JP2006308474A - Mass analyzing reagent for measuring heavy metal ion, and mass-analyzing method of heavy metal ion and mass analyzing system for analyzing heavy metal ion using it - Google Patents

Mass analyzing reagent for measuring heavy metal ion, and mass-analyzing method of heavy metal ion and mass analyzing system for analyzing heavy metal ion using it Download PDF

Info

Publication number
JP2006308474A
JP2006308474A JP2005132764A JP2005132764A JP2006308474A JP 2006308474 A JP2006308474 A JP 2006308474A JP 2005132764 A JP2005132764 A JP 2005132764A JP 2005132764 A JP2005132764 A JP 2005132764A JP 2006308474 A JP2006308474 A JP 2006308474A
Authority
JP
Japan
Prior art keywords
heavy metal
reagent
group
mass
metal ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005132764A
Other languages
Japanese (ja)
Inventor
Koji Suzuki
鈴木  孝治
Koji Yamada
幸司 山田
Yoshio Suzuki
祥夫 鈴木
Tomoyasu Yako
知泰 八子
Miho Endo
美帆 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Academy of Science and Technology
Original Assignee
Kanagawa Academy of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Academy of Science and Technology filed Critical Kanagawa Academy of Science and Technology
Priority to JP2005132764A priority Critical patent/JP2006308474A/en
Publication of JP2006308474A publication Critical patent/JP2006308474A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means which simply and highly sensitively measures heavy metal ions including trivalent heavy metal ions, without using any flame. <P>SOLUTION: A mass analyzing reagent for measuring the heavy metal ions is provided, which is composed of a compound with a specific ring structure having two anionic functional groups becoming monovalent negative ions in a solution, and which has a structure represented by following formula (IV), for example. The charge of the heavy metal ions is reduced by negative charge caused by the anionic functional groups, and a complex formed by complexing is observed as an almost single peak, whereby the heavy metal ions can be sensitively measured by a simple mass analysis using no flame. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、Pb2+, Cd2+, Hg2+, Fe3+及びCr3+等の重金属イオンを質量分析により測定するために用いられる、重金属イオン測定用質量分析試薬に関する。 The present invention relates to a mass spectrometric reagent for measuring heavy metal ions, which is used for measuring heavy metal ions such as Pb 2+ , Cd 2+ , Hg 2+ , Fe 3+ and Cr 3+ by mass spectrometry.

重金属による土壌・地下水汚染の原因には、対象物質を含む原材料、薬品等の保管・製造過程における漏出、ばい煙の降下、不適正な排水の地下浸透または廃棄物の埋立処分などがある。土壌中における重金属等の挙動は、その物理化学的な性状および媒体となる土壌の性質により異なるが、一般に、重金属は水に溶けにくく、かつ土壌に吸着されやすいため、地下に浸透した重金属は、地表近くの土壌中に存在し、深部にまでは拡散していないことが多くある。しかしながら、土壌の吸着能力を超える負荷が生じた場合または六価クロムのように水に対する溶解度が高く、移動性の高い物質の場合、雨水などの地下浸透とともに地下深部にまで拡散することがある。   Causes of soil and groundwater contamination by heavy metals include leakage of raw materials including target substances and chemicals, leakage during storage and manufacturing processes, smoke drop, inadequate drainage of underground water or landfill disposal of waste. The behavior of heavy metals, etc. in soil varies depending on their physicochemical properties and the nature of the soil used as a medium. It exists in the soil near the surface of the earth and often does not diffuse deep. However, when a load exceeding the adsorption capacity of the soil occurs or a substance having high water solubility and high mobility such as hexavalent chromium, it may diffuse to the deep underground with underground penetration such as rainwater.

そのような背景で、現在重金属の汚染状況を簡便かつ正確に把握する分析手法が求められている。従来の方法は、高感度測定法としてICP、原子吸光法が挙げられるが、フレームを用いるため危険で現場で好まれず、また、操作の煩雑さ、ランニングコストが高いといった問題点が指摘されている。また簡易分析法として比色分析法が挙げられるが、感度が低いといった問題点が指摘されている。   Against this background, there is a need for an analysis method that can easily and accurately grasp the state of heavy metal contamination. Conventional methods include ICP and atomic absorption methods as high-sensitivity measurement methods, but they are dangerous and unfavorable at the site because of the use of frames, and problems such as complicated operation and high running costs have been pointed out. Yes. A colorimetric analysis method can be cited as a simple analysis method, but the problem of low sensitivity has been pointed out.

一方、クラウンエーテル骨格(ヘテロ原子としてイオウ、窒素又は酸素原子を含む)の、重金属イオンとの錯形成能をエレクトロスプレーイオン化質量分析(ESI-MS)で測定することが報告されている(非特許文献1)。しかしながら、この方法では、1:1錯体ピークは検出できず、対イオンも付加して検出され、感度が悪いという問題がある。また、飛行時間型質量分析計を用いる場合、多価イオンよりも1価イオンを感度良く検出することができるが、従来、Fe3+やCr3+のような3価の重金属イオンを1価のイオンにする重金属イオン測定用質量分析試薬は知られていない。 On the other hand, it has been reported that the complex formation ability of crown ether skeletons (including sulfur, nitrogen or oxygen atoms as heteroatoms) with heavy metal ions is measured by electrospray ionization mass spectrometry (ESI-MS) (non-patented) Reference 1). However, this method has a problem that the 1: 1 complex peak cannot be detected, the counter ion is added and detected, and the sensitivity is poor. When using a time-of-flight mass spectrometer, monovalent ions can be detected with higher sensitivity than multivalent ions. Conventionally, trivalent heavy metal ions such as Fe 3+ and Cr 3+ are monovalent. There is no known mass spectrometric reagent for measuring heavy metal ions to be used as an ion.

Sheldon M. et al., Anal. Chem. 2002, 74, 4423-4433Sheldon M. et al., Anal. Chem. 2002, 74, 4423-4433

本発明の目的は、フレームを用いることなく、簡便かつ高感度に、3価の重金属イオンを包含する重金属イオンを測定する手段を提供することである。   An object of the present invention is to provide a means for measuring heavy metal ions including trivalent heavy metal ions easily and with high sensitivity without using a frame.

本願発明者らは、鋭意研究の結果、重金属イオンと錯体を形成する特定の構造と、溶液中で陰イオンになるイオン性官能基とを1分子中に2個含む化合物を、質量分析用のプローブとして用いることにより、3価の重金属イオンを簡便かつ高感度に測定することができることを見出し本発明を完成した。また、本発明は、特定の環構造を有する化合物が、ヨウ素イオンの存在下において、特に高感度に重金属イオンを測定することができることを見出し本発明を完成した。   As a result of diligent research, the inventors of the present application have developed a compound for mass spectrometry containing a specific structure that forms a complex with a heavy metal ion and two ionic functional groups that become anions in a solution in one molecule. By using it as a probe, it was found that trivalent heavy metal ions can be measured easily and with high sensitivity, and the present invention has been completed. Further, the present invention has been completed by finding that a compound having a specific ring structure can measure heavy metal ions particularly sensitively in the presence of iodine ions.

すなわち、本発明は、下記一般式[I]   That is, the present invention provides the following general formula [I]

Figure 2006308474
Figure 2006308474

(ただし、式中、R1及びR2は互いに独立に溶液中で一価の負イオンとなるイオン性官能基、R3及びR4は互いに独立に水素原子、炭素数1から10の直鎖型若しくは分枝型のアルキル基、アミノ基、ニトロ基又はハロゲン、A1及びA2は互いに独立に存在していても存在していなくてもよく、存在する場合には任意のスペーサー部分を表す)、
下記一般式[II]
(In the formula, R 1 and R 2 are independently an ionic functional group that becomes a monovalent negative ion in solution, R 3 and R 4 are each independently a hydrogen atom, and a straight chain having 1 to 10 carbon atoms. Type or branched alkyl group, amino group, nitro group or halogen, A 1 and A 2 may or may not be present independently of each other and, if present, represent any spacer moiety ),
The following general formula [II]

Figure 2006308474
Figure 2006308474

(ただし、式中、R1及びR2は互いに独立に溶液中で一価の負イオンとなるイオン性官能基、A1及びA2は互いに独立に存在していても存在していなくてもよく、存在する場合には任意のスペーサー部分を表す)、
又は、下記式[III]
(However, in the formula, R 1 and R 2 are ionic functional groups that become monovalent negative ions in solution independently of each other, and A 1 and A 2 may or may not exist independently of each other. Often represents any spacer moiety if present),
Or the following formula [III]

Figure 2006308474
Figure 2006308474

(ただし、環を構成する炭素原子には、-A1-R1(A1及びR1の定義は前記一般式[I]と同じ)で表される置換基が、各エチレン鎖当り1個以下の数だけ結合していてもよい) (However, the carbon atom constituting the ring has one substituent represented by -A 1 -R 1 (the definitions of A 1 and R 1 are the same as those in the general formula [I]) for each ethylene chain. The following number may be combined)

で表される構造を有する重金属イオン測定用質量分析試薬を提供する。また、本発明は、上記本発明の試薬と、被検試料中の重金属イオンとを反応させ、生成物を質量分析することを含む、重金属イオンの質量分析方法を提供する。さらに、本発明は、上記本発明の試薬を収容する試薬容器と、被検試料を収容する試料容器と、前記試薬容器に収容された試薬及び前記試料容器に収容された被検試料を吸引するための吸引手段と、該吸引手段に接続され、その先端部を介して前記試薬容器に収容された試薬及び前記試料容器に収容された被検試料を吸引する吸引管と、該吸引管の途中に設けられた第1のバルブと、該第1のバルブに液押出用管を介して接続された送液ポンプと、前記第1のバルブに送液管を介して接続された液混合手段と、該液混合手段の下流に接続された質量分析装置とを具備する、重金属イオン分析用質量分析システムを提供する。 A mass spectrometric reagent for measuring heavy metal ions having a structure represented by: The present invention also provides a heavy metal ion mass spectrometry method comprising reacting the reagent of the present invention with a heavy metal ion in a test sample, and mass-analyzing the product. Furthermore, the present invention aspirates the reagent container for storing the reagent of the present invention, the sample container for storing the test sample, the reagent stored in the reagent container and the test sample stored in the sample container. A suction means for suctioning the reagent housed in the reagent container and the test sample housed in the sample container via the tip of the suction means, and the middle of the suction pipe A first valve provided on the first valve, a liquid feed pump connected to the first valve via a liquid extrusion pipe, and a liquid mixing means connected to the first valve via a liquid feed pipe And a mass spectrometry system for heavy metal ion analysis, comprising a mass spectrometer connected downstream of the liquid mixing means.

本発明の試薬を用いると、イオン性官能基に起因する負電荷により、重金属イオンの電荷が減じられ、また、錯形成により生成される錯体がほぼ単一のピークとして観察されることから、フレームを用いない簡便な質量分析により、高感度に重金属イオンを測定することができる。特に、上記一般式[I]又は[II]で表される構造を有する試薬では、1分子中に、溶液中で陰イオンになるイオン性官能基が2個存在するので、Fe3+やCr3+のような3価の重金属イオンと結合すると全体として1価の陽イオンになり、飛行時間型質量分析により特に高感度に分析することができる。また、上記一般式[III] で表される構造を有する試薬では、ヨウ素イオンの存在下において、Hg2+, Cd2+及びPb2+等の2価の重金属イオンを特に高感度に質量分析できる。また、本発明により、上記本発明の試薬を用いる、高感度な重金属イオンの質量分析方法及び質量分析システムが提供された。 When the reagent of the present invention is used, the negative charge resulting from the ionic functional group reduces the charge of heavy metal ions, and the complex formed by complex formation is observed as a substantially single peak. Heavy metal ions can be measured with high sensitivity by simple mass spectrometry without using. In particular, in the reagent having the structure represented by the above general formula [I] or [II], there are two ionic functional groups that become anions in a solution in one molecule, so Fe 3+ and Cr When combined with a trivalent heavy metal ion such as 3+ , it becomes a monovalent cation as a whole and can be analyzed with high sensitivity by time-of-flight mass spectrometry. In addition, in the reagent having the structure represented by the above general formula [III], mass spectrometry of divalent heavy metal ions such as Hg 2+ , Cd 2+ and Pb 2+ in the presence of iodine ions is particularly sensitive. it can. The present invention also provides a highly sensitive heavy metal ion mass spectrometry method and mass spectrometry system using the reagent of the present invention.

上記のように、本発明の重金属イオン測定用質量分析試薬は、前記一般式[I]ないし[III]で表される構造を有するものである。これらのうち、前記一般式[I]又は[II]で表される構造を有する試薬は、Fe3+やCr3+のような3価の重金属イオンの質量分析に特に適した試薬であり、また、前記一般式[III]で表される構造を有する試薬のうち無置換のものは、Hg2+, Cd2+及びPb2+等の2価の重金属イオンの特に高感度な質量分析を可能にするものである。 As described above, the mass spectrometric reagent for heavy metal ion measurement of the present invention has a structure represented by the general formulas [I] to [III]. Among these, the reagent having the structure represented by the general formula [I] or [II] is a reagent particularly suitable for mass spectrometry of trivalent heavy metal ions such as Fe 3+ and Cr 3+ . Further, among the reagents having the structure represented by the general formula [III], an unsubstituted reagent can be used for particularly sensitive mass spectrometry of divalent heavy metal ions such as Hg 2+ , Cd 2+ and Pb 2+. It is what makes it possible.

前記一般式[I]及び[II]中、R1及びR2は互いに独立に溶液中、好ましくは水溶液中で陰イオン、好ましくは1価の陰イオンになるイオン性官能基であり、好ましい例として、カルボキシル基若しくはその塩、スルホン基若しくはその塩、又は水酸基若しくはその塩を挙げることができる。これらの中でも、特にカルボキシル基若しくはその塩が好ましい。これらの好ましいイオン性官能基、とりわけ、カルボキシル基若しくはその塩は、その陰イオンの電荷によって重金属イオンの電荷を、両者で合計2価減少させるのみならず、重金属イオンとの安定で選択的な錯形成にも寄与し、ひいては重金属イオンの高感度測定に寄与する。 In the general formulas [I] and [II], R 1 and R 2 are ionic functional groups that become anions, preferably monovalent anions, in a solution, preferably in an aqueous solution, independently from each other. As examples, a carboxyl group or a salt thereof, a sulfone group or a salt thereof, or a hydroxyl group or a salt thereof can be given. Among these, a carboxyl group or a salt thereof is particularly preferable. These preferred ionic functional groups, in particular carboxyl groups or salts thereof, not only reduce the charge of the heavy metal ion by a total of two valences due to the charge of the anion, but also a stable and selective complex with the heavy metal ion. It also contributes to the formation and, in turn, contributes to highly sensitive measurement of heavy metal ions.

前記一般式[I]中、R3及びR4は互いに独立に、水素原子、炭素数1から10(好ましくは炭素数1〜4)の直鎖型若しくは分枝型のアルキル基、アミノ基、ニトロ基又はハロゲンを示し、好ましくは水素原子である。 In the general formula [I], R 3 and R 4 are independently of each other a hydrogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms (preferably 1 to 4 carbon atoms), an amino group, A nitro group or halogen, preferably a hydrogen atom;

一般式[I]及び[II]中、A1及びA2は、互いに独立に存在していても存在していなくてもよく(存在しない場合は、R1及び/又はR2が窒素に直結する)、存在する場合には任意のスペーサー部である。本発明の試薬は、環の部分で重金属イオンと錯形成し、R1とR2によって錯体の電荷を3価から1価にするものであるから、環とR1又はR2の間に位置するA1及びA2は、任意の構造をとり得るものである。また、A1及びA2は、存在せず、カルボキシル基のような陰イオン性官能基が窒素原子に直結していてもよい。A1及びA2は好ましくは存在しないか、炭素数1ないし10(さらに好ましくは炭素数1〜4)の直鎖型若しくは分枝型アルキレン基、該アルキレン基の一部をアミノ基、ハロゲン、エーテル及び/若しくはカルボニル基に置換した置換アルキレン基、フェニレン基、又はフェニレン基の一部をアミノ基、ハロゲン及び/若しくはニトロ基に置換した置換フェニレン基が好ましい。なお、エーテルに置換したアルキレン基とは、アルキレン鎖中の炭素原子が-O-に置き換わったものを意味する。同様に、カルボニル基に置換したアルキレン基とは、アルキレン鎖中の炭素原子が-CO-に置き換わったものを意味する。また、上記置換アルキレン基又は置換フェニレン基中の置換基の数は、1個でも複数でもよい。これらの置換基のうち、炭素数1〜10、さらに好ましくは炭素数1〜4のアルキレン基が好ましい。 In the general formulas [I] and [II], A 1 and A 2 may be present independently of each other or may not be present (if they are not present, R 1 and / or R 2 is directly bonded to nitrogen. If present, it is an optional spacer portion. Since the reagent of the present invention is complexed with a heavy metal ion at the ring portion and the charge of the complex is changed from trivalent to monovalent by R 1 and R 2 , it is located between the ring and R 1 or R 2. A 1 and A 2 that can take an arbitrary structure. A 1 and A 2 do not exist, and an anionic functional group such as a carboxyl group may be directly bonded to a nitrogen atom. A 1 and A 2 are preferably absent, or a linear or branched alkylene group having 1 to 10 carbon atoms (more preferably 1 to 4 carbon atoms), a part of the alkylene group being an amino group, halogen, A substituted alkylene group substituted with an ether and / or carbonyl group, a phenylene group, or a substituted phenylene group in which a part of the phenylene group is substituted with an amino group, a halogen and / or a nitro group is preferable. The alkylene group substituted with ether means one in which a carbon atom in the alkylene chain is replaced with —O—. Similarly, an alkylene group substituted with a carbonyl group means one in which a carbon atom in the alkylene chain is replaced with —CO—. The number of substituents in the substituted alkylene group or substituted phenylene group may be one or more. Among these substituents, an alkylene group having 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms is preferable.

前記一般式[I]又は[II]で表される構造を有する本発明の試薬により測定可能な重金属イオンとしては、環部分と錯形成が可能な重金属イオンであれば特に限定されないが、3価の陽イオンが好ましい。近年、質量分析装置の検出器として飛行時間型質量分析計が汎用されている。飛行時間型質量分析計は重金属イオンのような多価イオンよりも1価のイオンを感度良く検出することが出来る。3価の陽イオンが、好ましいR1及びR2である1価の陰イオン性官能基を有する本発明の試薬と錯結合すると、重金属イオンの電荷が2価だけ減少し、生成する錯体の合計の電荷は1価となり、飛行時間型質量分析計により高感度に測定することができる。本発明の試薬を用いて測定される好ましい重金属イオンの例として、Fe3+及びCr3+から成る群より選ばれる少なくとも1種を例示することができる。なお、本明細書及び特許請求の範囲において、「測定」には検出(定性分析)と定量分析の両者が含まれる。 The heavy metal ion that can be measured by the reagent of the present invention having the structure represented by the general formula [I] or [II] is not particularly limited as long as it is a heavy metal ion that can form a complex with a ring portion, but trivalent. The cation is preferred. In recent years, time-of-flight mass spectrometers have been widely used as detectors for mass spectrometers. A time-of-flight mass spectrometer can detect monovalent ions with higher sensitivity than multivalent ions such as heavy metal ions. When the trivalent cation is complex-bonded with the reagent of the present invention having a monovalent anionic functional group, which is the preferred R 1 and R 2 , the charge of the heavy metal ion is reduced by two valences, and the total number of complexes formed The charge is monovalent and can be measured with high sensitivity by a time-of-flight mass spectrometer. Examples of preferable heavy metal ions measured using the reagent of the present invention include at least one selected from the group consisting of Fe 3+ and Cr 3+ . In the present specification and claims, “measurement” includes both detection (qualitative analysis) and quantitative analysis.

前記一般式[I]又は[II]で表される本発明の試薬は、R1、A及びR2の構造がそれぞれ公知であり、それらを結合することにより得ることができるので、有機合成の分野における常法に基づいて合成することができ、好ましい具体例が下記実施例に詳述されている。 In the reagent of the present invention represented by the general formula [I] or [II], the structures of R 1 , A and R 2 are known and can be obtained by combining them. It can be synthesized based on conventional methods in the field, and preferred specific examples are described in detail in the following examples.

前記一般式[I]又は[II]で表される本発明の試薬を用いて重金属イオンを測定する際には、先ず、重金属イオンを含む試料と混合して重金属イオンと試薬との錯体を生成させ、次に生成した錯体を質量分析にかける。本発明の試薬と重金属イオンとの反応は、1:1の化学量論量でよく進行するので、用いる試薬のモル濃度は、特に限定されないが、予想される重金属イオンのモル濃度と同程度でよい。従って、予想される重金属イオンのモル濃度の範囲の上限又はそれよりも少し高いモル濃度の試薬を用いればよい。あるいは、重金属イオン濃度が許容基準値以下であるか否かを調べる場合には、その基準値のモル濃度と同じか又はそれよりも少し高いモル濃度の試薬を用いることもできる。試薬と重金属の錯形成反応の温度は、特に限定されないが、室温でよく反応するので、室温で行なうことが簡便で好ましい。また、反応は速やかに起きるので、反応時間は、特に限定されず、通常、1秒〜30秒程度でよく、多くの場合、2秒〜3秒程度でよい。反応溶媒は、水又はメタノールやエタノールのような、水と任意の割合で混じり合う有機溶媒が好ましく、メタノールが最も好ましい。混合は、撹拌下に行なうことが好ましい。   When measuring heavy metal ions using the reagent of the present invention represented by the general formula [I] or [II], first, a complex of heavy metal ions and a reagent is formed by mixing with a sample containing heavy metal ions. The resulting complex is then subjected to mass spectrometry. Since the reaction between the reagent of the present invention and heavy metal ions proceeds well with a stoichiometric amount of 1: 1, the molar concentration of the reagent used is not particularly limited, but is about the same as the expected molar concentration of heavy metal ions. Good. Therefore, an upper limit of the expected molar concentration range of heavy metal ions or a slightly higher molar concentration reagent may be used. Alternatively, when examining whether or not the heavy metal ion concentration is less than or equal to the allowable reference value, a reagent having a molar concentration that is the same as or slightly higher than the molar concentration of the reference value can be used. The temperature of the complex formation reaction between the reagent and the heavy metal is not particularly limited, but since it reacts well at room temperature, it is convenient and preferable to carry out at room temperature. In addition, since the reaction takes place quickly, the reaction time is not particularly limited, and is usually about 1 to 30 seconds, and in many cases about 2 to 3 seconds. The reaction solvent is preferably water or an organic solvent mixed with water at an arbitrary ratio, such as methanol or ethanol, and most preferably methanol. The mixing is preferably performed with stirring.

一方、前記式[III]で表される化合物(無置換のもの)は、1,4,7,10-テトラアザドデカン(サイクレン)と呼ばれる公知の化合物であり、その製造方法も公知である(例えば文献Beilstein 26, 11, 24に記載)。サイクレンも、前記一般式[I]又は[II]で表される構造を有する試薬と同様にして用いることができる。また、本願発明者らは、サイクレンと、2価の重金属イオン(M2+)と、ヨウ素イオンが共存すると、M2+-I--サイクレンの1価錯体が形成され、質量分析においてほぼ単一のピークとして観察されるため、質量分析装置を用いて高感度の分析が可能になることを見出した。特に、M2+がHg2+場合に強く上記1価錯体が形成されるので、ヨウ素イオンの共存下においてHg2+を特に高感度に質量分析を行うことができる。 On the other hand, the compound represented by the formula [III] (unsubstituted one) is a known compound called 1,4,7,10-tetraazadodecane (cyclen), and its production method is also known ( For example, the document Beilstein 26, 11, 24). Cyclene can also be used in the same manner as the reagent having the structure represented by the general formula [I] or [II]. Moreover, the inventors have, and cyclen, divalent heavy metal ions (M 2+), the iodine ions coexist, M 2+ -I - - 1 monovalent complex of cyclen is formed, substantially single in mass spectrometry Since it was observed as a single peak, it was found that a highly sensitive analysis was possible using a mass spectrometer. In particular, when the M 2+ is Hg 2+ , the above monovalent complex is strongly formed, so that mass spectrometry of Hg 2+ can be performed with particularly high sensitivity in the presence of iodine ions.

ヨウ素イオンの存在下においてサイクレンを用いて重金属イオンを測定する際には、先ず、重金属イオンを含む試料と、ヨウ素イオン源、好ましくはヨウ素塩と、サクレンとを混合して重金属イオンとヨウ素イオンとサイクレンとの錯体を生成させ、次に生成した錯体を質量分析にかける。サイクレンと重金属イオンとヨウ素イオンとの反応は、モル比で1:1:1の化学量論量でよく進行するので、用いる試薬のモル濃度は、特に限定されないが、予想される重金属イオンのモル濃度と同程度でよい。従って、予想される重金属イオンのモル濃度の範囲の上限又はそれよりも少し高いモル濃度の試薬を用いればよい。あるいは、重金属イオン濃度が許容基準値以下であるか否かを調べる場合には、その基準値のモル濃度と同じか又はそれよりも少し高いモル濃度の試薬を用いることもできる。試薬と重金属の錯形成反応の温度は、特に限定されないが、室温でよく反応するので、室温で行なうことが簡便で好ましい。また、反応は速やかに起きるので、反応時間は、特に限定されず、通常、1秒〜30秒程度でよく、多くの場合、2秒〜3秒程度でよい。反応溶媒は、水又はメタノールやエタノールのような、水と任意の割合で混じり合う有機溶媒が好ましく、メタノールが最も好ましい。混合は、撹拌下に行なうことが好ましい。また、pHは中性〜塩基性領域(pH7.6〜12.3)が好ましい。   When measuring heavy metal ions using cyclen in the presence of iodine ions, first, a sample containing heavy metal ions, an iodine ion source, preferably iodine salt, and sacrene are mixed to obtain heavy metal ions and iodine ions. A complex with the cyclen is formed, and then the complex formed is subjected to mass spectrometry. The reaction between the cyclen, heavy metal ion and iodine ion proceeds well with a stoichiometric amount of 1: 1: 1 by molar ratio, so the molar concentration of the reagent used is not particularly limited, but the expected mole of heavy metal ion It may be about the same as the concentration. Therefore, an upper limit of the expected molar concentration range of heavy metal ions or a slightly higher molar concentration reagent may be used. Alternatively, when examining whether or not the heavy metal ion concentration is less than or equal to the allowable reference value, a reagent having a molar concentration that is the same as or slightly higher than the molar concentration of the reference value can be used. The temperature of the complex formation reaction between the reagent and the heavy metal is not particularly limited, but since it reacts well at room temperature, it is convenient and preferable to carry out at room temperature. In addition, since the reaction takes place quickly, the reaction time is not particularly limited, and is usually about 1 to 30 seconds, and in many cases about 2 to 3 seconds. The reaction solvent is preferably water or an organic solvent mixed with water at an arbitrary ratio, such as methanol or ethanol, and most preferably methanol. The mixing is preferably performed with stirring. The pH is preferably neutral to basic (pH 7.6 to 12.3).

なお、サイクレンを構成する炭素原子には、-A1-R1(A1及びR1の定義は一般式[I]と同じ)で表される置換基が、環を構成する各エチレン鎖当り1個以下の数だけ結合していてもよい。すなわち、置換基が存在する場合、環全体では置換基の数は1個ないし4個である。このような置換基が存在する場合、溶液中で1価の負イオンとなるイオン性官能基が存在するので、上記したヨウ素イオンは不要である。また、この場合、測定の対象となる重金属イオンの価数は、サイクレン誘導体と重金属イオンが錯結合した錯体全体の価数が1価となる価数(すなわち、置換基の数+1)が好ましい。なお、サイクレンにこのような置換基を導入することは、有機合成の常法により容易に行うことができる。 The carbon atom constituting the cyclene has a substituent represented by -A 1 -R 1 (the definitions of A 1 and R 1 are the same as those in the general formula [I]) per ethylene chain constituting the ring. One or less number may be bonded. That is, when a substituent exists, the number of substituents is 1 to 4 in the entire ring. When such a substituent is present, an ionic functional group that becomes a monovalent negative ion in the solution is present, and thus the above-described iodine ion is unnecessary. In this case, the valence of the heavy metal ion to be measured is preferably a valence (that is, the number of substituents + 1) so that the valence of the whole complex in which the cyclen derivative and the heavy metal ion are complex-bonded is monovalent. The introduction of such a substituent into the cyclen can be easily performed by a conventional method of organic synthesis.

前記式[I]ないし[III]で表される構造を有する試薬を用いて質量分析を行なう場合、錯形成反応後の試料は、そのまま質量分析にかけることができる。質量分析自体は、市販の質量分析器を用いた常法により行うことができる。質量分析法としては、公知の方法のいずれでもよいが、ESI-MSが好ましく、また、検出器は、飛行時間型質量分析計が好ましい。   When mass spectrometry is performed using a reagent having a structure represented by the formulas [I] to [III], the sample after the complex formation reaction can be directly subjected to mass spectrometry. Mass spectrometry itself can be performed by a conventional method using a commercially available mass analyzer. As the mass spectrometry, any known method may be used, but ESI-MS is preferable, and the detector is preferably a time-of-flight mass spectrometer.

用いる試薬の分子量は既知であり、重金属イオンの原子量も既知であるから、質量分析により錯体のm/zを測定することによって、その重金属イオンを同定し、測定することができる。また、下記実施例において具体的に示されるとおり、試料中に複数種類の重金属イオンが含まれる場合であっても、各重金属イオンの原子量が異なるから、異なる位置に複数観察されるm/zのピークから、各重金属イオンを分別的に測定することができる。   Since the molecular weight of the reagent to be used is known and the atomic weight of the heavy metal ion is also known, the heavy metal ion can be identified and measured by measuring m / z of the complex by mass spectrometry. In addition, as specifically shown in the following examples, even when multiple types of heavy metal ions are contained in the sample, since the atomic weight of each heavy metal ion is different, a plurality of m / z observed at different positions. Each heavy metal ion can be measured separately from the peak.

本発明の試薬を用いると、陰イオン性官能基R1及びR2によって、又はヨウ素イオンによって重金属イオンの電荷を相殺し、錯体の電荷を1価にすることができるので、飛行時間型質量分析計を用いて高感度に質量分析を行うことができる。また、一般式[I]又は[II]で表される構造を有する試薬を用いる場合、陰イオン性官能基R1及びR2として、上記した好ましい官能基を用いる場合には、陰イオン性官能基が、錯体形成にも寄与し、安定で選択的な(すなわち、1種類の重金属イオンについて1種類の錯体しか形成されない)錯体形成が達成される。このため、試料中の重金属イオンを正確に測定でき、また、1つの試料中に複数種類の重金属イオンが含まれる場合であっても、各重金属イオンを分別的に正確に測定することができる。 When the reagent of the present invention is used, the charge of the heavy metal ion can be offset by the anionic functional groups R 1 and R 2 or by the iodine ion, and the charge of the complex can be made monovalent. Mass spectrometry can be performed with high sensitivity using a meter. Further, when a reagent having a structure represented by the general formula [I] or [II] is used, when the above-described preferable functional groups are used as the anionic functional groups R 1 and R 2 , an anionic functional group is used. The group also contributes to complex formation, achieving stable and selective complex formation (ie, only one type of complex is formed for one type of heavy metal ion). For this reason, heavy metal ions in a sample can be accurately measured, and even when a plurality of types of heavy metal ions are contained in one sample, each heavy metal ion can be accurately and separately measured.

本発明はまた、上記本発明の試薬と、被検試料中の重金属イオンとを反応させ、生成物を質量分析することを含む、重金属イオンの質量分析方法を提供するものであり、これは上記の通りに実施することができる。   The present invention also provides a method for mass spectrometry of heavy metal ions, which comprises reacting the reagent of the present invention with heavy metal ions in a test sample and mass-analyzing the product. Can be implemented as follows.

本発明の質量分析方法は、上記本発明の試薬を用いて、汎用の質量分析装置を用いて手動で行なうことができるが、本発明はまた、上記本発明の試薬を用いた、自動化に適した重金属イオン分析用質量分析システムをも提供する。   The mass spectrometry method of the present invention can be performed manually using a general-purpose mass spectrometer using the reagent of the present invention, but the present invention is also suitable for automation using the reagent of the present invention. A mass spectrometry system for heavy metal ion analysis is also provided.

この質量分析用システムを、図18及び図19を参照して説明する。質量分析用システムは、試薬を収容する試薬容器10と、被検試料を収容する試料容器12、12’を含む。被検試料を収容する試料容器は、1個でも複数でもよく、複数ならば複数の被検試料を分析することができる。質量分析システムは、前記試薬容器に収容された試薬及び前記試料容器に収容された被検試料を吸引するための吸引手段14を具備する。吸引手段14は、例えばシリンジである。該吸引手段14には、吸引管16が接続され、吸引管16は、その先端部を介して前記試薬容器に収容された試薬及び前記試料容器に収容された被検試料を吸引する。吸引管16の先端部には、ニードルが取り付けられていてもよく、その場合には、容器の頂部をフィルムで被覆した試料容器や試薬容器のフィルムをニードルで突き刺して内部の液体を吸引することができる。吸引管16の途中には第1のバルブ18が設けられている。該第1のバルブ18には、液押出用管20を介して送液ポンプ22が接続されている。第1のバルブ18には、送液管24を介して液混合手段26が接続されている。液混合手段26は、試料液と試薬液とを混合することができる手段であれば何ら限定されるものではなく、例えば、簡便で好ましい例としてミキシングカラムを挙げることができる。ミキシングカラムは、カラムの内部にガラスビーズを充填したものであり、2液がこの中を通る間に2液の混合が起きる。液混合手段26の下流には、質量分析計が接続され、これは汎用のものであってよい。さらに、図18及び図19に示す好ましい具体例では、液押出用管20の途中であって、前記送液ポンプ22と前記第1のバルブ18の間に第2のバルブ28が設けられ、一方、前記吸入管16の途中であって、前記吸入手段14と前記第1のバルブ18の間に第3のバルブ30が設けられ、これらの間が第2の液押出用管32で接続されている。   This mass spectrometry system will be described with reference to FIGS. The system for mass spectrometry includes a reagent container 10 for storing a reagent and sample containers 12 and 12 'for storing a test sample. There may be one or a plurality of sample containers for storing the test samples. If there are a plurality of sample containers, a plurality of test samples can be analyzed. The mass spectrometric system includes suction means 14 for sucking the reagent contained in the reagent container and the test sample contained in the sample container. The suction means 14 is, for example, a syringe. A suction tube 16 is connected to the suction means 14, and the suction tube 16 sucks the reagent stored in the reagent container and the test sample stored in the sample container through its tip. A needle may be attached to the distal end portion of the suction tube 16, and in that case, a sample container or a reagent container film in which the top of the container is covered with a film is pierced with the needle to suck the liquid inside. Can do. A first valve 18 is provided in the middle of the suction pipe 16. A liquid feed pump 22 is connected to the first valve 18 via a liquid extrusion pipe 20. A liquid mixing means 26 is connected to the first valve 18 via a liquid feed pipe 24. The liquid mixing unit 26 is not limited as long as it is a unit that can mix the sample solution and the reagent solution. For example, a simple and preferable example can be a mixing column. The mixing column is a column in which glass beads are packed inside, and mixing of the two liquids occurs while the two liquids pass through them. A mass spectrometer is connected downstream of the liquid mixing means 26, which may be general purpose. Further, in a preferred specific example shown in FIGS. 18 and 19, a second valve 28 is provided in the middle of the liquid extruding pipe 20 between the liquid feed pump 22 and the first valve 18, In the middle of the suction pipe 16, a third valve 30 is provided between the suction means 14 and the first valve 18, and these are connected by a second liquid extrusion pipe 32. Yes.

操作にあたっては、先ず、吸引手段14を作動させて試薬容器10から本発明の試薬液を吸引する。この時、第1のバルブ18及び第3のバルブ30は、吸引手段14によって液が吸引される側に設定されている。送液ポンプ22は停止している。次に、この状態で、吸引管16の先端部(ニードルが取り付けられている場合にはニードル)を移動させ、試料容器12又は12’から被検試料液を吸引する。吸引時の流体の流れが黒塗りの三角形で図19に示されている。   In operation, first, the aspirating means 14 is operated to aspirate the reagent solution of the present invention from the reagent container 10. At this time, the first valve 18 and the third valve 30 are set on the side where the liquid is sucked by the suction means 14. The liquid feed pump 22 is stopped. Next, in this state, the tip of the suction tube 16 (or a needle if a needle is attached) is moved to suck the sample liquid from the sample container 12 or 12 '. The fluid flow during suction is shown in FIG. 19 as a black triangle.

吸引した試薬液及び被検試料液を質量分析計に押出す際には、吸引手段14を停止すると共に送液ポンプ22を作動させ、溶媒を送り出す。溶媒としては、反応溶媒と同様、水又はメタノールやエタノールのような、水と任意の割合で混じり合う有機溶媒が好ましく、メタノールが最も好ましい。また、第1、第2及び第3のバルブを、図19に黒三角で示す向きに流体が移動するよう切り替える。そうすると、吸引管16の途中にあった試薬液及び被検試料液は、図19の黒三角で示すように、液混合手段を介して質量分析計に送られる。上記の通り、液混合手段を通過する際に試薬液と被検試料液が混合される。試薬液と被検試料液が混合されると、上記した結合反応が起き、結合生成物が上記の通り、質量分析に付される。   When extruding the aspirated reagent liquid and test sample liquid into the mass spectrometer, the aspirating means 14 is stopped and the liquid feed pump 22 is operated to send out the solvent. As the solvent, like the reaction solvent, water or an organic solvent mixed with water at an arbitrary ratio such as methanol or ethanol is preferable, and methanol is most preferable. Further, the first, second and third valves are switched so that the fluid moves in the direction indicated by the black triangle in FIG. Then, the reagent solution and the test sample solution that are in the middle of the suction tube 16 are sent to the mass spectrometer through the liquid mixing means, as shown by the black triangles in FIG. As described above, the reagent solution and the test sample solution are mixed when passing through the liquid mixing means. When the reagent solution and the test sample solution are mixed, the above-described binding reaction occurs, and the binding product is subjected to mass spectrometry as described above.

実施例
以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the following examples.

KHM-7の合成
下記のスキームに従い、下記式[IV]で表される構造を有する、本発明の試薬であるKHM-7を合成した。
Synthesis of KHM-7 KHM-7, which is a reagent of the present invention, having a structure represented by the following formula [IV] was synthesized according to the following scheme.

Figure 2006308474
Figure 2006308474

合成スキーム Synthesis scheme

Figure 2006308474
Figure 2006308474

(1) 1,8-ビス (エトキシカルボニルメチル)-4,11-ジメチル -1,4,8,11-テトラアザシクロテトラデカン(7)の合成
Ar置換した200 ml三口ナスフラスコに、1,8-ジメチル -1,4,8,11-テトラアザシクロテトラデカン(6) (1 g, 4.4 mmol, 1 eq.) を入れ、アセトニトリル (80 ml) を加えた。ブロモ-酢酸エチルエステル (1.45 ml, 8.8 mmol, 2eq.) 、炭酸カリウム (1.85 g, 13.0 mmol, 3 eq.) を加えて18時間還流した。H2Oを加えて反応を停止させた後、溶媒を減圧留去した。得られた固体をエチルクロロホルムに溶解し、H2Oで洗浄した後、有機層を芒硝乾燥した。溶媒を減圧留去し、カラムクロマトグラフィー (Al2O3 クロロホルム:メタノール= 10:1 v / v) によって精製を行い、茶色オイル状化合物 ( 化合物7 ; 378.8 mg, 21.6 %) を得た。
(1) Synthesis of 1,8-bis (ethoxycarbonylmethyl) -4,11-dimethyl-1,4,8,11-tetraazacyclotetradecane (7)
Into an Ar-substituted 200 ml three-necked eggplant flask, put 1,8-dimethyl-1,4,8,11-tetraazacyclotetradecane (6) (1 g, 4.4 mmol, 1 eq.) And acetonitrile (80 ml) Was added. Bromo-acetic acid ethyl ester (1.45 ml, 8.8 mmol, 2 eq.) And potassium carbonate (1.85 g, 13.0 mmol, 3 eq.) Were added, and the mixture was refluxed for 18 hours. After the reaction was stopped by adding H 2 O, the solvent was distilled off under reduced pressure. The obtained solid was dissolved in ethyl chloroform and washed with H 2 O, and then the organic layer was dried with sodium sulfate. The solvent was distilled off under reduced pressure, and purification was performed by column chromatography (Al 2 O 3 chloroform: methanol = 10: 1 v / v) to obtain a brown oily compound (Compound 7; 378.8 mg, 21.6%).

TLC (Al2O3); Rf = 0.4 (chloroform:methanol = 10:1 v/v)
ESI-TOFMS (+)
[M + 2H]2+ = 201.2
1H-NMR (300 MHz, CD3Cl, TMS, r.t., δ/ppm), 1.27 (t, J = 7.1 Hz, 6H, -CH3), 1.64 (m, 4H, -CH2-), 2.21 (s, 6H, -CH3), 2.44 (m, 8H, -CH2-),2.74 (m, 8H, -CH2-), 3.37 (s, 4H, -CH2-), 4.15 (m, J = 8.7 Hz, 4H, -CH2-)
TLC (Al 2 O 3 ); R f = 0.4 (chloroform: methanol = 10: 1 v / v)
ESI-TOFMS (+)
[M + 2H] 2+ = 201.2
1 H-NMR (300 MHz, CD 3 Cl, TMS, rt, δ / ppm), 1.27 (t, J = 7.1 Hz, 6H, -CH 3 ), 1.64 (m, 4H, -CH 2- ), 2.21 (s, 6H, -CH 3 ), 2.44 (m, 8H, -CH 2- ), 2.74 (m, 8H, -CH 2- ), 3.37 (s, 4H, -CH 2- ), 4.15 (m, J = 8.7 Hz, 4H, -CH 2- )

(2) 4,11-ジメチル-1,4,8,11-テトラアザシクロテトラデカン-1,8-ジ酢酸(KHM-7)の合成
30 ml二口ナスフラスコに、化合物7(36.3 mg, 0.075 mmol) を入れ、エタノール (10 ml) 、10wt%aq. NaOH (1ml) を加えて3時間還流した。H2Oを加えて反応を停止させた後、大部分の溶媒を減圧留去した。1M HCl (3ml) を加えてpHを5に調整した後、溶媒を減圧留去した。エタノールを加えて、析出した沈殿を濾別した後、濾液を減圧濃縮し、白色結晶状化合物(化合物KHM-7 ; 30.1mg, 96.5 %) を得た。
(2) Synthesis of 4,11-dimethyl-1,4,8,11-tetraazacyclotetradecane-1,8-diacetic acid (KHM-7)
Compound 7 (36.3 mg, 0.075 mmol) was placed in a 30 ml two-necked eggplant flask, ethanol (10 ml) and 10 wt% aq. NaOH (1 ml) were added, and the mixture was refluxed for 3 hours. After the reaction was stopped by adding H 2 O, most of the solvent was distilled off under reduced pressure. 1M HCl (3 ml) was added to adjust the pH to 5, and then the solvent was distilled off under reduced pressure. Ethanol was added and the deposited precipitate was filtered off, and then the filtrate was concentrated under reduced pressure to obtain a white crystalline compound (compound KHM-7; 30.1 mg, 96.5%).

ESI-TOFMS (+)
[M + H]+ = 345.5
1H-NMR (300 MHz, CD3OD, TMS, r.t., δ/ppm), 1.49 (m, 4H, -CH2-), 2.27 (s, 6H, -CH3), 2.36 (m, 8H, -CH2-), 2.46 (m, 8H, -CH2-), 3.30 (s, 4H, -CH2-)
ESI-TOFMS (+)
[M + H] + = 345.5
1 H-NMR (300 MHz, CD 3 OD, TMS, rt, δ / ppm), 1.49 (m, 4H, -CH 2- ), 2.27 (s, 6H, -CH 3 ), 2.36 (m, 8H, -CH 2- ), 2.46 (m, 8H, -CH 2- ), 3.30 (s, 4H, -CH 2- )

KHM-9の合成
下記のスキームに従い、下記式[V]で表される構造を有する、本発明の試薬であるKHM-9を合成した。
Synthesis of KHM-9 According to the following scheme, KHM-9 which is a reagent of the present invention having a structure represented by the following formula [V] was synthesized.

Figure 2006308474
Figure 2006308474

合成スキーム Synthesis scheme

Figure 2006308474
Figure 2006308474

(1) 1,7-ビス(エトキシカルボニルメチル)-4,10,13-トリオキサ -1,7-ジアザシクロペンタデカン(9)の合成
Ar置換した200 ml三口ナスフラスコに、1,4,10-トリオキサ -7,13-ジアザシクロペンタデカン 8 (0.5 g, 2.3 mmol, 1 eq.) を入れ、アセトニトリル (50 ml) を加えた。ブロモ-酢酸エチルエステル (0.78 ml, 4.6 mmol, 2eq.) 、炭酸カリウム (0.97 g, 6.9 mmol, 3 eq.) を加えて18時間還流した。H2Oを加えて反応を停止させた後、溶媒を減圧留去した。得られた固体をクロロホルムに溶解し、H2Oで洗浄した後、有機層を芒硝乾燥した。溶媒を減圧留去し、カラムクロマトグラフィー (Al2O3 クロロホルム:メタノール=10:1 v/v) によって精製を行い、茶色オイル状化合物 (化合物9 ; 0.912 g, 70.1 %) を得た。
(1) Synthesis of 1,7-bis (ethoxycarbonylmethyl) -4,10,13-trioxa-1,7-diazacyclopentadecane (9)
To a 200 ml three-necked eggplant flask substituted with Ar, 1,4,10-trioxa-7,13-diazacyclopentadecane 8 (0.5 g, 2.3 mmol, 1 eq.) Was added, and acetonitrile (50 ml) was added. Bromo-acetic acid ethyl ester (0.78 ml, 4.6 mmol, 2 eq.) And potassium carbonate (0.97 g, 6.9 mmol, 3 eq.) Were added and refluxed for 18 hours. After the reaction was stopped by adding H 2 O, the solvent was distilled off under reduced pressure. The obtained solid was dissolved in chloroform and washed with H 2 O, and then the organic layer was dried with sodium sulfate. The solvent was distilled off under reduced pressure, and purification was performed by column chromatography (Al 2 O 3 chloroform: methanol = 10: 1 v / v) to obtain a brown oily compound (Compound 9; 0.912 g, 70.1%).

TLC (Al2O3); Rf = 0.3 (クロロホルム:メタノール= 10:1 v/v)。
ESI-TOFMS(+)
[M + H]+ = 391.5
1H-NMR (300 MHz, CD3Cl, TMS, r.t., δ/ppm), 1.27 (t, J = 7.1 Hz, 6H, -CH3), 2.95 (m, 8H, -CH2-), 3.48 (s, 4H, -CH2-), 3.60 (m, 12H, -CH2-), 4.14 (q, J = 7.2, 4H, -CH2-)
TLC (Al 2 O 3 ); Rf = 0.3 (chloroform: methanol = 10: 1 v / v).
ESI-TOFMS (+)
[M + H] + = 391.5
1 H-NMR (300 MHz, CD 3 Cl, TMS, rt, δ / ppm), 1.27 (t, J = 7.1 Hz, 6H, -CH 3 ), 2.95 (m, 8H, -CH 2- ), 3.48 (s, 4H, -CH 2- ), 3.60 (m, 12H, -CH 2- ), 4.14 (q, J = 7.2, 4H, -CH 2- )

(2) 4,10,13-トリオキサ-1,7-ジアザシクロペンタデカン-1,8-ジ酢酸(KHM-9)の合成
30 ml二口ナスフラスコに、化合物9 (600.0 mg, 1.54 mmol) を入れ、エタノール (40 ml) 、10wt% NaOH水溶液 (5ml) を加えて3時間還流した。H2Oを加えて反応を停止させた後、大部分の溶媒を減圧留去した。1M HCl (7ml) を加えてpHを5に調整した後、溶媒を減圧留去した。エタノールを加えて、析出した沈殿を濾別した後、濾液を減圧濃縮し、白色結晶状化合物( 化合物KHM-9 ; 476.9 g, 92.8 %) を得た。
(2) Synthesis of 4,10,13-trioxa-1,7-diazacyclopentadecane-1,8-diacetic acid (KHM-9)
Compound 9 (600.0 mg, 1.54 mmol) was placed in a 30 ml two-necked eggplant flask, ethanol (40 ml) and 10 wt% NaOH aqueous solution (5 ml) were added, and the mixture was refluxed for 3 hours. After the reaction was stopped by adding H 2 O, most of the solvent was distilled off under reduced pressure. 1M HCl (7 ml) was added to adjust the pH to 5, and then the solvent was distilled off under reduced pressure. Ethanol was added and the deposited precipitate was filtered off. The filtrate was concentrated under reduced pressure to obtain a white crystalline compound (Compound KHM-9; 476.9 g, 92.8%).

ESI-TOFMS(+)
[M + H]+ = 335.4
1H-NMR (300 MHz, CD3OD, TMS, r.t., δ/ppm),
2.58 (m, 8H, -CH2-), 3.31 (s, 4H, -CH2-), 3.56 (m, 12H, -CH2-)
ESI-TOFMS (+)
[M + H] + = 335.4
1 H-NMR (300 MHz, CD 3 OD, TMS, rt, δ / ppm),
2.58 (m, 8H, -CH 2- ), 3.31 (s, 4H, -CH 2- ), 3.56 (m, 12H, -CH 2- )

実施例1で合成したKHM-7を用いて以下の通りCr3+イオンを質量分析した。 Using KHM-7 synthesized in Example 1, Cr 3+ ions were subjected to mass spectrometry as follows.

(1) 質量分析装置の測定条件
装置の構成を図1に示す。シリンジポンプを用いて、10.0μL/分の流速で、常時移動溶媒(MeOH)を流す。試料溶液は、マイクロシリンジを用いて、インジェクターから20μL導入する。試料溶液は移動溶媒の流れに沿って、質量分析計に向かう。質量分析計の設定条件は、以下の通りである。
機種:Applied Biosystems社製Mariner
イオン化法:エレクトロスプレーイオン化法
検出法:飛行時間型検出法
移動溶媒:メタノール
スプレー先端電位(Spray tip potential):3500 V
ノズル電位(Nozzle potential):90 V
検出器電圧:2280 V
Quad RF電圧:700 V
気化ガス流速(Flow rate of Nebulizer gas) (N2):0.25 L/分
補助ガス流速(Flow rate of Auxiliary gas) (N2):1.0 L/分
対向流温度(Temperature of the counter stream):160℃
(1) Measurement conditions of mass spectrometer Fig. 1 shows the configuration of the apparatus. Using a syringe pump, the mobile solvent (MeOH) is constantly flowed at a flow rate of 10.0 μL / min. 20 μL of the sample solution is introduced from the injector using a microsyringe. The sample solution is directed to the mass spectrometer along the flow of the mobile solvent. The setting conditions of the mass spectrometer are as follows.
Model: Mariner manufactured by Applied Biosystems
Ionization method: Electrospray ionization detection method: Time-of-flight detection method Mobile solvent: Methanol spray tip potential: 3500 V
Nozzle potential: 90 V
Detector voltage: 2280 V
Quad RF voltage: 700 V
Flow rate of Nebulizer gas (N 2 ): 0.25 L / min Flow rate of Auxiliary gas (N 2 ): 1.0 L / min Temperature of the counter stream: 160 ℃

(2) 操作方法
スクリュー管に、4.0 × 10-5MのCr(NO3)3・9H2O及び4.0 × 10-5MのKHM-7を加え(溶媒はメタノール)、室温で10秒間撹拌した後、質量分析装置で上記の測定条件で測定を行った。
(2) Operation method Add 4.0 × 10 -5 M Cr (NO 3 ) 3 · 9H 2 O and 4.0 × 10 -5 M KHM-7 to the screw tube (solvent is methanol) and stir at room temperature for 10 seconds. After that, measurement was performed with a mass spectrometer under the above measurement conditions.

一方、比較のため、本願発明者らが先に開発した、下記の構造を有するKMH-1を用いて同様に質量分析を行い、KHM-7を用いた場合と比較した。   On the other hand, for comparison, mass spectrometry was performed in the same manner using KMH-1 having the following structure, which was previously developed by the present inventors, and compared with the case where KHM-7 was used.

Figure 2006308474
Figure 2006308474

KMH-1及びKHM-7を用いて行なった質量分析の結果をそれぞれ図2及び図3に示す。図2及び図3に示されるように、KMH-1を加えた場合は、Cr3+錯体に由来するピークは観測されなかったが、KHM-7を加えた場合は、Cr3+錯体のピークがメインピークとして観測された。 The results of mass spectrometry performed using KMH-1 and KHM-7 are shown in FIGS. 2 and 3, respectively. As shown in FIGS. 2 and 3, when KMH-1 was added, no peak derived from the Cr 3+ complex was observed, but when KHM-7 was added, the peak of the Cr 3+ complex was observed. Was observed as the main peak.

KHM-7に代えて、実施例2で合成したKHM-9を用い、被検試料としてFeCl3・6H2Oを用いたことを除き、実施例3と同様な操作を行なった。KMH-1との比較も同様に行なった。 The same operation as in Example 3 was performed except that KHM-9 synthesized in Example 2 was used instead of KHM-7 and FeCl 3 .6H 2 O was used as a test sample. Comparison with KMH-1 was performed in the same manner.

KMH-1及びKHM-9を用いて行なった質量分析の結果をそれぞれ図4及び図5に示す。図4及び図5に示されるように、KMH-1を加えた場合は、Fe3+錯体に由来するピークは観測されなかったが、KHM-7を加えた場合は、Fe3+錯体のピークがメインピークとして観測された。 The results of mass spectrometry performed using KMH-1 and KHM-9 are shown in FIGS. 4 and 5, respectively. As shown in FIG. 4 and FIG. 5, when KMH-1 was added, no peak derived from the Fe 3+ complex was observed, but when KHM-7 was added, the peak of the Fe 3+ complex was observed. Was observed as the main peak.

サイクレンを用いた2価重金属イオンの測定
サイクレンは、Beilstein 26, 11, 24に記載の方法により調製した。サイクレンの1.0 x 10-5 Mの特級メタノール溶液に、1.0 x 10-5 Mの2価重金属イオン(Hg2+,Zn2+, Ni2+, Cu2+, Cd2+, Pb2+)塩を添加して質量分析を行った結果を図6〜図11に示す。全ての場合において、サイクレンと重金属イオンの1:1錯体構造に由来するピークを高感度に検出することができた。これは、サイクレンの4つの窒素原子が重金属イオンに配位している(4配位)ので、1:1の錯形成定数が高い一方、2:1の錯体は形成が難しいためと考えられる。
Measurement of Bivalent Heavy Metal Ion Using Cyclen Cyclen was prepared by the method described in Beilstein 26, 11, 24. The grade methanol 1.0 x 10 -5 M of cyclen, divalent heavy metal ions 1.0 x 10 -5 M (Hg 2+ , Zn 2+, Ni 2+, Cu 2+, Cd 2+, Pb 2+) The results of mass spectrometry with the addition of salt are shown in FIGS. In all cases, peaks derived from the 1: 1 complex structure of cyclen and heavy metal ions could be detected with high sensitivity. This is probably because the four nitrogen atoms of the cyclene are coordinated to the heavy metal ion (four-coordinate), so that the complex formation constant of 1: 1 is high, while the 2: 1 complex is difficult to form.

KMH-1とサイクレンの比較
2価重金属イオン(Hg2+,Zn2+, Ni2+, Cu2+, Cd2+, Pb2+)の各々が先行研究で創製されたMSプローブとサイクレンどちらの試薬とより配位しやすいか比較するためKMH-1とサイクレンと2価重金属イオン(Hg2+,Zn2+, Ni2+, Cu2+, Cd2+, Pb2+)を1:1:1の割合で加え、どちらの試薬と金属錯体ピークが得られるか測定した。この実験結果を下記表1にまとめた。これより、Hg2+,Cd2+, Pb2+はサイクレン、Zn2+, Ni2+, Cu2+はKMH-1と配位しやすいことがわかった。本研究では水銀に重点をおいているので、水銀について見てみると、サイクレンの方が圧倒的に配位しやすかったため、検出下限の改善が期待される。
Comparison between KMH-1 and cyclen
Each of the divalent heavy metal ions (Hg 2+ , Zn 2+ , Ni 2+ , Cu 2+ , Cd 2+ , Pb 2+ ) is coordinated by either the MS probe or the cyclone reagent created in the previous study. To compare easily, KMH-1, cyclen, and divalent heavy metal ions (Hg 2+ , Zn 2+ , Ni 2+ , Cu 2+ , Cd 2+ , Pb 2+ ) were added at a ratio of 1: 1: 1. It was measured which reagent and metal complex peak were obtained. The results of this experiment are summarized in Table 1 below. From these results, it was found that Hg 2+ , Cd 2+ , and Pb 2+ are easily coordinated with cyclen, and Zn 2+ , Ni 2+ , and Cu 2+ are easily coordinated with KMH-1. In this study, we focus on mercury, so when we look at mercury, cyclen is overwhelmingly easier to coordinate, so an improvement in the detection limit is expected.

Figure 2006308474
Figure 2006308474

サイクレンを用いた測定条件の最適化
水銀において最も効果のあったサイクレンを用いて、測定条件を変えた場合の質量スペクトルのピーク強度比較を行った。なお、内部標準物質に下記式に示す構造を有するヨウ化ベンジルトリエチルアンモニウムを用いた。これは、後のカウンターアニオンの実験で水銀の錯体とI-が配位しやすいことがわかったため、アニオンにI-の含まれている物質を用いた。
Optimization of measurement conditions using cyclen The peak intensities of mass spectra when the measurement conditions were changed were compared using the most effective cyclen in mercury. In addition, benzyltriethylammonium iodide having a structure represented by the following formula was used as an internal standard substance. Since it was found that the mercury complex and I were easily coordinated in the later counter anion experiment, a substance containing I − in the anion was used.

Figure 2006308474
Figure 2006308474

溶媒による強度変化
上記の測定はすべて溶媒に特級メタノールを用いて行った。他の有機溶媒、特級エタノール、特級アセトニトリル、さらに実用化に向けて水を用いた場合の測定を行った。この際、100 %特級メタノール、特級エタノール、特級アセトニトリル、水、特級メタノール:水=1:1, 特級エタノール:水=1:1, 特級アセトニトリル:水=1:1, 特級メタノール:水=1:9, 特級エタノール:水=1:9, 特級アセトニトリル:水=1:9で測定を行った。100 %有機溶媒を用いた場合はほぼ同じ結果が得られたが、水を加えると強度が1/20位に下がってしまった。
Change in strength by solvent All the above measurements were performed using special grade methanol as the solvent. Measurements were made using other organic solvents, special grade ethanol, special grade acetonitrile, and water for practical use. At this time, 100% special grade methanol, special grade ethanol, special grade acetonitrile, water, special grade methanol: water = 1: 1, special grade ethanol: water = 1: 1, special grade acetonitrile: water = 1: 1, special grade methanol: water = 1: 9. Special ethanol: water = 1: 9, special acetonitrile: water = 1: 9. When 100% organic solvent was used, almost the same result was obtained. However, when water was added, the strength decreased to 1/20.

カウンターイオンによる強度変化
サイクレンと水銀の測定において、錯体ピークには水が付加している。また、実際の測定においてはたくさんのイオンが水中に含まれている。そこで、カウンターイオンの影響を調べた。
Intensity change due to counter ion In the measurement of cyclen and mercury, water is added to the complex peak. In actual measurement, many ions are contained in water. Therefore, the influence of counter ions was investigated.

サイクレンと水銀、カドミウム、鉛とカウンターイオンの影響を調べるための試薬、KBr, KI, KClO4, KSCNを各々1:1:1、さらにこれらすべての試薬を同モル加えたものを測定した。 Reagents for investigating the effects of cyclen and mercury, cadmium, lead and counter ions, KBr, KI, KClO 4 and KSCN were each 1: 1: 1, and all these reagents were added in the same molar amount.

KClO4ではカウンターイオンによる影響はみられず、この試薬を加えない時と同じ金属錯体ピーク[M+Hg+2H2O-H]+が見られた。KSCNでは、カウンターイオンが配位した[M+Hg+SCN]+がメインに見られた。KBrでは、カウンターイオンが配位した[M+Hg+Br]+が見られた。KIでは、カウンターイオンが配位した[M+Hg+I]+が見られた。これらすべてを加えた時、[M+Hg+I]+がメインに見られた。実験結果からカウンターイオンが配位したピークのできやすい順位はI- > Br- > SCN-であった。これはカウンターイオンのサイズや金属−カウンターイオン結合エネルギーによる。 KClO 4 was not affected by counter ions, and the same metal complex peak [M + Hg + 2H 2 OH] + was observed when this reagent was not added. In KSCN, [M + Hg + SCN] + coordinated with the counter ion was mainly observed. In KBr, [M + Hg + Br] + coordinated with a counter ion was observed. In KI, [M + Hg + I] + coordinated by a counter ion was observed. When all of these were added, [M + Hg + I] + was seen in the main. It can easily rank the peak counter ion coordinated from the experimental results I -> Br -> SCN - was. This depends on the size of the counter ion and the metal-counter ion binding energy.

カウンターイオンのサイズに関して、炭素−酸素、塩素−酸素分子結合鎖の多原子は水銀とサイクレンの結合の穴の相互作用の最適化を隠すため、ハロゲン> > ClO4 -となる。ハロゲンにおいて、大きいカウンターイオンは低電荷密度なのでI- > Br-となる。結合定数を下記表2に示す。結合定数は
Hg2+(aq) + X-(aq) ⇔ HgX+(aq)
ここで、X-はカウンターイオンである。
カドミウム、鉛に関してはどの試薬を加えてもピーク変化は起こらなかった。
With respect to the size of the counter ion, carbon - oxygen, chlorine - polyatomic molecular oxygen bonds chains to hide the optimization of the interaction of the holes of the binding of mercury and cyclen, halogen>> ClO 4 - and becomes. In halogen, since large counter ions have low charge density, I > Br . The binding constants are shown in Table 2 below. The coupling constant is
Hg 2+ (aq) + X - (aq) ⇔ HgX + (aq)
Where X is a counter ion.
For cadmium and lead, no change in peak occurred with any reagent.

Figure 2006308474
Figure 2006308474

溶液pHによる強度変化
図12に、溶媒に用いたメタノール中のpHを変化させた時のグラフを示した。緩衝液を用いると錯体を形成してしまう可能性があるので、HCl, NaOHを用いてpHを調整した。また、カウンターイオンの実験の結果より、I-が水銀の錯体に配位しやすいことがわかったので、I-を加えて水銀の錯体形成ピークに付加させた。なお、縦軸は内部標準物質と錯体との相対強度を示す。
FIG. 12 shows a graph when the pH in methanol used as a solvent is changed. Since there is a possibility that a complex is formed when a buffer solution is used, the pH was adjusted using HCl and NaOH. Further, from the results of experiments counterion, I - because it was found to be susceptible coordinated to the complex of mercury, I - was obtained by adding the complexing peak of mercury added. The vertical axis represents the relative strength between the internal standard substance and the complex.

図12からわかるように、中性〜塩基性領域(pH7.6〜12.3)において最適の感度が得られることがわかった。弱酸性領域では、[サイクレン+H]+のピークが見られるので、酸性条件下では、プロトンが水銀との錯体形成を阻止していると思われる。また、HClで酸性にしてからNaOHで中性にしても同じ応答が見られたので可逆反応であることが言える。 As can be seen from FIG. 12, it was found that optimum sensitivity was obtained in the neutral to basic region (pH 7.6 to 12.3). In the weakly acidic region, the peak of [cyclene + H] + is seen, so it seems that protons prevent the complex formation with mercury under acidic conditions. Moreover, it can be said that it is a reversible reaction because the same response was seen even when acidified with HCl and then neutralized with NaOH.

重金属イオン濃度の定量
以上の結果から、KMH-1に比べ、サイクレンは、水銀、カドミウム、鉛を高感度に検出できることが分かった。そこで滴定実験より重金属イオン濃度とピーク強度の相関を明らかにし、検出下限値を求めた。また、カウンターイオンの実験の結果より、I-が水銀の錯体に配位しやすいことがわかったので、I-を添加して水銀の錯体形成ピークに付加させた。なお、縦軸は内部標準物質と錯体との相対強度、横軸は重金属イオンの濃度に注入した体積の20μlをかけたmolとして表した。
Quantification of heavy metal ion concentration From the above results, it was found that cyclen can detect mercury, cadmium and lead with higher sensitivity than KMH-1. Therefore, the correlation between heavy metal ion concentration and peak intensity was clarified by titration experiments, and the lower limit of detection was determined. Further, from the results of experiments counterion, I - because it was found to be susceptible coordinated to the complex of mercury, I - was added to the complexation peaks of mercury added. The vertical axis represents the relative intensity between the internal standard substance and the complex, and the horizontal axis represents mol obtained by multiplying the concentration of heavy metal ions by 20 μl of the injected volume.

Hg2+の滴定実験
サイクレンの濃度は1.0×10-5M、KIの濃度は2.0×10-5M、内部標準物質の濃度は1.5×10-7Mで一定にして、Hg2+を7.0×10-8M〜2.0×10-5Mまでの濃度範囲で測定を行った結果を図13に示す。測定結果より、7.0×10-7M〜2.0×10-5Mの濃度範囲において良好な直線関係が得られた。
Hg 2+ titration experiment The concentration of cyclen was 1.0 × 10 −5 M, the concentration of KI was 2.0 × 10 −5 M, the concentration of internal standard was 1.5 × 10 −7 M, and Hg 2+ was 7.0 FIG. 13 shows the results of measurement in the concentration range from × 10 −8 M to 2.0 × 10 −5 M. From the measurement results, a good linear relationship was obtained in the concentration range of 7.0 × 10 −7 M to 2.0 × 10 −5 M.

Cd2+の滴定実験
サイクレンの濃度は1.0×10-5M、内部標準物質の濃度は1.5×10-7Mで一定にして、Cd2+を7.0×10-7M〜2.0×10-5Mまでの濃度範囲で測定を行った結果を図14に示す。測定結果より、4.0×10-6M〜1.0×10-5Mの濃度範囲において良好な直線関係が得られた。2.0×10-5Mで相対強度がほぼ同じ値をとったのは、サイクレンと等濃度の1.0×10-5Mにおいて錯体が既に飽和したためだと考えられる。
Cd 2+ titration experiment The concentration of cyclen is 1.0 × 10 −5 M, the concentration of internal standard is constant at 1.5 × 10 −7 M, and Cd 2+ is 7.0 × 10 −7 M to 2.0 × 10 −5 The results of measurement in the concentration range up to M are shown in FIG. From the measurement results, a good linear relationship was obtained in the concentration range of 4.0 × 10 −6 M to 1.0 × 10 −5 M. The reason why the relative intensity was almost the same at 2.0 × 10 −5 M is thought to be because the complex was already saturated at 1.0 × 10 −5 M at the same concentration as the cyclen.

Pb2+の滴定実験
サイクレンの濃度は1.0×10-5M、KIの濃度は2.0×10-5M、内部標準物質の濃度は1.5×10-7Mで一定にして、Pb2+を4.0×10-7M〜1.0×10-5Mまでの濃度範囲で測定を行った結果を図15。測定結果より、4.0×10-6M〜1.0×10-5Mの濃度範囲において良好な直線関係が得られた。しかし、KMH-1よりも検出下限が高かった。そこでKIを加えないで同様の測定を行ってみた。サイクレンの濃度は1.0×10-5M、内部標準物質の濃度は1.5×10-7Mで一定にして、Pb2+を1.0×10-12M〜2.0×10-5Mまでの濃度範囲で測定を行った結果を図16に示す。測定結果より、4.0×10-6M〜2.0×10-5Mの濃度範囲において良好な直線関係が得られた。
Pb 2+ titration experiment The concentration of cyclen was 1.0 × 10 −5 M, the concentration of KI was 2.0 × 10 −5 M, the concentration of internal standard was 1.5 × 10 −7 M, and Pb 2+ was 4.0 FIG. 15 shows the results of measurement in the concentration range from × 10 −7 M to 1.0 × 10 −5 M. From the measurement results, a good linear relationship was obtained in the concentration range of 4.0 × 10 −6 M to 1.0 × 10 −5 M. However, the lower detection limit was higher than that of KMH-1. Therefore, the same measurement was performed without adding KI. The concentration of cyclen is 1.0 × 10 −5 M, the concentration of internal standard is 1.5 × 10 −7 M, and Pb 2+ is in the concentration range from 1.0 × 10 −12 M to 2.0 × 10 −5 M. The measurement results are shown in FIG. From the measurement results, a good linear relationship was obtained in the concentration range of 4.0 × 10 −6 M to 2.0 × 10 −5 M.

検出下限と排出基準・環境基準との比較
下記表3において、測定した重金属イオンの検出下限と環境基準値をまとめた。水銀に関して、先行研究で開発されたKMH-1の約1/100の値と改善することができたが、基準値には及ばなかった。そこで、より感度のよい装置であるBruker Daltonics社製のmicro TOFを用いて測定したところ、環境基準値でも検出することができた。図17より、測定した金属錯体ピークとソフトにより計算された同位体ピークと形状がほぼ等しいので環境基準値まで検出できたことが証明された。
Comparison between lower detection limit and emission standard / environmental standard In Table 3 below, the lower detection limit and environmental standard value of the measured heavy metal ions are summarized. With regard to mercury, we were able to improve the value to about 1/100 that of KMH-1 developed in the previous study, but it did not reach the standard value. Therefore, when using a micro TOF manufactured by Bruker Daltonics, a more sensitive device, it was possible to detect even the environmental standard value. From FIG. 17, it was proved that the measured metal complex peak and the isotope peak calculated by the software were almost equal in shape, so that the environmental standard value could be detected.

Figure 2006308474
Figure 2006308474

鉛に関して、KMH-1よりも検出下限が大きくなってしまった。そこで、KIを用いずに測定を行ってみたところ、検出下限の改善を行うことができた。さらにカドミウムに関してもKMH-1より検出下限が改善された。   Regarding lead, the lower limit of detection has become larger than that of KMH-1. Therefore, when I measured without using KI, I was able to improve the detection limit. Furthermore, the detection limit for cadmium was improved compared to KMH-1.

本発明の実施例で用いた質量分析装置の構成を模式的に示す図である。It is a figure which shows typically the structure of the mass spectrometer used in the Example of this invention. 比較のために、先に開発したKMH-1でCr3+を質量分析した結果を示す図である。It is a figure which shows the result of having mass-analyzed Cr3 + with KMH-1 developed previously for the comparison. 本発明の実施例において、Cr3+を質量分析した結果を示す図である。In the Example of this invention, it is a figure which shows the result of having mass-analyzed Cr3 + . 比較のために、先に開発したKMH-1でFe3+を質量分析した結果を示す図である。It is a figure which shows the result of having mass-analyzed Fe3 + with KMH-1 developed previously for the comparison. 本発明の実施例において、Fe3+を質量分析した結果を示す図である。In the Example of this invention, it is a figure which shows the result of having conducted mass spectrometry of Fe3 + . 本発明の実施例において、Hg2+を質量分析した結果を示す図である。In the Example of this invention, it is a figure which shows the result of having conducted mass spectrometry of Hg < 2+ >. 本発明の実施例において、Zn2+を質量分析した結果を示す図である。In the Example of this invention, it is a figure which shows the result of having mass-analyzed Zn2 + . 本発明の実施例において、Ni2+を質量分析した結果を示す図である。In the Example of this invention, it is a figure which shows the result of having conducted mass spectrometry of Ni2 + . 本発明の実施例において、Cu2+を質量分析した結果を示す図である。In the Example of this invention, it is a figure which shows the result of having conducted mass spectrometry of Cu2 + . 本発明の実施例において、Cd2+を質量分析した結果を示す図である。In the Example of this invention, it is a figure which shows the result of having carried out mass spectrometry of Cd < 2+ >. 本発明の実施例において、Pb2+を質量分析した結果を示す図である。In the Example of this invention, it is a figure which shows the result of having conducted mass spectrometry of Pb2 + . 本発明の実施例においてHg2+を測定した際のpHと相対強度の関係を示す図である。It is a figure which shows the relationship between pH and relative intensity | strength at the time of measuring Hg < 2+ > in the Example of this invention. 本発明の実施例においてHg2+を滴定した際のHg2+濃度とピークの相対強度の関係を示す図である。It is a figure which shows the relationship between the Hg2 + density | concentration at the time of titrating Hg2 + in the Example of this invention, and the relative intensity of a peak. 本発明の実施例においてCd2+を滴定した際のCd2+濃度とピークの相対強度の関係を示す図である。It is a diagram showing a relationship between Cd 2+ concentration and the relative intensities of the peaks at the time of titrating Cd 2+ in the embodiment of the present invention. 本発明の実施例においてPb2+を滴定した際のPb2+濃度とピークの相対強度の関係を示す図である。Is a diagram showing the relationship between Pb 2+ concentration and the relative intensities of the peaks at the time of titrating Pb 2+ in the embodiment of the present invention. 本発明の実施例において、KI無添加でPb2+を滴定した際のPb2+濃度とピークの相対強度の関係を示す図である。In the Example of this invention, it is a figure which shows the relationship between the Pb2 + density | concentration at the time of titrating Pb2 + without KI addition, and the relative intensity | strength of a peak. microTOFによる水銀の同位体ピーク(左)と理論パターン(右)を示す図である。It is a figure which shows the isotope peak (left) and theoretical pattern (right) of mercury by microTOF. 本発明の重金属イオン分析用質量分析システムの好ましい具体例の液吸引時の状態を模式的に示す図である。It is a figure which shows typically the state at the time of the liquid suction of the preferable specific example of the mass spectrometry system for heavy metal ion analysis of this invention. 本発明の重金属イオン分析用質量分析システムの好ましい具体例の液押出時の状態を模式的に示す図である。It is a figure which shows typically the state at the time of the liquid extrusion of the preferable specific example of the mass spectrometry system for heavy metal ion analysis of this invention.

符号の説明Explanation of symbols

10 試薬容器
12 試料容器
12’ 試料容器
14 吸引手段
16 吸引管
18 第1のバルブ
20 液押出用管
22 送液ポンプ
24 送液管
26 液混合手段
28 第2のバルブ
30 第3のバルブ
32 第2の液押出用管

DESCRIPTION OF SYMBOLS 10 Reagent container 12 Sample container 12 'Sample container 14 Suction means 16 Suction pipe 18 1st valve 20 Liquid extrusion pipe | tube 22 Liquid feed pump 24 Liquid feed pipe 26 Liquid mixing means 28 2nd valve 30 3rd valve 32 3rd 2 Liquid extrusion tube

Claims (17)

下記一般式[I]
Figure 2006308474
(ただし、式中、R1及びR2は互いに独立に溶液中で一価の負イオンとなるイオン性官能基、R3及びR4は互いに独立に水素原子、炭素数1から10の直鎖型若しくは分枝型のアルキル基、アミノ基、ニトロ基又はハロゲン、A1及びA2は互いに独立に存在していても存在していなくてもよく、存在する場合には任意のスペーサー部分を表す)、
下記一般式[II]
Figure 2006308474
(ただし、式中、R1及びR2は互いに独立に溶液中で一価の負イオンとなるイオン性官能基、A1及びA2は互いに独立に存在していても存在していなくてもよく、存在する場合には任意のスペーサー部分を表す)、
又は、下記式[III]
Figure 2006308474
(ただし、環を構成する炭素原子には、-A1-R1(A1及びR1の定義は一般式[I]と同じ)で表される置換基が、各エチレン鎖当り1個以下の数だけ結合していてもよい)
で表される構造を有する重金属イオン測定用質量分析試薬。
The following general formula [I]
Figure 2006308474
(In the formula, R 1 and R 2 are independently an ionic functional group that becomes a monovalent negative ion in solution, R 3 and R 4 are each independently a hydrogen atom, and a straight chain having 1 to 10 carbon atoms. Type or branched alkyl group, amino group, nitro group or halogen, A 1 and A 2 may or may not be present independently of each other and, if present, represent any spacer moiety ),
The following general formula [II]
Figure 2006308474
(However, in the formula, R 1 and R 2 are ionic functional groups that become monovalent negative ions in solution independently of each other, and A 1 and A 2 may or may not exist independently of each other. Often represents any spacer moiety if present),
Or the following formula [III]
Figure 2006308474
(However, the carbon atoms constituting the ring have one or less substituents represented by -A 1 -R 1 (the definitions of A 1 and R 1 are the same as those in the general formula [I]) for each ethylene chain. May be combined)
A mass spectrometric reagent for heavy metal ion measurement having a structure represented by:
前記一般式[I]又は[II]で表される構造を有する請求項1記載の重金属イオン測定用質量分析試薬。   The mass spectrometric reagent for measuring heavy metal ions according to claim 1, which has a structure represented by the general formula [I] or [II]. 前記一般式[I]及び[II]中のR1及びR2が、互いに独立にカルボキシル基若しくはその塩、スルホン基若しくはその塩、又は水酸基若しくはその塩である請求項2記載の試薬。 The reagent according to claim 2, wherein R 1 and R 2 in the general formulas [I] and [II] are each independently a carboxyl group or a salt thereof, a sulfone group or a salt thereof, or a hydroxyl group or a salt thereof. 前記A1及びA2が、互いに独立に存在しないか又は炭素数1ないし10の直鎖型若しくは分枝型アルキレン基、該アルキレン基の一部をアミノ基、ハロゲン、エーテル及び/若しくはカルボニル基に置換した置換アルキレン基、フェニレン基、又はフェニレン基の一部をアミノ基、ハロゲン及び/若しくはニトロ基に置換した置換フェニレン基である請求項2ないし4のいずれか1項に記載の試薬。 A 1 and A 2 are not independently of each other, or are a linear or branched alkylene group having 1 to 10 carbon atoms, and a part of the alkylene group is an amino group, a halogen, an ether and / or a carbonyl group. The reagent according to any one of claims 2 to 4, which is a substituted phenylene group in which a substituted alkylene group, a phenylene group, or a part of the phenylene group is substituted with an amino group, a halogen and / or a nitro group. 前記A1及びA2が、互いに独立にアルキレン基である請求項4記載の試薬。 The reagent according to claim 4, wherein A 1 and A 2 are each independently an alkylene group. 下記式[IV]又は[V]で表される構造を有するカルボン酸又はその塩である請求項5記載の試薬。
Figure 2006308474
The reagent according to claim 5, which is a carboxylic acid having a structure represented by the following formula [IV] or [V] or a salt thereof.
Figure 2006308474
前記重金属イオンが、3価の陽イオンである請求項2ないし6のいずれか1項に記載の試薬。   The reagent according to any one of claims 2 to 6, wherein the heavy metal ion is a trivalent cation. 前記3価の陽イオンが、Fe3+及び/又はCr3+である請求項7記載の試薬。 The reagent according to claim 7, wherein the trivalent cation is Fe 3+ and / or Cr 3+ . 前記一般式[III]で表される構造を有する請求項1記載の試薬。   The reagent of Claim 1 which has a structure represented by the said general formula [III]. 環を構成する炭素原子上に置換基が存在しない請求項9記載の試薬。   The reagent according to claim 9, wherein there is no substituent on the carbon atom constituting the ring. 前記重金属イオンが、2価の陽イオンである請求項10記載の試薬。   The reagent according to claim 10, wherein the heavy metal ion is a divalent cation. 前記2価の陽イオンが、Hg2+, Cd2+及びPb2+から成る群より選ばれる少なくとも1種である請求項11記載の試薬。 The reagent according to claim 11, wherein the divalent cation is at least one selected from the group consisting of Hg 2+ , Cd 2+ and Pb 2+ . 請求項1ないし12のいずれか1項に記載の試薬と、被検試料中の重金属イオンとを反応させ、生成物を質量分析することを含む、重金属イオンの質量分析方法。   A method for mass spectrometry of heavy metal ions, comprising reacting the reagent according to any one of claims 1 to 12 with heavy metal ions in a test sample and mass-analyzing the product. 請求項10ないし11のいずれか1項に記載の試薬と、被検試料中の重金属イオンとをヨウ素イオンの存在下で反応させ、生成物を質量分析することを含む請求項12記載の方法。   The method according to claim 12, comprising reacting the reagent according to any one of claims 10 to 11 with heavy metal ions in a test sample in the presence of iodine ions, and mass-analyzing the product. 請求項1ないし12のいずれか1項に記載の試薬を収容する試薬容器と、被検試料を収容する試料容器と、前記試薬容器に収容された試薬及び前記試料容器に収容された被検試料を吸引するための吸引手段と、該吸引手段に接続され、その先端部を介して前記試薬容器に収容された試薬及び前記試料容器に収容された被検試料を吸引する吸引管と、該吸引管の途中に設けられた第1のバルブと、該第1のバルブに液押出用管を介して接続された送液ポンプと、前記第1のバルブに送液管を介して接続された液混合手段と、該液混合手段の下流に接続された質量分析装置とを具備する、重金属イオン分析用質量分析システム。   A reagent container containing the reagent according to any one of claims 1 to 12, a sample container containing a test sample, a reagent contained in the reagent container, and a test sample contained in the sample container A suction means for aspirating the reagent, a suction tube connected to the suction means for sucking the reagent contained in the reagent container and the test sample contained in the sample container via the tip, and the suction A first valve provided in the middle of the pipe, a liquid feed pump connected to the first valve via a liquid extrusion pipe, and a liquid connected to the first valve via a liquid feed pipe A mass spectrometry system for heavy metal ion analysis, comprising: a mixing means; and a mass spectrometer connected downstream of the liquid mixing means. 前記液押出用管の途中であって、前記送液ポンプと前記第1のバルブの間に第2のバルブが設けられ、前記吸入管の途中であって、前記吸入手段と前記第1のバルブの間に第3のバルブが設けられ、前記第2のバルブと前記第3のバルブが第2の液押出用管で接続されている請求項15記載の質量分析システム。   A second valve is provided in the middle of the liquid extruding pipe and between the liquid feed pump and the first valve, and in the middle of the suction pipe, the suction means and the first valve The mass spectrometry system according to claim 15, wherein a third valve is provided between the second valve and the third valve, and the second valve and the third valve are connected by a second liquid extrusion tube. 請求項13又は14に記載の重金属の質量分析方法を用いる質量分析システム。

A mass spectrometry system using the heavy metal mass spectrometry method according to claim 13 or 14.

JP2005132764A 2005-04-28 2005-04-28 Mass analyzing reagent for measuring heavy metal ion, and mass-analyzing method of heavy metal ion and mass analyzing system for analyzing heavy metal ion using it Pending JP2006308474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005132764A JP2006308474A (en) 2005-04-28 2005-04-28 Mass analyzing reagent for measuring heavy metal ion, and mass-analyzing method of heavy metal ion and mass analyzing system for analyzing heavy metal ion using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005132764A JP2006308474A (en) 2005-04-28 2005-04-28 Mass analyzing reagent for measuring heavy metal ion, and mass-analyzing method of heavy metal ion and mass analyzing system for analyzing heavy metal ion using it

Publications (1)

Publication Number Publication Date
JP2006308474A true JP2006308474A (en) 2006-11-09

Family

ID=37475524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005132764A Pending JP2006308474A (en) 2005-04-28 2005-04-28 Mass analyzing reagent for measuring heavy metal ion, and mass-analyzing method of heavy metal ion and mass analyzing system for analyzing heavy metal ion using it

Country Status (1)

Country Link
JP (1) JP2006308474A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021520996A (en) * 2018-04-12 2021-08-26 エフエヌジー リサーチ カンパニー,リミテッド Compounds for restoring contaminated soil or contaminated water quality

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000310617A (en) * 1999-04-28 2000-11-07 Jeol Ltd Standard reference material and standard reference material kit for mass spectrometry
JP2005043246A (en) * 2003-07-23 2005-02-17 Mitsui Chemical Analysis & Consulting Service Inc Method of quantifying heavy metals in fluorocarbon resin
JP2005249627A (en) * 2004-03-05 2005-09-15 Kanagawa Acad Of Sci & Technol Mass analyzing reagent for measuring heavy metal ion, mass-analyzing method of heavy metal ion using it and mass analyzing system for analyzing heavy metal ion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000310617A (en) * 1999-04-28 2000-11-07 Jeol Ltd Standard reference material and standard reference material kit for mass spectrometry
JP2005043246A (en) * 2003-07-23 2005-02-17 Mitsui Chemical Analysis & Consulting Service Inc Method of quantifying heavy metals in fluorocarbon resin
JP2005249627A (en) * 2004-03-05 2005-09-15 Kanagawa Acad Of Sci & Technol Mass analyzing reagent for measuring heavy metal ion, mass-analyzing method of heavy metal ion using it and mass analyzing system for analyzing heavy metal ion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021520996A (en) * 2018-04-12 2021-08-26 エフエヌジー リサーチ カンパニー,リミテッド Compounds for restoring contaminated soil or contaminated water quality
JP7281212B2 (en) 2018-04-12 2023-05-25 エフエヌジー リサーチ カンパニー,リミテッド Compounds for restoring contaminated soil or contaminated water

Similar Documents

Publication Publication Date Title
Gabr et al. A fluorescent turn-on probe for cyanide anion detection based on an AIE active cobalt (II) complex
Park et al. Solvent-dependent chromogenic sensing for Cu2+ and fluorogenic sensing for Zn2+ and Al3+: a multifunctional chemosensor with dual-mode
Karak et al. 9-Acridone-4-carboxylic acid as an efficient Cr (III) fluorescent sensor: Trace level detection, estimation and speciation studies
Tümay et al. Novel iron (III) selective fluorescent probe based on synergistic effect of pyrene-triazole units on a cyclotriphosphazene scaffold and its utility in real samples
Guang et al. A novel turn-on fluorescent probe for the multi-channel detection of Zn 2+ and Bi 3+ with different action mechanisms
Park et al. A new coumarin-based chromogenic chemosensor for the detection of dual analytes Al 3+ and F−
Huang et al. Structural modification of rhodamine-based sensors toward highly selective mercury detection in mixed organic/aqueous media
Li et al. A novel hydrophobic task specific ionic liquid for the extraction of Cd (II) from water and food samples as applied to AAS determination
KR101665046B1 (en) Ratiometric fluorescent chemosensor including boronic acid binding to mercury ion selectively, preparation method thereof and detection method of mercury ion using the same
KR101375564B1 (en) Mercury ion selective, ratiometric fluorescent chemosensor derived from amino acid, preparation method thereof and detection method of mercury ion using the same
JP2006308474A (en) Mass analyzing reagent for measuring heavy metal ion, and mass-analyzing method of heavy metal ion and mass analyzing system for analyzing heavy metal ion using it
CN105837527A (en) Copolymerized pillar[5]arene derivative and preparation thereof, and application of derivative to detection of iron ions
Talanova et al. Novel fluorogenic calix [4] arene-bis (crown-6-ether) for selective recognition of thallium (I)
CN101914063B (en) N, N&#39;-di-[3- hydroxyl-4-(2- benzimidazole) phenyl] urea and application thereof as zinc ion fluorescent probe
Sutariya et al. Single step synthesis of novel hybrid fluorescence probe for selective recognition of Pr (III) and As (III) from soil samples
Wang et al. A highly selective fluorescent chemosensor for Hg2+ in aqueous solution
JP4456382B2 (en) Mass spectrometry reagent for measuring heavy metal ions, mass spectrometry method for heavy metal ions and mass spectrometry system for heavy metal ions analysis using the same
Posta et al. Cr (III) and Cr (VI) on-line preconcentration and high-performance flow flame emission spectrometric determination in water samples
KR20110081697A (en) Compounds having al(iii) ion selectivity and chemosensor using the same
Brindley et al. Ferrocene-appended and bridged calixarene ligands for the electrochemical sensing of trivalent lanthanide ions
KR20120062223A (en) Pyrene derivatives having mercury ion selectivity, and fluorescent chemodosimeter using the same
Kumarasamy et al. Synthesis and recognition behavior studies of indole derivatives
Sang et al. An Efficient Way for the Recognition of Zinc Ion via the Fluorescence Enhancement
WO2014116578A1 (en) Phenylacetylenes
CN108593609A (en) A kind of method of highly sensitive highly selective fluoroscopic examination magnesium ion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208