or atomic absorption spectrometer.

ポリエチレンテレフタレート (PET:[CAS#29154-49-2])のペレット100mgおよび超純水7.43gを内容積10cmのSUS-316TP製容器にとり、容器内をArガスでパージ・密閉後、300℃で10分間の水熱反応を行った。
次に、反応容器内の分解処理液および分解残さをビーカーに移し、水酸化ナトリウム1.0gを加えた後、50mlに定容し、常温下において分解残さを溶解した。
対照として、水熱処理を施さないPET100mgについても2%水酸化ナトリウム溶液50ml中、常温下で溶解した。
各溶解液をろ紙No.5Cでろ過し、ろ紙上に残った溶解残さの重量を比較した。
Take 100 mg of polyethylene terephthalate (PET: [CAS # 29154-49-2]) pellets and 7.43 g of ultrapure water in a 10 cm 3 SUS-316TP container, purge and seal the interior with Ar gas, and then 300 ° C The hydrothermal reaction was carried out for 10 minutes.
Next, the decomposition treatment liquid and decomposition residue in the reaction vessel were transferred to a beaker, and after adding 1.0 g of sodium hydroxide, the volume was adjusted to 50 ml, and the decomposition residue was dissolved at room temperature.
As a control, 100 mg of PET not subjected to hydrothermal treatment was also dissolved at room temperature in 50 ml of 2% sodium hydroxide solution.
Each dissolved solution was filtered with filter paper No. 5C, and the weight of the dissolved residue remaining on the filter paper was compared.

表2は実施例1における各溶解液の残さ重量を示した結果であり、水熱処理を施したPETは常温下において容易に溶解したのに対し、水熱反応を施さないPETは殆ど溶解しなかった。   Table 2 shows the results of the residual weight of each solution in Example 1. PET subjected to hydrothermal treatment was easily dissolved at room temperature, whereas PET not subjected to hydrothermal reaction hardly dissolved. It was.

Figure 0004305849
Figure 0004305849

内容積10cmのSUS-316TP製容器(内壁面をニッケルメッキ処理)2個それぞれに、カドミウム(Cd)を含むポリエチレン(PE)の破砕試料を100mgとり、一方には超純水4.75g、他方には超純水により20wt%濃度に調製した原子吸光分析用過酸化水素水4.75gを加え、それぞれの容器内をArガスでパージ・密閉後、400℃で10分間の水熱反応を行った。次に、反応容器内の分解処理液および分解残さを、反応容器ごと別々のビーカーに移し、混酸(塩酸:硝酸=1:1、各原子吸光分析用)1mlを加え、ホットプレート上で約10分間穏やかに加温し、その後、各溶解液をメスフラスコで50mlに定容した。各溶液における残さ(固形物)はろ紙No.5Cによりろ過し、それぞれのろ液中のカドミウム濃度を誘導結合プラズマ発光分光分析装置により測定し、その測定値からPE中のカドミウム濃度を計算した。 Contents (nickel plating the inner wall surface) SUS-316TP steel container of the product 10 cm 3 into two respectively, taking 100mg crushed samples of cadmium (Cd) polyethylene containing (PE), on one ultrapure water 4.75 g, other Was added with 4.75 g of hydrogen peroxide solution for atomic absorption analysis prepared with ultrapure water to a concentration of 20 wt%, and each container was purged with Ar gas and sealed, followed by hydrothermal reaction at 400 ° C. for 10 minutes. . Next, the decomposition treatment liquid and decomposition residue in the reaction vessel are transferred to a separate beaker for each reaction vessel, 1 ml of mixed acid (hydrochloric acid: nitric acid = 1: 1, for each atomic absorption analysis) is added, and about 10 on a hot plate. The solution was gently warmed for 5 minutes and then each lysate was made up to 50 ml in a volumetric flask. The residue (solid matter) in each solution was filtered with filter paper No. 5C, the cadmium concentration in each filtrate was measured with an inductively coupled plasma emission spectrometer, and the cadmium concentration in PE was calculated from the measured values.

表3は実施例2の結果であり、過酸化水素添加による分解処理法から得られたPE中カドミウムの測定結果は、製品添付の保証値と一致していた。
一方、超臨界水単独による分解処理法の結果については成分保証値より若干低めとなったが、ほぼこれに近い定量値が得られた。
Table 3 shows the results of Example 2. The measurement results of cadmium in PE obtained from the decomposition treatment method by addition of hydrogen peroxide were consistent with the guaranteed values attached to the product.
On the other hand, the result of the decomposition process using supercritical water alone was slightly lower than the guaranteed component value, but a quantitative value almost similar to this was obtained.

Figure 0004305849
Figure 0004305849

本発明と従来の分解処理法について、分解処理液の定量精度、および定量分析に供するまでに要する試料処理総時間を比較するために、実施例2に示したPE試料を用いて従来の湿式分解法および乾式分解法により試料中のカドミウム定量分析を行った。
湿式分解法はEuropean Standard EN1122:2001、 乾式分解法は衛生試験法注解−生活用品試験法−材質試験法−金属類を参考にしてそれぞれ分解処理を行い、各処理法で得られた分解処理液中のカドミウム濃度を誘導結合プラズマ発光分光分析装置により測定し、その測定値から試料中のカドミウム濃度を計算した。
乾式分解法における電気炉による試料の灰化温度については、450℃、および600℃の2種類の条件により処理を行った。
For comparison between the present invention and the conventional decomposition method, the quantitative accuracy of the decomposition solution and the total sample processing time required for quantitative analysis, a conventional wet decomposition using the PE sample shown in Example 2 is used. The cadmium in samples was quantitatively analyzed by the method and the dry decomposition method.
Wet decomposition method is European Standard EN1122: 2001, dry decomposition method is sanitary test method comment-life goods test method-material test method-decomposition treatment with reference to metals, and the decomposition treatment liquid obtained by each treatment method The cadmium concentration in the sample was measured by an inductively coupled plasma optical emission spectrometer, and the cadmium concentration in the sample was calculated from the measured value.
Regarding the ashing temperature of the sample by the electric furnace in the dry decomposition method, the treatment was performed under two conditions of 450 ° C. and 600 ° C.

表4は各分解法におけるカドミウム定量分析結果、および試料処理にかかる総時間であり、本発明による超臨界分解処理法は、600℃で灰化処理を行う乾式灰化法より短い分解処理時間、かつ、従来の湿式分解法と同等の分析精度で、重金属類の定量分析を行えることが確認できた。   Table 4 shows the results of quantitative analysis of cadmium in each decomposition method and the total time required for sample processing. The supercritical decomposition treatment method according to the present invention has a shorter decomposition treatment time than the dry ashing method in which ashing is performed at 600 ° C. In addition, it was confirmed that heavy metals can be quantitatively analyzed with the same analytical accuracy as the conventional wet decomposition method.

Figure 0004305849
Figure 0004305849

本発明と従来法によるカドミウムの定量下限値を比較するために、実施例2に示した水熱分解法、および実施例3に示した湿式分解法における操作ブランク溶液の定量測定を10回行い、その標準偏差の10倍値により、それぞれの方法におけるカドミウム定量下限値を求めた。   In order to compare the lower limit of determination of cadmium according to the present invention and the conventional method, the measurement of the operation blank solution in the hydrothermal decomposition method shown in Example 2 and the wet decomposition method shown in Example 3 was performed 10 times, The lower limit of cadmium quantification in each method was determined from a value 10 times the standard deviation.

表5は各分解法におけるカドミウムの定量下限値の結果である。本発明による水熱分解法は従来の湿式分解処理法より定量下限値が低いことが確認された。   Table 5 shows the results of the lower limit of determination of cadmium in each decomposition method. It was confirmed that the hydrothermal decomposition method according to the present invention has a lower limit of quantification than the conventional wet decomposition method.

Figure 0004305849
Figure 0004305849

容器内壁面をメッキ処理しない内容積10cmのSUS-316TP製容器、および同容積で金メッキ処理を施したSUS-316TP製容器、並びにニッケルメッキ処理したSUS-316TP製容器を用意し、それぞれに市販塩化ビニルポリマー(関東化学(株)/44038-02)100mgおよび超純水3.58gを導入し、400℃で10分間超臨界水反応処理した。次に不溶解物を含めた分解処理液をビーカーに洗液とともに移し、ビーカーに混酸(塩酸:硝酸=1:1、各原子吸光分析用)1mlを加えホットプレート上で約10分間穏やかに加温後、溶解液を超純水により50mlに定容し不溶解残さをろ過、誘導結合プラズマ発光分光分析装置により各ろ液中の鉄含有量を測定し、それぞれの容器における内壁の腐食具合を比較した。 SUS-316TP steel container having an inner volume of 10 cm 3 without the container wall is plated, and SUS-316TP steel container with gold-plated at the same volume, as well as providing a SUS-316TP steel container with nickel plating, commercially available respectively 100 mg of vinyl chloride polymer (Kanto Chemical Co., Inc./44038-02) and 3.58 g of ultrapure water were introduced and subjected to a supercritical water reaction treatment at 400 ° C. for 10 minutes. Next, the decomposition solution containing insolubles is transferred to the beaker with the washing solution, and 1 ml of mixed acid (hydrochloric acid: nitric acid = 1: 1 for each atomic absorption analysis) is added to the beaker and gently added for about 10 minutes on a hot plate. After warming, the dissolved solution is made up to a volume of 50 ml with ultrapure water, the insoluble residue is filtered, the iron content in each filtrate is measured with an inductively coupled plasma emission spectrometer, and the corrosion condition of the inner wall in each container is measured. Compared.

表6は実施例5の元素分析結果であり、メッキ処理を施さない反応容器中で処理した分解液中からはppmオーダーの鉄が検出されたのに対して、メッキ処理を施した反応容器の場合においては、鉄濃度はいずれも定量下限値未満の値であった。   Table 6 shows the results of elemental analysis of Example 5, in which iron in the order of ppm was detected from the decomposition solution treated in the reaction vessel not subjected to the plating treatment, whereas the reaction vessel subjected to the plating treatment. In some cases, the iron concentration was less than the lower limit of quantification.

Figure 0004305849
Figure 0004305849

本発明による有機化合物中の重金属物質の分析のフローシートである。2 is a flow sheet for analysis of heavy metal substances in an organic compound according to the present invention. 本実施形態の水熱分解装置の構成を示す概略図である。It is the schematic which shows the structure of the hydrothermal decomposition apparatus of this embodiment. 反応容器の実施形態例を示す断面図である。It is sectional drawing which shows the embodiment example of a reaction container.

符号の説明Explanation of symbols

1 試料
2 純水
3 反応容器
4 水熱分解装置
5 分解試料
11 容器本体
12 容器収納部
13 加熱源
14 上蓋
15 熱伝対
16 温度制御部
17 制御通信部
21 容器本体
22 容器上蓋
23 容器下蓋
DESCRIPTION OF SYMBOLS 1 Sample 2 Pure water 3 Reaction container 4 Hydrothermal decomposition apparatus 5 Decomposition sample 11 Container main body 12 Container storage part 13 Heating source 14 Upper cover 15 Thermocouple 16 Temperature control part 17 Control communication part 21 Container main body 22 Container upper cover 23 Container lower cover

Claims (6)

有機物中の重金属成分を分析する際の前処理方法であって、有機物を200℃以上かつ10MPa以上の高温高圧水または超臨界水により分解することを特徴とする有機物分析前処理方法。 A pretreatment method for analyzing heavy metal components in an organic substance, the organic substance being decomposed with high-temperature high-pressure water or supercritical water at 200 ° C. or higher and 10 MPa or higher. 前記高温高圧水または超臨界水は酸化剤を含むことを特徴とする請求項1記載の有機物分析前処理方法。 2. The organic matter analysis pretreatment method according to claim 1, wherein the high-temperature high-pressure water or supercritical water contains an oxidizing agent. 分解処理後に生じた分解残さを酸またはアルカリ剤により分解することを特徴とする請求項1または2記載の有機物分析前処理方法。 The organic residue analysis pretreatment method according to claim 1 or 2, wherein a decomposition residue generated after the decomposition treatment is decomposed with an acid or an alkali agent. 請求項1、2または3記載の有機物分析前処理方法により有機物を分解した後、有機物中の重金属成分を分析することを特徴とする有機物中の重金属分析方法。 A method for analyzing a heavy metal in an organic material, comprising analyzing the heavy metal component in the organic material after decomposing the organic material by the organic material analysis pretreatment method according to claim 1, 2 or 3. 請求項1、2または3記載の有機物分析前処理方法に用いる反応容器であって、有機物および水を収容する容器内壁面がニッケル合金または金合金から成ることを特徴とする反応容器。 4. A reaction vessel used in the organic matter analysis pretreatment method according to claim 1, 2, or 3, wherein the inner wall surface of the vessel containing the organic matter and water is made of a nickel alloy or a gold alloy. 有機物中の重金属成分を分析する際の前処理方法に用いるバッチ式水熱分解装置であって、請求項5記載の反応容器と、前記反応容器の内部を200℃以上に加熱可能な加熱部と、前記加熱部の温度制御部とを有することを特徴とするバッチ式水熱分解装置。
A batch-type hydrothermal decomposition apparatus used in a pretreatment method for analyzing a heavy metal component in an organic substance, comprising: a reaction vessel according to claim 5; and a heating unit capable of heating the inside of the reaction vessel to 200 ° C or higher. And a batch-type hydrothermal decomposition apparatus comprising a temperature control unit of the heating unit.
JP2004101414A 2004-03-30 2004-03-30 Organic substance analysis pretreatment method, heavy metal analysis method in organic substance, reaction vessel and batch hydrothermal decomposition apparatus Expired - Fee Related JP4305849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004101414A JP4305849B2 (en) 2004-03-30 2004-03-30 Organic substance analysis pretreatment method, heavy metal analysis method in organic substance, reaction vessel and batch hydrothermal decomposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004101414A JP4305849B2 (en) 2004-03-30 2004-03-30 Organic substance analysis pretreatment method, heavy metal analysis method in organic substance, reaction vessel and batch hydrothermal decomposition apparatus

Publications (2)

Publication Number Publication Date
JP2005283508A JP2005283508A (en) 2005-10-13
JP4305849B2 true JP4305849B2 (en) 2009-07-29

Family

ID=35182035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004101414A Expired - Fee Related JP4305849B2 (en) 2004-03-30 2004-03-30 Organic substance analysis pretreatment method, heavy metal analysis method in organic substance, reaction vessel and batch hydrothermal decomposition apparatus

Country Status (1)

Country Link
JP (1) JP4305849B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014525A (en) * 2007-07-05 2009-01-22 Yazaki Corp Method of quantitatively analyzing mercury in tin or tin alloy plating layer
KR100987510B1 (en) * 2008-04-30 2010-10-12 한국기초과학지원연구원 Electrochemical Measurement System for the Trace Heavy Metals in Organic Waste Water
JP5114755B2 (en) * 2009-02-09 2013-01-09 新日鐵住金株式会社 Quantitative analysis of organometallics using high frequency inductively coupled plasma optical emission spectrometry
JP2011123096A (en) * 2009-12-08 2011-06-23 Ricoh Co Ltd Method for treating electrophotographic carrier, recycling method, carrier core material and carrier
JP2011247694A (en) * 2010-05-25 2011-12-08 Jfe Steel Corp Elution method of inorganic component, analysis method of inorganic component, elution device of inorganic component and analyzer of inorganic component
WO2013099952A1 (en) 2011-12-28 2013-07-04 株式会社住化分析センター Method and system for analysis for nonmetallic element

Also Published As

Publication number Publication date
JP2005283508A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
Bader Sample preparation for flame atomic absorption spectroscopy: an overview
Bendicho et al. Green chemistry in analytical atomic spectrometry: a review
Matusiewicz et al. Vapour-phase acid digestion of inorganic and organic matrices for trace element analysis using a microwave heated bomb
Öztan et al. Microwave assisted EDTA extraction—determination of pseudo total contents of distinct trace elements in solid environmental matrices
Shirgaonkar et al. Degradation of aqueous solution of potassium iodide and sodium cyanide in the presence of carbon tetrachloride
JP4305849B2 (en) Organic substance analysis pretreatment method, heavy metal analysis method in organic substance, reaction vessel and batch hydrothermal decomposition apparatus
JP2008309767A (en) Method for decomposing solid sample and method for determining quantity of chrome using the same
Wang et al. Rapid high-performance sample digestion for ICP determination by ColdBlock™ digestion: part 1 environmental samples
Costa et al. Calibration strategies for determination of Pb content in recycled polypropylene from car batteries using laser-induced breakdown spectroscopy (LIBS)
Gholami et al. A simple design for microwave assisted digestion vessel with low reagent consumption suitable for food and environmental samples
JP3768442B2 (en) Analytical sample preparation method and element quantification method
Tyburska et al. Determination of selenium in dietary supplements by optical emission spectrometry after alkaline dissolution and subsequent headspace solid phase microextraction
Krishna et al. Robust ultrasound assisted extraction approach using dilute TMAH solutions for the speciation of mercury in fish and plant materials by cold vapour atomic absorption spectrometry (CVAAS)
da Silva et al. Determination of total mercury in nuts at ultratrace level
Ilić et al. Ultrasonic degradation of GenX (HFPO-DA)–Performance comparison to PFOA and PFOS at high frequencies
JP4788000B2 (en) Trace element analysis method in aqueous solution
Dash et al. Ultraviolet photolysis assisted mineralization and determination of trace levels of Cr, Cd, Cu, Sn, and Pb in isosulfan blue by ICP-MS
JP2009294002A (en) In situ x-ray absorption fine structure analyzer of very small amount of substance in solution and method for the same
Graber et al. Determining acidic groups at biochar surfaces via the Boehm titration
Guevara-Riba et al. Effect of chloride on heavy metal mobility of harbour sediments
Matusiewicz et al. Characteristics of a novel UV-TiO2-microwave integrated irradiation device in decomposition processes
JP2008164547A (en) Fluorescent x-ray analysis method
Abrankó et al. Comparison of extraction procedures for methylmercury determination by a SPME-GC-AFS system
Bengtsson et al. Development of a method for the study of H 2 gas emission in sealed compartments containing canister copper immersed in O 2-free water
Munoz et al. Sample Preparation Techniques for the Electrochemical Determination of Metals in Environmental and Food Samples

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090324

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees