JPS61281532A - Concentration adjustment of washing liquid for semiconductor and its device - Google Patents
Concentration adjustment of washing liquid for semiconductor and its deviceInfo
- Publication number
- JPS61281532A JPS61281532A JP12244385A JP12244385A JPS61281532A JP S61281532 A JPS61281532 A JP S61281532A JP 12244385 A JP12244385 A JP 12244385A JP 12244385 A JP12244385 A JP 12244385A JP S61281532 A JPS61281532 A JP S61281532A
- Authority
- JP
- Japan
- Prior art keywords
- concentration
- ammonia
- hydrogen peroxide
- ultraviolet
- absorbance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Cleaning By Liquid Or Steam (AREA)
- Cleaning Or Drying Semiconductors (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、例えば8iウエハなどの洗浄に使用される洗
浄液の成分濃度の調整方法及びその装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method and apparatus for adjusting the component concentration of a cleaning liquid used for cleaning, for example, 8i wafers.
一般に、過酸化水素とアンモニアと水を用いたSiウェ
ハなどの洗浄液は、しばしば80を程度にまで加熱して
使用されるため、熱分解により数十分で過酸化水素の分
解とアンモニアの蒸発による洗浄液の劣化が起こる。In general, a cleaning solution for cleaning Si wafers using hydrogen peroxide, ammonia, and water is often heated to 80°C, so the hydrogen peroxide decomposes and the ammonia evaporates in just a few minutes due to thermal decomposition. Deterioration of the cleaning solution occurs.
従来、使用中の洗浄液の成分の確認は、次のようにして
行なわれていた。即ち、滴定などのオフラインで、しか
も時間のかかる成分の分析法でやるか、或は、アンモニ
ア濃度の測定にイオン電極を用いる方法と過酸化水素濃
度の測定に紫外線吸収を用いる方法とを併用して確認す
るように■7ていた。(%開和59−46052号公報
)しかしながら、滴定などのオフラインでやる方法は時
間がかかって実用的ではなく、又アンモニア濃″度を測
定するイオン電極では、隔膜を透過するアンモニアガス
と電極の内部液との化学反応を利用するために、電極の
寿命が短くて保守性に問題がある上、応答性も悪いので
洗浄液中の薬液管理が精度よく制御できないという問題
があった。Conventionally, the components of a cleaning solution in use have been confirmed as follows. In other words, either off-line and time-consuming component analysis methods such as titration are used, or a method that uses an ion electrode to measure ammonia concentration and a method that uses ultraviolet absorption to measure hydrogen peroxide concentration are used in combination. ■7 to confirm. (% Kaiwa No. 59-46052) However, off-line methods such as titration are time-consuming and impractical, and with an ion electrode for measuring ammonia concentration, the ammonia gas passing through the diaphragm and the electrode Since the chemical reaction with the internal liquid is used, the life of the electrode is short, causing problems in maintainability, and the responsiveness is also poor, making it difficult to precisely control the chemical management in the cleaning liquid.
以上の問題を解決するため妊、発明者らは、次の点に着
目し問題を解決するに至った。In order to solve the above problem, the inventors focused on the following points and came to solve the problem.
以下その基本的原理について説明する。The basic principle will be explained below.
水溶液中に酸素が溶けている場合は、紫外部領域にきわ
めて特徴的な吸収帯が現われる。第1図は過酸化水素に
よる酸素とアンモニアの紫外線波長に対する吸光度の変
化を示す図である。When oxygen is dissolved in an aqueous solution, a very characteristic absorption band appears in the ultraviolet region. FIG. 1 is a diagram showing changes in the absorbance of oxygen and ammonia with respect to ultraviolet wavelengths due to hydrogen peroxide.
第1図において、曲線αが過酸化水素のみによる酸素の
吸光度を示す曲線、曲線りがアンモニアのみの吸光度を
示す曲線である。第1図のグラフかられかるように、過
酸化水素による酸素とアンモニアは、共に、波長194
nm付近り紫外線領域に吸収のピークをもっており、ピ
ーク付近では両者の区別がつかない。しかし、過酸化水
素による酸素の吸収スペクトルは、ブロードで、アンモ
ニアの吸収が殆んどゼロになる500rLrIL付近で
も、まだかなりの吸収を示す。従って、50Onm付近
の吸光度測定を行なえば、アンモニアと過酸化水素と水
が共存する洗浄液の採取試料中の過酸化水素による酸素
のみを独立に測定できる。In FIG. 1, the curve α is a curve showing the absorbance of oxygen only by hydrogen peroxide, and the curved line is the curve showing the absorbance of only ammonia. As can be seen from the graph in Figure 1, both oxygen and ammonia due to hydrogen peroxide have a wavelength of 194
It has an absorption peak in the ultraviolet region around nm, and it is difficult to distinguish between the two near the peak. However, the absorption spectrum of oxygen by hydrogen peroxide is broad, and even around 500 rLrIL, where the absorption of ammonia is almost zero, it still shows considerable absorption. Therefore, by measuring the absorbance at around 50 Onm, it is possible to independently measure only the oxygen due to hydrogen peroxide in the collected sample of the cleaning liquid in which ammonia, hydrogen peroxide, and water coexist.
しかし、上記のIk浴溶液酸素濃度は溶液の水素イオン
濃度に影響を受ける。However, the above Ik bath solution oxygen concentration is affected by the hydrogen ion concentration of the solution.
第2図は水溶液のアンモニア濃度を変えて溶液の水素イ
オン濃度を変化させたときの紫外線の吸光度の変化を表
わした図である。本図によると、過酸化水素濃度を一定
値に保ち、アンモニア濃度を増加させると曲線Cのよう
に紫外線領域の吸収も増加する。ところがこの水溶液に
過剰の酸を添加し、常に水溶液の水素イオン濃度を4以
下にしておくと、曲線dのようにアンモニア濃度に関係
なく一定の紫外線領域の吸光度を示す。ナなわち、水素
イオン濃度が4以上の場合、アンモニアと過酸化水素が
共存すると、水溶液中で緩衝作用が働き、アンモニア濃
度に比例して過酸化水素の酸素が解離し、水溶液中の酸
素量が増加するために酸素による紫外線領域の吸収も増
加するのである。FIG. 2 is a diagram showing the change in absorbance of ultraviolet rays when the ammonia concentration of the aqueous solution is changed and the hydrogen ion concentration of the solution is changed. According to this figure, when the hydrogen peroxide concentration is kept constant and the ammonia concentration is increased, absorption in the ultraviolet region also increases as shown by curve C. However, if an excess of acid is added to this aqueous solution and the hydrogen ion concentration of the aqueous solution is always kept below 4, the absorbance in the ultraviolet region is constant regardless of the ammonia concentration, as shown by curve d. In other words, when the hydrogen ion concentration is 4 or more, when ammonia and hydrogen peroxide coexist, a buffering effect acts in the aqueous solution, and oxygen in hydrogen peroxide dissociates in proportion to the ammonia concentration, resulting in the amount of oxygen in the aqueous solution. As a result, the absorption of ultraviolet light by oxygen also increases.
第5.4図はそれぞれ実際の洗浄液の採取試料中の過酸
化水素とアンモニア濃度画定原理を表わした図である。FIG. 5.4 is a diagram showing the principle of determining the concentration of hydrogen peroxide and ammonia in the actual sample collected from the cleaning liquid.
第5図は洗浄液の採取試料に酸を添加し、水素イオシ濃
度を4以下にしたときの紫外線領域の吸光度と過酸化水
素濃度の関係を表わしたグラフである。第3図のグラフ
かられかるように、酸を添加して水素イオン濃度を4以
下にした洗浄液の採取試料中の過酸化水素濃度は、紫外
線領域の吸光度を測定することにより求めることができ
る。FIG. 5 is a graph showing the relationship between the absorbance in the ultraviolet region and the hydrogen peroxide concentration when an acid is added to a sample of the cleaning liquid to reduce the hydrogen iodine concentration to 4 or less. As can be seen from the graph in FIG. 3, the hydrogen peroxide concentration in the sample of the cleaning liquid to which an acid has been added to reduce the hydrogen ion concentration to 4 or less can be determined by measuring the absorbance in the ultraviolet region.
第4図は洗浄液の採取試料に酸を添加しないときと酸を
添加したときの紫外線領域の吸光度ノ比とアンモニア濃
度の関係を表わしたグラフである。第4図のグラフから
れかるように洗浄液の採取試料中のアンモニア濃度は酸
を添加しないとき(水素イオン濃度4以上)と、酸を添
加したとき(水素イオン濃度4以下)の紫外線領域の吸
光度の比を測定することにより求めることができる。FIG. 4 is a graph showing the relationship between the absorbance ratio in the ultraviolet region and the ammonia concentration when no acid is added to the sample of the cleaning liquid and when acid is added. As can be seen from the graph in Figure 4, the ammonia concentration in the sample of the cleaning solution is the absorbance in the ultraviolet region when no acid is added (hydrogen ion concentration 4 or more) and when acid is added (hydrogen ion concentration 4 or less). It can be determined by measuring the ratio of
上記原理に基づいて、洗浄液中の過酸化水素濃度は、洗
浄液中の水素イオン濃度を4以下にしたときの紫外線の
吸光度を測定することにより、又アンモニアの濃度は、
洗浄液中の水素イオン濃度が4以上と4以下のときの紫
外線の吸光度比を求めることにより知ることができ、こ
れを測定する実際の測定装置及び自動濃度調整装置を開
発するに至った。Based on the above principle, the hydrogen peroxide concentration in the cleaning solution can be determined by measuring the absorbance of ultraviolet rays when the hydrogen ion concentration in the cleaning solution is 4 or less, and the ammonia concentration can be determined by
This can be determined by determining the absorbance ratio of ultraviolet rays when the hydrogen ion concentration in the cleaning solution is 4 or more and 4 or less, and we have developed an actual measuring device and automatic concentration adjustment device to measure this.
本発明は上述の原理に基づいてなされたものであり、短
時間でかつ高精度に洗浄液の成分濃度を検出して自動的
に洗浄液の濃度調整を可能にした洗浄液の濃度調整方法
とその装置を提供せんとするものである。The present invention has been made based on the above-mentioned principle, and provides a method and apparatus for adjusting the concentration of a cleaning liquid, which enables automatic adjustment of the concentration of the cleaning liquid by detecting the component concentration of the cleaning liquid in a short time and with high precision. This is what we intend to provide.
即ち本発明に係る方法は、採取した洗浄液と水素イオン
濃度を4以下にした洗浄液の紫外線吸光度を検出して、
濃度調整を行なうようにしたものであって、採取した洗
浄液を透過光測定用フローセルに導き、紫外線光源によ
りこれ5を照射して紫外線の吸光度を紫外線検出器で検
出する。一方別のフローセルに洗浄液の水素イオン濃度
を4以下にした洗浄液を導き、紫外線光源によりこれを
照射して紫外線の吸光度を紫外線検出器で検出する。こ
のようにして検出された二つの検出値をインターフェイ
スに入力して、採取された洗浄液中の過酸化水素濃度と
アンモニア濃度とをマイクロコンピュータで演算スると
共に記憶されている所定濃度と比較し、その差分だけ過
酸化水素及びアンモニアの供給源より自動的に供給する
ようにしたものである。That is, the method according to the present invention detects the ultraviolet absorbance of the collected cleaning liquid and the cleaning liquid with a hydrogen ion concentration of 4 or less,
The sampled cleaning liquid is introduced into a flow cell for measuring transmitted light, irradiated with an ultraviolet light source, and the absorbance of ultraviolet light is detected with an ultraviolet detector. On the other hand, a cleaning solution with a hydrogen ion concentration of 4 or less is introduced into another flow cell, irradiated with an ultraviolet light source, and the absorbance of ultraviolet rays is detected with an ultraviolet detector. The two detection values detected in this manner are input into the interface, and the hydrogen peroxide concentration and ammonia concentration in the collected cleaning liquid are calculated by a microcomputer and compared with a predetermined concentration stored in the memory. This difference is automatically supplied from the hydrogen peroxide and ammonia supply sources.
又上記方法を実施するための装置として、洗浄液を透過
光フローセルに導くためのポンプを設け、このポンプに
よって採取された洗浄液の紫外線吸光度を検出するため
紫外線光源、フローセル及び紫外線検出器を内蔵する酸
素濃度測定部が設けられる。一方これとは別K、採取さ
れた洗浄液の水素イオン濃度を4以下にするための塩酸
供給系を設け、これにより水素イオン濃度が4以下圧さ
れた洗浄液の、紫外線吸光度を検出するため紫外線光源
、フローセル及び紫外線検出器を内蔵する酸素濃度検出
部な、設ける。In addition, as a device for carrying out the above method, a pump is provided to guide the cleaning liquid to a transmitted light flow cell, and an oxygen pump containing an ultraviolet light source, a flow cell, and an ultraviolet detector is provided to detect the ultraviolet absorbance of the cleaning liquid collected by this pump. A concentration measuring section is provided. On the other hand, in addition to this, a hydrochloric acid supply system is installed to reduce the hydrogen ion concentration of the collected cleaning liquid to 4 or less, and an ultraviolet light source is used to detect the ultraviolet absorbance of the cleaning liquid whose hydrogen ion concentration is reduced to 4 or less. , an oxygen concentration detection section incorporating a flow cell and an ultraviolet detector is provided.
上記二つの酸素濃度検出部によって検出された二つの紫
外線吸光度の検、出値によって、洗浄液中の過酸化水素
濃度とアンモニア濃度とを演算すると共に、これら濃度
と記憶された所定濃度とを比較匂過酸化水素とアンモニ
アを所定量供給するための電磁弁制御を行なう機能を有
するマイクロコンビ、ユータを・設け、こ、れKより制
御される電磁弁を過酸化水素及びアンモニアの併給系に
それぞれ設けたことを特徴とするものである。Based on the detected and output values of the two ultraviolet absorbances detected by the two oxygen concentration detectors mentioned above, the hydrogen peroxide concentration and ammonia concentration in the cleaning liquid are calculated, and these concentrations are compared with the predetermined concentration stored. A microcombination unit and a user having a function of controlling solenoid valves for supplying predetermined amounts of hydrogen peroxide and ammonia are installed, and solenoid valves controlled by this K are installed in the hydrogen peroxide and ammonia co-feeding system, respectively. It is characterized by:
以下本発明の一実施例について詳細に説明する。 An embodiment of the present invention will be described in detail below.
第5図において、12は洗浄槽1に溜められた洗浄液で
ある。5は洗浄液2を昇温するためのモータである。4
は洗浄されるSiウェハである。In FIG. 5, 12 is a cleaning liquid stored in the cleaning tank 1. 5 is a motor for raising the temperature of the cleaning liquid 2. 4
is the Si wafer to be cleaned.
5は洗浄液を採取するためのポンプである。6は酸素濃
度、測定部であり、透過光測定用、フローセルフ、紫外
線光源8及び紫外線検出器9を内蔵スる。10は洗浄液
を採取するためのポンプであり、本実施例では透過光測
定用フローセルフに直接接続されている。もちろん、ポ
ンプ10は直接洗浄槽1に接続してもよい。11は別に
設けられた酸素濃度測定部であり、6と同じように1透
過光測定用フローセル12.紫外線発光源15及び紫外
線機小器14が内蔵されている。15は洗浄液中の水素
イオン濃度が4以下になるように、塩酸16をポンプ1
0の吐出側圧供給するためのポンプであるP17は紫外
線検出器9及び14によって検出された紫外線の吸光度
を、マイクロコンピュータ22に入力するためのインタ
ーフェイスである。5 is a pump for collecting cleaning liquid. Reference numeral 6 denotes an oxygen concentration measuring section, which includes a built-in unit for measuring transmitted light, a flow self, an ultraviolet light source 8, and an ultraviolet detector 9. Reference numeral 10 denotes a pump for collecting cleaning liquid, and in this embodiment, it is directly connected to a flow cell for measuring transmitted light. Of course, the pump 10 may be directly connected to the cleaning tank 1. Reference numeral 11 denotes an oxygen concentration measuring section provided separately, and like 6, 1 flow cell for measuring transmitted light 12. An ultraviolet light source 15 and an ultraviolet device 14 are built-in. 15 pumps hydrochloric acid 16 to pump 1 so that the hydrogen ion concentration in the cleaning solution is 4 or less.
A pump P17 for supplying a discharge side pressure of 0 is an interface for inputting the absorbance of ultraviolet rays detected by the ultraviolet detectors 9 and 14 to the microcomputer 22.
マイクロコンピュータ22は、上記インターフェイス1
7より入力された二つの検出値に基づ℃・て、過酸化水
素の濃度、アンモニアの濃度を演算する機能、この演算
されたそれぞれの濃度と記憶されている所定の濃度(洗
浄液として適性な過酸化水素とアンモニアの一度)とを
比較する機能及び、この比較によって得られた所定値の
過酸化水素とアンモニアを供給するための電磁弁制御機
能を有する。1Bは電、磁弁制御部である。19.19
Hマイクロコンピユータ22からの操作指令により、電
磁弁制御部1Bを介して制御される電磁弁である。20
は過酸化水素タンク、21はアンモニア水タンクである
。25.24は採取液の排出口、25は純水26を洗浄
槽1内に供給するためのポンプである。27は液面セン
サ、50は温度計、2Bは循環ポンプ、29はフィルタ
である。The microcomputer 22 has the interface 1
The function calculates the concentration of hydrogen peroxide and the concentration of ammonia based on the two detected values input from 7. It has a function to compare hydrogen peroxide and ammonia) and a solenoid valve control function to supply predetermined values of hydrogen peroxide and ammonia obtained by this comparison. 1B is an electric/magnetic valve control section. 19.19
This is a solenoid valve that is controlled by an operation command from the H microcomputer 22 via the solenoid valve control section 1B. 20
21 is a hydrogen peroxide tank, and 21 is an ammonia water tank. Reference numerals 25 and 24 are discharge ports for the collected liquid, and 25 is a pump for supplying pure water 26 into the cleaning tank 1. 27 is a liquid level sensor, 50 is a thermometer, 2B is a circulation pump, and 29 is a filter.
以上のように構成した本実施例の作用につ(・て次に説
明する。洗浄槽1には過酸化水素とアンモニアと水から
成る洗浄液2が満たされヒータ5で加熱されており、S
tウニノー4を洗浄している。洗浄液2の一部を試料採
取ポンプ5によりサンプリングし、酸素濃度測定部6の
フローセルフに送り込み、このフローセル内の酸素濃度
をHfランプなどの紫外線を発するランプとモノクロメ
ータなどから構成される波長500nrn付近の紫外線
光源8と、その透過光の検出器9により吸光測定する。The operation of this embodiment configured as above will be explained next.A cleaning tank 1 is filled with a cleaning liquid 2 consisting of hydrogen peroxide, ammonia, and water and heated by a heater 5.
I am cleaning the Uni No 4. A part of the cleaning liquid 2 is sampled by the sampling pump 5 and sent to the flow cell of the oxygen concentration measurement section 6, and the oxygen concentration in this flow cell is measured using a wavelength of 500nrn, which is composed of a lamp that emits ultraviolet light such as an Hf lamp, a monochromator, etc. Absorption is measured using a nearby ultraviolet light source 8 and a detector 9 for the transmitted light.
フローセルフで紫外線吸収測定された洗浄液の採取試料
は、ポンプ10により、さらに酸素濃度測定部11のフ
ローセル12に送り込まれた後排出口24から排出され
る。この排出の途中でポンプ15により塩酸16を投入
して水素イオン濃度が4以下にされた洗浄液は、フロー
セル12に送り込まれて、紫外線吸収測定をされ酸素濃
度測定部11から出力された値によって過酸化水素濃度
の測定が行なわれる。一方この値と酸素濃度測定部6の
値は、共にインタツユイス17に送られる。送られた上
記2測定値よりアンモニア濃度がマイクロコンピュータ
22で演算される。上記により、はぼ同時刻の洗浄槽1
内の過酸化水素およびアンモニアの濃度測定が行なわれ
る。勿論この場合、過酸化水素濃度測定用の採取試料は
、洗浄槽から、アンモニア濃度測定用の採取試料と別途
並行に直接採取することも差し支えない。測定された過
酸化水素濃度とアンモニアの濃度データは、あらかじめ
マイクロコンピータ22に記憶された洗浄液の濃度デー
タと比較、参照される。記憶データと実際の濃度の差か
ら、あらかじめマイクロコンピュータ22に与えられた
プログラムに基づき、電磁弁制御部1Bに命令が下され
、電磁弁19.19’が開閉1−、、タンク20 、2
1から必要量だけの過酸化水素とアンモニアが洗浄槽1
に供給され、これKより洗浄液2の過酸化水素およびア
ンモニアの濃度は當に一定範囲内の濃度を保ち、安定し
たSiウェハの洗浄が行なわれる。The collected sample of the cleaning liquid subjected to ultraviolet absorption measurement in the flow self is further sent to the flow cell 12 of the oxygen concentration measurement section 11 by the pump 10, and then discharged from the discharge port 24. During this discharge, hydrochloric acid 16 is added by the pump 15 to reduce the hydrogen ion concentration to 4 or less. Measurements of hydrogen oxide concentration are made. On the other hand, both this value and the value of the oxygen concentration measuring section 6 are sent to the interface 17. The ammonia concentration is calculated by the microcomputer 22 from the two sent measurement values. Due to the above, cleaning tank 1 at approximately the same time
The concentration of hydrogen peroxide and ammonia in the water is measured. Of course, in this case, the sample for measuring the hydrogen peroxide concentration may be directly collected from the cleaning tank in parallel with the sample for measuring the ammonia concentration. The measured hydrogen peroxide concentration and ammonia concentration data are compared and referenced with cleaning liquid concentration data stored in the microcomputer 22 in advance. Based on the difference between the stored data and the actual concentration, a command is given to the solenoid valve control unit 1B based on a program given in advance to the microcomputer 22, and the solenoid valves 19, 19' are opened/closed 1-, tanks 20, 2.
From 1 to 1, the required amount of hydrogen peroxide and ammonia is added to cleaning tank 1.
Due to this K, the concentration of hydrogen peroxide and ammonia in the cleaning liquid 2 is kept within a certain range, and stable cleaning of the Si wafer is performed.
次に、上記実施例を使用して濃度調整を行なう方・法に
ついて第5図を参照しながら第6図を用いて説明する。Next, a method for adjusting the density using the above embodiment will be explained using FIG. 6 while referring to FIG. 5.
ステップ人でスタートすると、純水補給用ポンプ25が
ONされる(ステップB)。When starting with a step person, the pure water replenishment pump 25 is turned on (step B).
洗浄槽1内の水位は液面センサ27で測定され(ステッ
プC)、洗浄槽1内の水位が所定値であるかを判定(ス
テップD)される。The water level in the cleaning tank 1 is measured by the liquid level sensor 27 (step C), and it is determined whether the water level in the cleaning tank 1 is at a predetermined value (step D).
所定水位になると純水補給用のポンプ25が停止され(
ステップE)、ヒータ5がON (ステップF)され、
洗浄液循環用のポンプ28がONされ(ステップG)、
次いで過酸化水素とアンモニア補給用電磁弁19.19
’がt 、 t’暗時間かれる(ステップH)。次いで
送液サンプリング用のポンプ5,10と塩酸送液用のポ
ンプ15カONされる(ステップ■)。酸素濃度測定部
6.11で試料液の紫外線吸収量を測定しくステップJ
)。When the water level reaches a predetermined level, the pure water supply pump 25 is stopped (
Step E), the heater 5 is turned on (Step F),
The pump 28 for circulating the cleaning liquid is turned on (step G),
Next, hydrogen peroxide and ammonia replenishment solenoid valve 19.19
' is t and t' is the dark time (step H). Next, the pumps 5 and 10 for liquid feeding and sampling and the pump 15 for feeding hydrochloric acid are turned on (step 2). Step J: Measure the amount of ultraviolet absorption of the sample liquid using the oxygen concentration measuring section 6.11.
).
測定値に基づいて過酸化水素とアンモニア濃度が算出さ
れる(ステップK)。上記の算定濃度が目標濃度範囲内
であるか否かが判定される(ステップL)、。Hydrogen peroxide and ammonia concentrations are calculated based on the measured values (step K). It is determined whether the above calculated concentration is within the target concentration range (step L).
算出した過酸化水素とアンモニア濃度が目標値から外れ
ている場合、濃度が低すぎれば電磁弁19.19’を開
いて過酸化水素とアンモニアを性別すべき時間t 、
t’が算出され、濃度が高すぎればポンプ25を作動さ
せて純水を性別すべき時間tが算定され(ステップM、
N)、実行される(ステップQ)。このようにして、洗
浄液中の過酸化水素とアンモニア濃度が制御され、洗浄
液の液温が設定範囲内かを判定しくステップR)、温度
計50による液温測定値が設定範囲内ならSiウェハな
一定時間洗浄する(ステップS)。If the calculated hydrogen peroxide and ammonia concentrations are outside the target values, and the concentrations are too low, open the solenoid valve 19.19' to separate the hydrogen peroxide and ammonia.
t' is calculated, and if the concentration is too high, the time t at which the pump 25 should be operated to sex the pure water is calculated (step M,
N), is executed (step Q). In this way, the hydrogen peroxide and ammonia concentrations in the cleaning solution are controlled, and it is determined whether the temperature of the cleaning solution is within the set range (step R). If the temperature measured by the thermometer 50 is within the set range, the Si wafer is removed. Wash for a certain period of time (step S).
続けてSiウェハを洗浄する場合、洗浄液の組成と液温
をもう一度測定した後、8iウエハな洗浄する(ステッ
プJ〜スデップS)。続けてSiウェハな洗浄しない場
合、排液して■サイクルを終了する(ステップU、V)
。When subsequently cleaning the Si wafer, the composition and temperature of the cleaning solution are measured once again, and then the 8i wafer is cleaned (steps J to S). If the Si wafer is not to be cleaned continuously, drain the liquid and end the cycle (Steps U and V).
.
以上詳述した通り本発明によれは、採取した洗浄液と、
水素イオン濃度を4以下にした洗浄水の紫外線吸光度を
測足し、水素イオン濃度4以下の洗浄水の紫外線吸光度
によって過酸化水素の濃度を測定すると共に、採取した
洗浄液の紫外線吸光度と水素イオン濃度が4以下の洗浄
水の紫外線吸光度との比によってアンモニア濃度を測定
し、マイクロコンピュータを用いて連続的にかつ自動的
に洗浄水の成分濃度を調整す 。As detailed above, according to the present invention, the collected cleaning liquid,
The ultraviolet absorbance of the cleaning water with a hydrogen ion concentration of 4 or less was measured, and the concentration of hydrogen peroxide was measured by the ultraviolet absorbance of the cleaning water with a hydrogen ion concentration of 4 or less. The ammonia concentration is measured by the ratio of ultraviolet absorbance of the washing water to 4 or less, and the component concentration of the washing water is continuously and automatically adjusted using a microcomputer.
るようにしたので、半導体工業で極めて広く使われてい
る過酸化水素とアンモニアと水から成る洗浄液中の過酸
化水素成分とアンモニア成分の高精度で応答性に優れた
インラインモニタリングが可能となり、過酸化水素の減
少によるSiウェハの急激なエツチング防止や過酸化水
素とアンモニアの適量供給による洗浄液の再生と寿命延
長、洗浄の安定化を達成することができるなど優れた効
果を有する。This enables highly accurate and highly responsive in-line monitoring of hydrogen peroxide and ammonia components in cleaning solutions consisting of hydrogen peroxide, ammonia, and water, which are extremely widely used in the semiconductor industry. It has excellent effects such as preventing rapid etching of the Si wafer due to the reduction of hydrogen oxide, regenerating and extending the life of the cleaning solution by supplying appropriate amounts of hydrogen peroxide and ammonia, and stabilizing cleaning.
第1図は水溶液中の酸素濃度の測定原理を説明するため
の過酸化水素による酸素とアンモニアの紫外線波長に対
する吸光度の変化を示すグラフ、第2図は過酸化水素濃
度の測定原理を説明するための洗浄液におけるアンモニ
ア濃度ニ対する水素イオン濃度変化による紫外線吸光度
の変化を示すグラフ、第3図は洗浄液の採取試料に酸を
添加し、水素イオン濃度を4以下にしたときの紫外線領
域の吸光度と過酸化水素濃度の関係を示すグラフである
。第4図は洗浄液の採取試料に酸を添加しないときと酸
を添加したときの紫外線領域の吸光度の比とアンモニア
濃度の関係を示すグラフ、第5図及び第6図は本発明の
一実施例であり、第5図は洗浄液の濃度調整装置の構成
図、第6図は洗浄液の濃度調整方法を示すブロック図で
ある。
1・・・洗浄槽、2・・・洗浄液、5,10・・・採取
用ポンプ、6.11・・・酸素濃度測定部、8,15・
・・紫外線光源、7,12・・・透過光測定用フローセ
ル(フローセル)、9,14・・・紫外線検出器、17
・・・インターフェイス、22・・・マイクロコンピュ
ータ、18・・・電磁弁制御部、19 、19″・・・
電磁弁、20・・・過酸化水素タンク、21・・・アン
モニア水タンク。Figure 1 is a graph showing the change in absorbance of oxygen and ammonia with respect to ultraviolet wavelength due to hydrogen peroxide to explain the principle of measuring oxygen concentration in an aqueous solution, and Figure 2 is a graph to explain the principle of measuring hydrogen peroxide concentration. Figure 3 is a graph showing the change in ultraviolet absorbance due to changes in hydrogen ion concentration with respect to ammonia concentration in the cleaning solution. It is a graph showing the relationship between hydrogen oxide concentration. Figure 4 is a graph showing the relationship between the ratio of absorbance in the ultraviolet region and the ammonia concentration when no acid is added to the sample of cleaning liquid and when acid is added. Figures 5 and 6 are examples of the present invention. FIG. 5 is a block diagram of a cleaning liquid concentration adjustment device, and FIG. 6 is a block diagram showing a cleaning liquid concentration adjustment method. DESCRIPTION OF SYMBOLS 1... Cleaning tank, 2... Cleaning liquid, 5, 10... Collection pump, 6.11... Oxygen concentration measuring section, 8, 15...
... Ultraviolet light source, 7, 12 ... Flow cell for measuring transmitted light (flow cell), 9, 14 ... Ultraviolet light detector, 17
...Interface, 22...Microcomputer, 18...Solenoid valve control section, 19, 19''...
Solenoid valve, 20... hydrogen peroxide tank, 21... ammonia water tank.
Claims (1)
過酸化水素とアンモニアの濃度調整方法において、採取
した洗浄液を透過光測定用フローセルに導き、紫外線光
源によりこれを照射して紫外線の吸光度を紫外線検出器
で検出し、一方別のフローセルに洗浄液の水素イオン濃
度を4以下にした洗浄液を導き、紫外線光源によりこれ
を照射して紫外線の吸光度を紫外線検出器で検出し、上
記採取した洗浄液の紫外線吸光度と水素イオン濃度を4
以下にした洗浄液の紫外線吸光度の二つの検出値をイン
ターフェイスに入力し、このインターフェイスに入力さ
れた二つの検出値にて採取された洗浄液中の過酸化水素
、濃度とアンモニア濃度とをマイクロコンピュータで演
算すると共に所定濃度と比較し、過酸化水素及びアンモ
ニアの供給源より自動的に供給するようにした半導体洗
浄液の濃度調整方法。 2 過酸化水素、アンモニア及び水とから成る洗浄液の
過酸化水素とアンモニアの濃度を調整するための装置に
おいて、洗浄液を透過光フローセルに導くための採取ポ
ンプと、採取された洗浄液の紫外線吸光度を検出するた
めの紫外線光源、フローセル及び紫外線検出器を備えた
酸素濃度測定部と、採取された洗浄液の水素イオン濃度
を4以下にするための塩酸供給系と、水素イオン濃度を
4以下にした洗浄液の紫外線吸光度を検出するため紫外
線光源、フローセル及び紫外線検出器を備えた酸素濃度
測定部と、採取された洗浄液及び水素イオン濃度を4以
下にした洗浄液の二つの紫外線吸光度検出値によって過
酸化水素の濃度とアンモニア濃度を演算すると共に記憶
された所定濃度と比較し過酸化水素とアンモニアを所定
量供給するための電磁弁制御を行なう機能を有するマイ
クロコンピュータと、過酸化水素及びアンモニアの供給
系にそれぞれ設けられた電磁弁とから成る半導体洗浄液
の濃度調整装置。[Claims] 1. In a method for adjusting the concentration of hydrogen peroxide and ammonia in a cleaning solution consisting of hydrogen peroxide, ammonia and water, the sampled cleaning solution is introduced into a flow cell for measuring transmitted light and irradiated with an ultraviolet light source. The absorbance of ultraviolet rays is detected by an ultraviolet detector, while a cleaning solution with a hydrogen ion concentration of 4 or less is introduced into another flow cell, and it is irradiated with an ultraviolet light source and the absorbance of ultraviolet rays is detected by an ultraviolet detector. The ultraviolet absorbance and hydrogen ion concentration of the cleaning solution collected above were determined by 4.
Input the following two detected values of ultraviolet absorbance of the cleaning liquid into the interface, and calculate the hydrogen peroxide concentration and ammonia concentration in the collected cleaning liquid using the two detected values input into this interface using a microcomputer. A method for adjusting the concentration of a semiconductor cleaning liquid in which hydrogen peroxide and ammonia are automatically supplied from a supply source by comparing the concentration with a predetermined concentration. 2. A device for adjusting the concentration of hydrogen peroxide and ammonia in a cleaning solution consisting of hydrogen peroxide, ammonia, and water, including a collection pump for guiding the cleaning solution to a transmitted light flow cell and detecting the ultraviolet absorbance of the collected cleaning solution. an oxygen concentration measurement unit equipped with an ultraviolet light source, a flow cell, and an ultraviolet detector; a hydrochloric acid supply system to reduce the hydrogen ion concentration of the collected cleaning solution to 4 or less; and a hydrochloric acid supply system to reduce the hydrogen ion concentration to 4 or less. To detect ultraviolet absorbance, an oxygen concentration measurement unit equipped with an ultraviolet light source, a flow cell, and an ultraviolet detector detects the concentration of hydrogen peroxide based on the two ultraviolet absorbance detection values of the collected cleaning liquid and the cleaning liquid whose hydrogen ion concentration has been reduced to 4 or less. A microcomputer is installed in each of the hydrogen peroxide and ammonia supply systems. A semiconductor cleaning liquid concentration adjustment device consisting of a solenoid valve and a solenoid valve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12244385A JPS61281532A (en) | 1985-06-07 | 1985-06-07 | Concentration adjustment of washing liquid for semiconductor and its device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12244385A JPS61281532A (en) | 1985-06-07 | 1985-06-07 | Concentration adjustment of washing liquid for semiconductor and its device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61281532A true JPS61281532A (en) | 1986-12-11 |
JPH0528490B2 JPH0528490B2 (en) | 1993-04-26 |
Family
ID=14835972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12244385A Granted JPS61281532A (en) | 1985-06-07 | 1985-06-07 | Concentration adjustment of washing liquid for semiconductor and its device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61281532A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02722U (en) * | 1988-06-10 | 1990-01-05 | ||
US5275184A (en) * | 1990-10-19 | 1994-01-04 | Dainippon Screen Mfg. Co., Ltd. | Apparatus and system for treating surface of a wafer by dipping the same in a treatment solution and a gate device for chemical agent used in the apparatus and the system |
JPH08136450A (en) * | 1994-11-14 | 1996-05-31 | Nec Corp | Chemical composition monitoring method and its device |
US5715173A (en) * | 1994-06-27 | 1998-02-03 | Dainippon Screen Mfg. Co., Ltd. | Concentration controlling method and a substate treating apparatus utilizing same |
US5881748A (en) * | 1994-03-28 | 1999-03-16 | Shin-Etsu Handotai Co. Ltd. | Apparatus for rinsing wafers adhered with chemical liquid by use of purified water |
US5896874A (en) * | 1996-07-02 | 1999-04-27 | Hirama Rika Kenkyujo Ltd. | Apparatus for controlling resist stripping solution |
DE19815039A1 (en) * | 1998-03-02 | 1999-09-16 | Mostafa Sabet | Process for changing a treatment medium contained in a treatment basin and system for carrying out the process |
KR20000050397A (en) * | 1999-01-08 | 2000-08-05 | 윤종용 | Concentration controller of cleanning agent for semiconductor an the method thereof |
US6158447A (en) * | 1997-09-09 | 2000-12-12 | Tokyo Electron Limited | Cleaning method and cleaning equipment |
US6214126B1 (en) | 1993-11-15 | 2001-04-10 | Matsushita Electric Industrial Co., Ltd. | Method for cleaning a silicon substrate |
US6415803B1 (en) * | 1999-10-06 | 2002-07-09 | Z Cap, L.L.C. | Method and apparatus for semiconductor wafer cleaning with reuse of chemicals |
EP1451413A2 (en) * | 2001-10-08 | 2004-09-01 | Advanced Technology Materials, Inc. | Real-time component monitoring and replenishment system for multicomponent fluids |
JP2005230798A (en) * | 2004-01-22 | 2005-09-02 | Sankyo Seiki Mfg Co Ltd | Washing apparatus |
-
1985
- 1985-06-07 JP JP12244385A patent/JPS61281532A/en active Granted
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02722U (en) * | 1988-06-10 | 1990-01-05 | ||
US5275184A (en) * | 1990-10-19 | 1994-01-04 | Dainippon Screen Mfg. Co., Ltd. | Apparatus and system for treating surface of a wafer by dipping the same in a treatment solution and a gate device for chemical agent used in the apparatus and the system |
US6214126B1 (en) | 1993-11-15 | 2001-04-10 | Matsushita Electric Industrial Co., Ltd. | Method for cleaning a silicon substrate |
US5881748A (en) * | 1994-03-28 | 1999-03-16 | Shin-Etsu Handotai Co. Ltd. | Apparatus for rinsing wafers adhered with chemical liquid by use of purified water |
US5715173A (en) * | 1994-06-27 | 1998-02-03 | Dainippon Screen Mfg. Co., Ltd. | Concentration controlling method and a substate treating apparatus utilizing same |
JPH08136450A (en) * | 1994-11-14 | 1996-05-31 | Nec Corp | Chemical composition monitoring method and its device |
JP2701760B2 (en) * | 1994-11-14 | 1998-01-21 | 日本電気株式会社 | Chemical composition monitor |
US5896874A (en) * | 1996-07-02 | 1999-04-27 | Hirama Rika Kenkyujo Ltd. | Apparatus for controlling resist stripping solution |
US6158447A (en) * | 1997-09-09 | 2000-12-12 | Tokyo Electron Limited | Cleaning method and cleaning equipment |
DE19815039A1 (en) * | 1998-03-02 | 1999-09-16 | Mostafa Sabet | Process for changing a treatment medium contained in a treatment basin and system for carrying out the process |
KR20000050397A (en) * | 1999-01-08 | 2000-08-05 | 윤종용 | Concentration controller of cleanning agent for semiconductor an the method thereof |
US6415803B1 (en) * | 1999-10-06 | 2002-07-09 | Z Cap, L.L.C. | Method and apparatus for semiconductor wafer cleaning with reuse of chemicals |
EP1451413A2 (en) * | 2001-10-08 | 2004-09-01 | Advanced Technology Materials, Inc. | Real-time component monitoring and replenishment system for multicomponent fluids |
US7214537B2 (en) | 2001-10-08 | 2007-05-08 | Advanced Technology Materials, Inc. | Real-time component monitoring and replenishment system for multicomponent fluids |
EP1451413A4 (en) * | 2001-10-08 | 2007-12-26 | Advanced Tech Materials | Real-time component monitoring and replenishment system for multicomponent fluids |
JP2005230798A (en) * | 2004-01-22 | 2005-09-02 | Sankyo Seiki Mfg Co Ltd | Washing apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH0528490B2 (en) | 1993-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61281532A (en) | Concentration adjustment of washing liquid for semiconductor and its device | |
US20080190557A1 (en) | Apparatus for real-time dynamic chemical analysis | |
US20070254374A1 (en) | Water quality analyzer | |
JPS628040A (en) | Washing apparatus | |
JP2008102068A (en) | Mercury analyzer and mercury analysis method | |
JP3290982B2 (en) | Determination of inorganic electrolytes for semiconductor processing | |
JP3749422B2 (en) | Concentration control method and concentration control device for each component in mixed fluid | |
CN111948303A (en) | Method for detecting concentration of hydroxyl radicals by using probe compound | |
JPS6316901B2 (en) | ||
US20240102960A1 (en) | Dynamic end-point total organic fluoride measurement | |
US6330819B1 (en) | Method and apparatus for calibrating a dissolved oxygen analyzer | |
US6013156A (en) | Bubble monitor for semiconductor manufacturing | |
KR20230149437A (en) | Carbon dioxide quantification system and carbon dioxide quantification method using flow monitoring and total organic carbon analyzer equipped with this | |
Fried et al. | Laser photoacoustic detection of nitrogen dioxide in the gas-phase titration of nitric oxide with ozone | |
JP3078199B2 (en) | Concentration control method and substrate processing apparatus using the same | |
CN113218890A (en) | Apparatus for the sequence analysis of silica and phosphate in aqueous solutions | |
JP2658919B2 (en) | Chemical composition monitoring method and device | |
JP2528111B2 (en) | Ozone concentration measuring method and device | |
KR20010027004A (en) | Chemical concentration control system | |
JPH0720051A (en) | Concentration measuring method | |
JPH11142332A (en) | Concentration measuring method and substrate treatment apparatus using the same | |
Bond et al. | Ion-selective electrode with microprocessor-based instrumentation for on-line monitoring of copper in plant electrolyte | |
JPH11340186A (en) | Semiconductor treating device | |
JP3234112B2 (en) | Processing solution concentration control method and processing solution concentration control device using the same | |
JP3878859B2 (en) | Flow stabilization unit and analyzer in front of it |