JPH04342166A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH04342166A
JPH04342166A JP3142502A JP14250291A JPH04342166A JP H04342166 A JPH04342166 A JP H04342166A JP 3142502 A JP3142502 A JP 3142502A JP 14250291 A JP14250291 A JP 14250291A JP H04342166 A JPH04342166 A JP H04342166A
Authority
JP
Japan
Prior art keywords
memory cell
peripheral circuit
oxide film
semiconductor device
angstroms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3142502A
Other languages
Japanese (ja)
Inventor
Kayoko Omoto
かよ子 尾本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3142502A priority Critical patent/JPH04342166A/en
Publication of JPH04342166A publication Critical patent/JPH04342166A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To cut photoengraving process by flattening a surface of each element by cutting out a difference of height between a lowest element and other elements based on the lowest element of a plurality of elements. CONSTITUTION:A step is provided in advance by a height which is higher than a peripheral circuit part to a memory cell part of a substrate 1 and a memory cell is formed thereon including a capacitor whose size is larger than the peripheral circuit part. That is, A/l is formed all over the substrate 1 by sputtering method, etc., the peripheral circuit part and the memory cell part are patterned at once by one operation of photoengraving and each of first layers of Al wirings 23, 25 are formed. Thereafter, a layer insulating film 26 is formed and second layers of Al wirings 27, 28 of the peripheral circuit part and the memory cell part are formed simultaneously by a second photoengraving in the same way as the first layers of Al wiring layers 23, 25. Thereby, a photoengraving process can be cut.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は半導体装置、特にDR
AM等のスタックトキャパシタ等の積層構造の素子を持
つ素子部と、簡単なトランジスタ等の平面的な素子を有
する半導体装置の素子間の段差の低減に関するものであ
る。
[Industrial Application Field] This invention relates to semiconductor devices, especially DR
The present invention relates to reducing the level difference between an element part having a layered structure element such as a stacked capacitor such as an AM, and an element part of a semiconductor device having a planar element such as a simple transistor.

【0002】0002

【従来の技術】図10〜図18は従来の半導体装置(D
RAM)のメモリセル部及び周辺回路部の一部を中心と
した製造工程図である。先ず図10に示すように、P型
シリコン基板1表面に熱酸化又はCVD法により約30
0オングストロームの酸化膜2を形成し、その上にCV
D法等により窒化膜を約500オングストローム形成し
、これを写真製版によりパターニングしてPチャネルト
ランジスタ部となる領域の窒化膜をエッチング除去し、
次いで100keV,5×1012/cm 程度のリン
をイオン注入し、1130℃,3時間程度の酸化及びド
ライブを行い、Nウェル3及び約5000オングストロ
ーム程度の酸化膜4を形成し、さらに酸化膜4を耐イオ
ン注入マスクとして80keV,3×1012/cm 
程度のボロンをメモリセル部及びNチャネルトランジス
タに注入する。
[Prior Art] FIGS. 10 to 18 show a conventional semiconductor device (D
FIG. 2 is a manufacturing process diagram mainly showing a part of a memory cell section and a peripheral circuit section of a RAM. First, as shown in FIG. 10, approximately 30%
An oxide film 2 with a thickness of 0 angstroms is formed, and CV
A nitride film having a thickness of approximately 500 angstroms is formed using the D method or the like, and this is patterned using photolithography to remove the nitride film in the region that will become the P-channel transistor section.
Next, phosphorus ions were implanted at 100 keV and about 5×10 12 /cm 2 , and oxidation and driving were performed at 1130° C. for about 3 hours to form an N well 3 and an oxide film 4 of about 5000 angstroms. 80keV, 3×1012/cm as ion implantation resistant mask
A certain amount of boron is implanted into the memory cell portion and the N-channel transistor.

【0003】次に1100℃で3時間程度ドライブを行
い、Pウェル5を形成し、基板表面の酸化膜2及び4を
エッチング除去し、熱酸化又はCVD法により酸化膜を
約300オングストローム形成し、さらにその上にCV
D法等により窒化膜約500オングストロームを形成し
た後、写真製版によりパターニングを行い、窒化膜のみ
をエッチング除去して窒化膜パターンを設け、素子分離
のためのチャネルカット用のボロンを3×1013/c
m 程度注入し、上記窒化膜パターンを耐酸化性マスク
として熱酸化により約5000オングストロームの素子
分離用酸化膜6を形成し、マスクとして用いた窒化膜及
びその下方の酸化膜を約300オングストロームをエッ
チングする(図11)。
Next, a P-well 5 is formed by driving at 1100° C. for about 3 hours, the oxide films 2 and 4 on the surface of the substrate are etched away, and an oxide film of about 300 angstroms is formed by thermal oxidation or CVD. Furthermore, CV
After forming a nitride film of approximately 500 angstroms by the D method, patterning is performed by photolithography, and only the nitride film is etched away to form a nitride film pattern. c.
A device isolation oxide film 6 of about 5000 angstroms is formed by thermal oxidation using the nitride film pattern as an oxidation-resistant mask, and the nitride film used as a mask and the oxide film below it are etched by about 300 angstroms. (Figure 11).

【0004】次いで熱酸化により約170オングストロ
ームの酸化膜7を全面に形成し、ゲート電極用のポリシ
リコン8を形成し、写真製版によりパターニングを行い
、ポリシリコン8をエッチングした後、レジスト等でP
チャネルトランジスタ部を覆い、1×1012/cm 
程度のリンのイオン注入を行い、N− 層9を形成し、
CVD法等により酸化膜10を約5000オングストロ
ーム形成し、レジスト等でPチャネルトランジスタ側を
覆い異方性エッチングを行い、1×1015/cm 程
度のヒ素をイオン注入法で行い、メモリセル部及びNチ
ャネルトランジスタ部にN+ 層11を形成し、さらに
Nチャネルトランジスタ部及びメモリセル部をレジスト
等で覆ってボロンを約1×1015/cm 程度イオン
注入し、P+ 層12を形成し、その上にポリシリコン
13を形成し、パターニングを行う(図12)。
Next, an oxide film 7 of approximately 170 angstroms is formed on the entire surface by thermal oxidation, a polysilicon 8 for a gate electrode is formed, patterning is performed by photolithography, the polysilicon 8 is etched, and then P is formed using a resist or the like.
Covering the channel transistor part, 1×1012/cm
A certain amount of phosphorus is ion-implanted to form an N- layer 9,
An oxide film 10 with a thickness of approximately 5000 angstroms is formed using a CVD method, etc., the P-channel transistor side is covered with a resist, etc., and anisotropic etching is performed, and arsenic of approximately 1×1015/cm 2 is ion-implanted using an ion implantation method to form a memory cell area and N. An N+ layer 11 is formed in the channel transistor section, the N channel transistor section and the memory cell section are covered with a resist, etc., boron ions are implanted at a density of about 1 x 1015/cm, a P+ layer 12 is formed, and a polyamide layer is formed on top of the N+ layer 11. Silicon 13 is formed and patterned (FIG. 12).

【0005】その後、さらにポリシリコン14を全面に
形成し、パターニングを行い、さらにその上にCVD法
等により酸化膜15を形成し、パターニングを行ない所
定の形状とする(図13)。
[0005] Thereafter, polysilicon 14 is further formed on the entire surface and patterned, and then an oxide film 15 is formed thereon by CVD or the like and patterned into a predetermined shape (FIG. 13).

【0006】その後、メモリセル部にキャパシタの一方
の電極となるポリシリコンパターン16を形成し、10
0オングストローム程度の酸化膜17を介してキャパシ
タの他方の電極となるポリシリコンパターン18を形成
し、その上にCVD法等により層間酸化膜19を形成し
た後、写真製版により各素子部の所定の部分にコンタク
トホールを形成する(図14)。
Thereafter, a polysilicon pattern 16 that will become one electrode of the capacitor is formed in the memory cell portion, and
A polysilicon pattern 18 that will become the other electrode of the capacitor is formed through an oxide film 17 of about 0 angstroms, and an interlayer oxide film 19 is formed thereon by CVD or the like. A contact hole is formed in the portion (FIG. 14).

【0007】さらに、周辺回路部の各コンタクトホール
にタングステン20埋め込む一方、メモリセル部には配
線用ポリシリコン21を形成し、全面に層間酸化膜22
を形成した後、周辺回路部のタングステン20上方の層
間酸化膜22に再度コンタクトホールを形成し、タング
ステン20を埋め込む(図15)。
Further, each contact hole in the peripheral circuit section is filled with tungsten 20, while polysilicon 21 for wiring is formed in the memory cell section, and an interlayer oxide film 22 is formed on the entire surface.
After forming the contact hole, a contact hole is again formed in the interlayer oxide film 22 above the tungsten 20 in the peripheral circuit section, and the tungsten 20 is buried therein (FIG. 15).

【0008】次にスパッタ法等で基板全面にAlを形成
し、写真製版によりレジスト24を用いて周辺回路の1
層目のAl配線23を形成する(図16)。またさらに
、写真製版によりメモリセル部の1層目のAl配線25
を形成する(図17)。
Next, Al is formed on the entire surface of the substrate by sputtering or the like, and one part of the peripheral circuit is formed using a resist 24 by photolithography.
A layer of Al wiring 23 is formed (FIG. 16). Furthermore, the first layer of Al wiring 25 in the memory cell portion is photoengraved.
(Figure 17).

【0009】その後上記レジスト24を除去した後、層
間酸化膜26を形成し、1層目のAl配線23,25と
同様、周辺回路部,メモリセル部の2回の写真製版によ
り2層目のAl配線27,28を形成する(図18)。
Thereafter, after removing the resist 24, an interlayer oxide film 26 is formed, and as with the first layer Al wirings 23 and 25, the second layer is photolithographically processed twice for the peripheral circuit area and the memory cell area. Al wirings 27 and 28 are formed (FIG. 18).

【0010】次に動作について説明する。メモリセル部
において、ゲート電極8がトランスファゲートとなり、
ポリ配線21がビット線となり、ポリシリコンパターン
16,酸化膜17,ポリシリコンパターン18がキャパ
シタを構成するものとなっており、上記トランスファゲ
ート(ゲート電極)8にhigh電位(通常5V)を与
え、トランジスタをONさせ、キャパシタの電位をビッ
ト線(ポリ配線21)から読み出す。
Next, the operation will be explained. In the memory cell section, the gate electrode 8 serves as a transfer gate,
The polysilicon pattern 16, oxide film 17, and polysilicon pattern 18 constitute a capacitor, and a high potential (usually 5 V) is applied to the transfer gate (gate electrode) 8. The transistor is turned on and the potential of the capacitor is read from the bit line (poly wiring 21).

【0011】[0011]

【発明が解決しようとする課題】従来の半導体装置は以
上のように構成されており、メモリセルのキャパシタが
トランジスタの上に積層される構造になっているので、
Al配線工程時のメモリセル部と周辺回路部の段差(図
18参照)が1μm程度にもなり、露光時の焦点ずれが
生じることから配線の際にメモリセル部と周辺回路部を
別々の写真製版で配線する必要があり、上述したような
例ではAl配線層は2層あるので、写真製版工程を4回
行わなければならないという問題点があった。
[Problem to be Solved by the Invention] The conventional semiconductor device is constructed as described above, and has a structure in which the capacitor of the memory cell is stacked on the transistor.
During the Al wiring process, the difference in level between the memory cell part and the peripheral circuit part (see Figure 18) is about 1 μm, which causes a focus shift during exposure, so the memory cell part and peripheral circuit part are photographed separately during wiring. Wiring must be done by plate making, and since there are two Al wiring layers in the example described above, there was a problem in that the photolithography process had to be performed four times.

【0012】この発明は上記のような問題点を解消する
ためになされたもので、写真製版工程を削減できる半導
体装置を得ることを目的としている。
The present invention has been made to solve the above-mentioned problems, and aims to provide a semiconductor device that can reduce the photolithography process.

【0013】[0013]

【課題を解決するための手段】この発明に係る半導体装
置は、同一基板上に形成された高さの異なる複数の素子
のうちのある素子が形成される基板領域を、上記複数の
素子のうち最も高さの低い素子を基準として、当該素子
の高さと前記最も低い素子の高さとの差分だけ切り欠い
て素子を形成するようにしたものである。
[Means for Solving the Problems] A semiconductor device according to the present invention includes a substrate region where a certain element is formed among a plurality of elements formed on the same substrate and having different heights. The element is formed by cutting out the difference between the height of the element and the height of the lowest element, with the element having the lowest height as a reference.

【0014】[0014]

【作用】この発明においては、最も高さの低い素子を基
板表面に形成し、他の素子が形成される基板領域を、上
記最も高さの低い素子を基準としてその高さの差分だけ
欠り切いて他の素子をそれぞれ設けるようにしたから、
各素子間の表面が平坦となる。
[Operation] In this invention, the element with the lowest height is formed on the surface of the substrate, and the area of the substrate where other elements are formed is cut by the difference in height with respect to the element with the lowest height. I cut it out and installed other elements, so
The surface between each element becomes flat.

【0015】[0015]

【実施例】図1〜9は本発明の一実施例による半導体装
置のメモリセル部及び周辺回路部の一部をその製造フロ
ーに従って示した断面図である。図において図10ない
し図18と同一符号は同一または相当部分を示し、まず
P型シリコン基板1上に熱酸化又はCVD法により、酸
化膜を約500オングストローム形成し、その上CVD
法等により約1000オングストロームの窒化膜を形成
し、写真製版により窒化膜をパターニングして窒化膜を
耐酸化性マスクとし、約2μmの熱酸化膜29を形成し
たのち窒化膜マスクをエッチング除去する(図1)。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1 to 9 are cross-sectional views showing a part of a memory cell section and a peripheral circuit section of a semiconductor device according to an embodiment of the present invention according to its manufacturing flow. In the figures, the same reference numerals as in FIGS. 10 to 18 indicate the same or corresponding parts. First, an oxide film of about 500 angstroms is formed on a P-type silicon substrate 1 by thermal oxidation or CVD method, and then CVD
A nitride film of approximately 1,000 angstroms is formed by a method such as a method, and the nitride film is patterned by photolithography to use the nitride film as an oxidation-resistant mask. After forming a thermal oxide film 29 of approximately 2 μm, the nitride film mask is removed by etching ( Figure 1).

【0016】次に上記熱酸化膜29をエッチング除去し
基板1のメモリセル部となる領域に段差dを形成し、熱
酸化又はCVD法により約300オングストロームの酸
化膜2を形成し、その上にCVD法等により窒化膜を約
500オングストローム形成し、写真製版によりパター
ニングを行い、Pチャネルトランジスタ部の窒化膜のみ
をエッチング除去し、100keV,5×1012/c
m程度のリンをイオン注入し、1130℃,3時間程度
の酸化及びドライブを行い、Pチャネルトランジスタ部
のNウェル3及び約5000オングストロームの酸化膜
4を形成し、該酸化膜4を耐イオン注入マスクとして8
0keV,3×1012/cm 程度のボロンをメモリ
セル部及びNチャネルトランジスタ部に注入する(図2
)。
Next, the thermal oxide film 29 is removed by etching to form a step d in the region of the substrate 1 that will become the memory cell portion, and an oxide film 2 of about 300 angstroms is formed by thermal oxidation or CVD, and on top of that a step d is formed. A nitride film with a thickness of approximately 500 angstroms was formed by CVD, etc., patterned by photolithography, and only the nitride film in the P-channel transistor area was etched away.
After ion-implanting approximately 5,000 angstroms of phosphorus, oxidation and driving were performed at 1,130°C for approximately 3 hours to form an N-well 3 of the P-channel transistor portion and an oxide film 4 of approximately 5,000 angstroms, and the oxide film 4 was made resistant to ion implantation. 8 as a mask
Boron of about 0 keV, 3 x 1012/cm2 is implanted into the memory cell part and the N-channel transistor part (Fig. 2
).

【0017】次に1100℃で3時間程度ドライブを行
い、Nチャネルトランジスタ部のPウェル5を形成し、
上記酸化膜2及び4をエッチング除去し、熱酸化又はC
VD法により約300オングストロームの酸化膜を形成
し、その上にCVD法等により約500オングストロー
ムの窒化膜を形成し、これを写真製版によりパターニン
グを行いエッチングし、素子分離のためのチャネルカッ
ト用のボロンを3×1013/cm 程度注入し、窒化
膜パターンを耐酸化性マスクとして熱酸化して約500
0オングストロームの素子分離用酸化膜6を形成し、マ
スクとして用いた窒化膜及び酸化膜約300オングスト
ロームをエッチングし、熱酸化により約170オングス
トロームの酸化膜7を全面に形成し、ゲート電極用のポ
リシリコンを形成し、メモリセル部のみ写真製版により
レジスト24を用いてパターニングを行い、ゲートポリ
シリコンパターン8を形成する(図3)。さらに周辺回
路部を写真製版によりレジスト24を用いてパターニン
グを行い、周辺回路部のゲートポリシリコンパターン3
0を形成する(図4)。
Next, driving was performed at 1100° C. for about 3 hours to form the P well 5 of the N channel transistor section.
The above oxide films 2 and 4 are removed by etching, and thermal oxidation or carbon
An oxide film of about 300 angstroms is formed by the VD method, and a nitride film of about 500 angstroms is formed on it by the CVD method, etc., and this is patterned and etched by photolithography to form a channel cut for element isolation. Boron was implanted at a rate of about 3 x 1013/cm2, and the nitride film pattern was used as an oxidation-resistant mask to thermally oxidize the
An oxide film 6 of 0 angstroms thick is formed, the nitride film used as a mask and the oxide film of about 300 angstroms are etched, and an oxide film 7 of about 170 angstroms is formed on the entire surface by thermal oxidation. Silicon is formed, and only the memory cell portion is patterned by photolithography using a resist 24 to form a gate polysilicon pattern 8 (FIG. 3). Furthermore, the peripheral circuit area is patterned using a resist 24 by photolithography, and the gate polysilicon pattern 3 of the peripheral circuit area is patterned.
0 (Figure 4).

【0018】次に、レジスト等でPチャネルトランジス
タ部を覆い、1×1012/cm のリンのイオン注入
を行い、N− 層9を形成し、CVD法等により酸化膜
10を約5000オングストローム形成し、レジスト等
でPチャネルトランジスタ側を覆い、異方性エッチング
を行い、1×1015/cm 程度のヒ素をイオン注入
法で行い、N+ 層11を形成し、さらにNチャネルト
ランジスタ部及びメモリセル部をレジスト等で覆ってボ
ロンを約1×1015/cm イオン注入し、P+ 層
12を形成し、その上にポリシリコン13を形成し、パ
ターニングを行う(図5)。
Next, the P-channel transistor portion is covered with a resist or the like, phosphorus ions are implanted at a density of 1×10 12 /cm 2 to form an N − layer 9, and an oxide film 10 with a thickness of approximately 5000 angstroms is formed by CVD or the like. , cover the P-channel transistor side with a resist or the like, perform anisotropic etching, perform ion implantation of arsenic of about 1×1015/cm2 to form the N+ layer 11, and then cover the N-channel transistor part and the memory cell part. Covering with resist or the like, boron ions are implanted at a density of about 1×10 15 /cm to form a P+ layer 12, and polysilicon 13 is formed thereon and patterned (FIG. 5).

【0019】その後、さらにポリシリコン14を形成し
パターニングを行い、その上にCVD法等により酸化膜
15を形成し、パターニングを行う(図6)。その後、
メモリセル部にキャパシタの一方の電極となるポリシリ
コンパターン16を形成し、さらに100オングストロ
ーム程度の酸化膜17を介してキャパシタの他方の電極
となるポリシリコンパターン18を形成し、その上にC
VD法等により層間酸化膜19を形成し、写真製版によ
り各素子部の所定の部分にコンタクトホールを形成する
(図7)。
Thereafter, polysilicon 14 is further formed and patterned, and an oxide film 15 is formed thereon by CVD or the like and patterned (FIG. 6). after that,
A polysilicon pattern 16 that will become one electrode of the capacitor is formed in the memory cell portion, and a polysilicon pattern 18 that will become the other electrode of the capacitor is further formed with an oxide film 17 of about 100 angstroms interposed therebetween.
An interlayer oxide film 19 is formed by a VD method or the like, and contact holes are formed in predetermined portions of each element part by photolithography (FIG. 7).

【0020】さらに周辺回路部のコンタクトホールにタ
ングステン20を埋め込む一方、メモリセル部には配線
用ポリシリコン21を形成し、全面に層間酸化膜22を
形成した後、周辺回路部のタングステン20上方の層間
酸化膜22に再度コンタクトホールを形成し、タングス
テン20を埋め込む(図8)。
Furthermore, while tungsten 20 is buried in the contact hole in the peripheral circuit section, polysilicon 21 for wiring is formed in the memory cell section, and after forming an interlayer oxide film 22 on the entire surface, the tungsten 20 above the tungsten 20 in the peripheral circuit section is formed. A contact hole is again formed in the interlayer oxide film 22, and tungsten 20 is filled in it (FIG. 8).

【0021】次にスパッタ法等で基板全面にAlを形成
し、1回の写真製版により周辺回路部とメモリセル部を
一度にパターニングし、それぞれの1層目のAl配線2
3,25を形成した後、層間酸化膜26を形成し、1層
目のAl配線層と同様、2回目の写真製版で周辺回路部
とメモリセル部の2層目のAl配線27,28を同時に
形成する(図9)。
Next, Al is formed on the entire surface of the substrate by sputtering or the like, and the peripheral circuit part and the memory cell part are patterned at the same time by one photolithography process.
After forming 3 and 25, an interlayer oxide film 26 is formed, and the second layer of Al wiring 27 and 28 in the peripheral circuit area and memory cell area is formed by a second photolithography process, similar to the first Al wiring layer. formed at the same time (Fig. 9).

【0022】このように本実施例によれば基板1のメモ
リセル部に、周辺回路部の高さよりも高くなる分だけ段
差dを予め設け、この上に周辺回路部よりもかさ高なキ
ャパシタを含むメモリセルを形成するようにしたから、
両素子間の上面が平坦となり、素子形成後の配線工程に
おいて2回の写真製版工程で第1及び第2層目のAl配
線層を形成することができる。
As described above, according to this embodiment, a step d is provided in advance in the memory cell portion of the substrate 1 by an amount higher than the height of the peripheral circuit portion, and a capacitor that is bulkier than the peripheral circuit portion is placed on top of the step d. Since we formed a memory cell containing
The upper surface between both elements becomes flat, and the first and second Al wiring layers can be formed in two photolithography processes in the wiring process after forming the element.

【0023】動作については従来例と同一であるためこ
こでは省略する。なお、上記実施例では、半導体装置と
してDRAMを例にとり、メモリセル部と周辺回路部の
段差がある場合に適用したが、メモリセル以外でもスタ
ックトキャパシタやTFT(Thin film Tr
ansistor) など3次元的に素子を積層して形
成していく部分と2次元(平面的)に素子形成する部分
を持つ半導体装置であれば同様の効果を奏する。
Since the operation is the same as that of the conventional example, a description thereof will be omitted here. In the above embodiment, a DRAM is used as an example of a semiconductor device, and the application is applied to a case where there is a step difference between a memory cell section and a peripheral circuit section.
A similar effect can be achieved if the semiconductor device has a part in which elements are formed three-dimensionally and a part in which elements are formed two-dimensionally (planarly), such as a semiconductor device such as a semiconductor device.

【0024】[0024]

【発明の効果】以上のように、この発明に係る半導体装
置によれば、最も高さの低い素子を基板表面に形成し、
他の素子が形成される基板領域を、上記最も高さの低い
素子を基準としてその高さの差分だけ欠り切いて他の素
子をそれぞれ設けるようにしたから、各素子間の表面が
平坦となり、後工程の配線の写真製版を各素子間同時に
行うことができ製造工程を簡略化することができるとと
もに、デバイスの縮小化を図ることができるという効果
がある。
[Effects of the Invention] As described above, according to the semiconductor device of the present invention, the element with the lowest height is formed on the surface of the substrate,
Since the substrate area where other elements are formed is cut out by the difference in height from the above-mentioned lowest element as a reference, and each other element is provided, the surface between each element is flat. This has the effect that the post-process wiring photolithography can be performed simultaneously for each element, simplifying the manufacturing process, and making it possible to reduce the size of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の一実施例による半導体装置のメモリ
セル部及び周辺回路部付近の製造フローを示す断面図。
FIG. 1 is a cross-sectional view showing a manufacturing flow around a memory cell portion and a peripheral circuit portion of a semiconductor device according to an embodiment of the present invention.

【図2】この発明の一実施例による半導体装置のメモリ
セル部及び周辺回路部付近の製造フローを示す断面図。
FIG. 2 is a cross-sectional view showing a manufacturing flow around a memory cell portion and a peripheral circuit portion of a semiconductor device according to an embodiment of the present invention.

【図3】この発明の一実施例による半導体装置のメモリ
セル部及び周辺回路部付近の製造フローを示す断面図。
FIG. 3 is a cross-sectional view showing a manufacturing flow around a memory cell portion and a peripheral circuit portion of a semiconductor device according to an embodiment of the present invention.

【図4】この発明の一実施例による半導体装置のメモリ
セル部及び周辺回路部付近の製造フローを示す断面図。
FIG. 4 is a cross-sectional view showing a manufacturing flow around a memory cell portion and a peripheral circuit portion of a semiconductor device according to an embodiment of the present invention.

【図5】この発明の一実施例による半導体装置のメモリ
セル部及び周辺回路部付近の製造フローを示す断面図。
FIG. 5 is a cross-sectional view showing a manufacturing flow around a memory cell portion and a peripheral circuit portion of a semiconductor device according to an embodiment of the present invention.

【図6】この発明の一実施例による半導体装置のメモリ
セル部及び周辺回路部付近の製造フローを示す断面図。
FIG. 6 is a cross-sectional view showing a manufacturing flow around a memory cell portion and a peripheral circuit portion of a semiconductor device according to an embodiment of the present invention.

【図7】この発明の一実施例による半導体装置のメモリ
セル部及び周辺回路部付近の製造フローを示す断面図。
FIG. 7 is a cross-sectional view showing a manufacturing flow around a memory cell portion and a peripheral circuit portion of a semiconductor device according to an embodiment of the present invention.

【図8】この発明の一実施例による半導体装置のメモリ
セル部及び周辺回路部付近の製造フローを示す断面図。
FIG. 8 is a cross-sectional view showing a manufacturing flow around a memory cell portion and a peripheral circuit portion of a semiconductor device according to an embodiment of the present invention.

【図9】この発明の一実施例による半導体装置のメモリ
セル部及び周辺回路部付近の製造フローを示す断面図。
FIG. 9 is a cross-sectional view showing a manufacturing flow around a memory cell portion and a peripheral circuit portion of a semiconductor device according to an embodiment of the present invention.

【図10】従来の半導体装置のメモリセル部及び周辺回
路部付近の製造フローを示す断面図。
FIG. 10 is a cross-sectional view showing a manufacturing flow around a memory cell section and a peripheral circuit section of a conventional semiconductor device.

【図11】従来の半導体装置のメモリセル部及び周辺回
路部付近の製造フローを示す断面図。
FIG. 11 is a cross-sectional view showing a manufacturing flow around a memory cell portion and a peripheral circuit portion of a conventional semiconductor device.

【図12】従来の半導体装置のメモリセル部及び周辺回
路部付近の製造フローを示す断面図。
FIG. 12 is a cross-sectional view showing a manufacturing flow around a memory cell portion and a peripheral circuit portion of a conventional semiconductor device.

【図13】従来の半導体装置のメモリセル部及び周辺回
路部付近の製造フローを示す断面図。
FIG. 13 is a cross-sectional view showing a manufacturing flow around a memory cell portion and a peripheral circuit portion of a conventional semiconductor device.

【図14】従来の半導体装置のメモリセル部及び周辺回
路部付近の製造フローを示す断面図。
FIG. 14 is a cross-sectional view showing a manufacturing flow around a memory cell portion and a peripheral circuit portion of a conventional semiconductor device.

【図15】従来の半導体装置のメモリセル部及び周辺回
路部付近の製造フローを示す断面図。
FIG. 15 is a cross-sectional view showing a manufacturing flow around a memory cell section and a peripheral circuit section of a conventional semiconductor device.

【図16】従来の半導体装置のメモリセル部及び周辺回
路部付近の製造フローを示す断面図。
FIG. 16 is a cross-sectional view showing a manufacturing flow around a memory cell portion and a peripheral circuit portion of a conventional semiconductor device.

【図17】従来の半導体装置のメモリセル部及び周辺回
路部付近の製造フローを示す断面図。
FIG. 17 is a cross-sectional view showing a manufacturing flow around a memory cell section and a peripheral circuit section of a conventional semiconductor device.

【図18】従来の半導体装置のメモリセル部及び周辺回
路部付近の製造フローを示す断面図。
FIG. 18 is a cross-sectional view showing a manufacturing flow around a memory cell portion and a peripheral circuit portion of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1    P型シリコン基板 2    酸化膜 3    Nウェル 4    熱酸化膜 5    Pウェル 6    素子分離酸化膜 7    ゲート酸化膜 8    ゲートポリシリコン 9    N− 拡散層 10  酸化膜 11  N+ 拡散層 12  P+ 拡散層 13  ポリシリコン 14  ポリシリコン 15  酸化膜 16  ポリシリコン 17  酸化膜 18  ポリシリコン 19  層間酸化膜 20  タングステン 21  ポリシリコン 22  層間酸化膜 23  Al配線(1層目,周辺回路部)24  レジ
スト 25  Al配線(1層目,メモリセル部)26  層
間酸化膜 27  Al配線(2層目,周辺回路部)28  Al
配線(2層目,メモリセル部)29  酸化膜
1 P-type silicon substrate 2 Oxide film 3 N-well 4 Thermal oxide film 5 P-well 6 Element isolation oxide film 7 Gate oxide film 8 Gate polysilicon 9 N- Diffusion layer 10 Oxide film 11 N+ Diffusion layer 12 P+ Diffusion layer 13 Polysilicon 14 Polysilicon 15 Oxide film 16 Polysilicon 17 Oxide film 18 Polysilicon 19 Interlayer oxide film 20 Tungsten 21 Polysilicon 22 Interlayer oxide film 23 Al wiring (first layer, peripheral circuit part) 24 Resist 25 Al wiring (first layer, Memory cell part) 26 Interlayer oxide film 27 Al wiring (second layer, peripheral circuit part) 28 Al
Wiring (2nd layer, memory cell part) 29 Oxide film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  同一基板上に各素子の基板面からの高
さの異なる複数の素子を有する半導体装置において、上
記複数の素子のうちのある素子が形成される基板領域を
、上記複数の素子のうち最も高さの低い素子を基準とし
て、当該素子の高さと前記最も低い素子の高さとの差分
だけ切り欠いて素子を形成したことを特徴とする半導体
装置。
1. In a semiconductor device having a plurality of elements on the same substrate, each element having a different height from the substrate surface, a substrate region where a certain element of the plurality of elements is formed is defined by a region of the substrate where a certain element of the plurality of elements is formed. 1. A semiconductor device, characterized in that an element is formed by cutting out a difference between the height of the element and the height of the lowest element, with the element having the lowest height as a reference.
JP3142502A 1991-05-17 1991-05-17 Semiconductor device Pending JPH04342166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3142502A JPH04342166A (en) 1991-05-17 1991-05-17 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3142502A JPH04342166A (en) 1991-05-17 1991-05-17 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH04342166A true JPH04342166A (en) 1992-11-27

Family

ID=15316835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3142502A Pending JPH04342166A (en) 1991-05-17 1991-05-17 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH04342166A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0606758A1 (en) * 1992-12-30 1994-07-20 Samsung Electronics Co., Ltd. SOI transistor DRAM device and method of producing the same
US6163046A (en) * 1996-08-27 2000-12-19 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of fabricating semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0606758A1 (en) * 1992-12-30 1994-07-20 Samsung Electronics Co., Ltd. SOI transistor DRAM device and method of producing the same
US6163046A (en) * 1996-08-27 2000-12-19 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of fabricating semiconductor device

Similar Documents

Publication Publication Date Title
US5019527A (en) Method of manufacturing non-volatile semiconductor memories, in which selective removal of field oxidation film for forming source region and self-adjusted treatment for forming contact portion are simultaneously performed
JPH0653412A (en) Semiconductor memory device and fabrication thereof
JPH0888336A (en) Semiconductor storage device and manufacture thereof
JPS6318673A (en) Manufacture of semiconductor device
GB2315159A (en) Semiconductor device
US5114873A (en) Method for manufacturing a stacked capacitor DRAM cell
US6300178B1 (en) Semiconductor device with self-aligned contact and manufacturing method thereof
JP4148615B2 (en) Manufacturing method of semiconductor device
JP2945964B2 (en) Wiring structure of semiconductor element
JP2990497B2 (en) Method for manufacturing CMOS analog semiconductor device
JP2853426B2 (en) Method for manufacturing semiconductor memory device
JPH04342166A (en) Semiconductor device
JPH02143456A (en) Manufacture of lamination type memory cell
JP3034351B2 (en) Method for manufacturing semiconductor device
JPH04348070A (en) Semiconductor device and its manufacture
JP3371196B2 (en) Pattern formation method
JPH05218439A (en) Semiconductor device and manufacture thereof
JP3235091B2 (en) Method for manufacturing MIS type semiconductor device
JPH0666438B2 (en) Method for manufacturing semiconductor device
JPH0410662A (en) Manufacture of semiconductor device
JPS6244862B2 (en)
JP3317857B2 (en) Semiconductor device and manufacturing method thereof
JPH0661361A (en) Semiconductor device and manufacture thereof
KR101051796B1 (en) Manufacturing Method of Analog Semiconductor Device
JP2874816B2 (en) Method for manufacturing semiconductor device