JPH04341174A - Production of useful substance by product-inhibiting reaction or reversible reaction and its system - Google Patents

Production of useful substance by product-inhibiting reaction or reversible reaction and its system

Info

Publication number
JPH04341174A
JPH04341174A JP3113008A JP11300891A JPH04341174A JP H04341174 A JPH04341174 A JP H04341174A JP 3113008 A JP3113008 A JP 3113008A JP 11300891 A JP11300891 A JP 11300891A JP H04341174 A JPH04341174 A JP H04341174A
Authority
JP
Japan
Prior art keywords
reaction
moving bed
liquid
producing
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3113008A
Other languages
Japanese (ja)
Other versions
JP2888667B2 (en
Inventor
Kenji Hashimoto
橋本健治
Yoshito Shirai
白井義人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP3113008A priority Critical patent/JP2888667B2/en
Publication of JPH04341174A publication Critical patent/JPH04341174A/en
Application granted granted Critical
Publication of JP2888667B2 publication Critical patent/JP2888667B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PURPOSE:To continuously carry out production with high productivity by using reaction for producing a useful substance so as to contain the useful substance in a reaction solution containing three or more ingredients present therein, according to product-inhibitory reaction or reversible reaction. CONSTITUTION:A step for producing a reaction solution containing three or more ingredients present therein is combined with a step for chromatographically separating the ingredients in the aforementioned reaction solution into the three portions and the portion containing the raw material among the separated portions is then returned to the reaction process. Dextran and fructose are produced by enzymic reaction using sucrose as a raw material and the fructose and dextran are recovered in a pseudo-moving bed. The portion containing the sucrose and dextran is then returned to the reaction process. The aforementioned operations are continuously preformed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、生成物阻害反応あるい
は可逆反応により有用物質を効率よく製造する方法及び
装置、代表的にはシュクロースからデキストランを生成
する酵素反応等とクロマト分離操作を組み合わせること
によって、有用物質を連続的にかつ生産性高く製造する
方法及び装置に関する。
[Industrial Application Field] The present invention relates to a method and apparatus for efficiently producing useful substances through a product inhibition reaction or a reversible reaction, typically combining an enzymatic reaction for producing dextran from sucrose with a chromatographic separation operation. The present invention relates to a method and apparatus for producing useful substances continuously and with high productivity.

【0002】0002

【従来の技術】本発明が対象とする技術を、酵素反応に
よりデキストランを製造する場合を代表例として以下説
明する。
BACKGROUND OF THE INVENTION The technology to which the present invention is directed will be explained below, taking as a typical example the case of producing dextran by enzymatic reaction.

【0003】デキストランは、分子量が約100万前後
のD−グルコースからなる多糖であり、乳酸菌の産生す
る菌体外酵素(デキストランスクラーゼ)によりシュク
ロース(蔗糖)から合成される物質として知られ、例え
ば血液増量剤や代用血漿として医療用に広く用いられて
いる。
[0003] Dextran is a polysaccharide composed of D-glucose with a molecular weight of about 1 million, and is known as a substance synthesized from sucrose by an extracellular enzyme (dextransucrase) produced by lactic acid bacteria. It is widely used medically as a blood expander and plasma substitute.

【0004】このデキストランは、 (シュクロース)n  →  デキストラン+果糖の反
応により、上述のように種々の細菌あるいはこれから得
られるデキストランスクラーゼによってシュクロースを
基質として合成される粘性物質であり、従来は所定の培
地でこの反応を行なわせ、得られた培養液を濾過し、ア
ルコールを加えて、生じた沈殿を精製することで製造さ
れていた。
[0004] This dextran is a viscous substance that is synthesized using sucrose as a substrate by various bacteria or dextransucrase obtained from it, as mentioned above, through the reaction of (sucrose)n → dextran + fructose. It was produced by carrying out this reaction in a medium, filtering the resulting culture solution, adding alcohol, and purifying the resulting precipitate.

【0005】このような従来の製造方法は、培養、濾過
、沈殿、精製の各工程を必要とする回分式の方式なため
連続的な生産ができず生産性の向上には限界があった。 また上記の酵素反応は、従来から知られているように副
生物である果糖が酵素反応を阻害する生成物阻害反応で
あるため、培養液として回収した液中のデキストラン濃
度をある程度以上にできないという問題もあって、高い
生産性を得ることは困難であるという難点もあった。
[0005] Such conventional production methods are batch-type methods that require the steps of culturing, filtration, precipitation, and purification, and therefore cannot be produced continuously, and there is a limit to productivity improvement. In addition, the above enzymatic reaction is a product-inhibiting reaction in which the byproduct fructose inhibits the enzymatic reaction, so it is said that the concentration of dextran in the culture solution collected cannot exceed a certain level. There were also problems in that it was difficult to achieve high productivity.

【0006】ところで上記のシュクロースからデキスト
ラン及び果糖を生成するような3以上の成分を含む多成
分系に関するものではないが、グルコースから異性化し
た果糖を生成する反応に関して、反応器と擬似移動層型
のクロマト分離装置を組み合わせて反応と分離を連続的
に行なわせると共に、反応の転化率を向上させるという
報告(橋本氏、白井氏、樋口氏:化学工学会山口大会,
講演要旨集p217;(1990))がある。この報告
では、擬似移動層の系内に、酵素反応器を直列にかつ分
離塔と交互に設置した装置について記述されており、従
来のバッチ方式に比べて連続した生産が可能であるとい
う点で優れている。
By the way, although this does not concern a multicomponent system containing three or more components, such as the production of dextran and fructose from sucrose, it concerns the reaction of producing isomerized fructose from glucose. A report that combines a type of chromatographic separation device to perform continuous reaction and separation and improve the conversion rate of the reaction (Mr. Hashimoto, Mr. Shirai, Mr. Higuchi: Society of Chemical Engineers of Japan Yamaguchi Conference,
There is a collection of lecture abstracts p217; (1990)). This report describes a device in which enzyme reactors are installed in series and alternating with separation towers within a simulated moving bed system, which has the advantage of enabling continuous production compared to conventional batch systems. Are better.

【0007】そこで、上記のようなデキストランを含む
3以上の成分を含む混合液を製造する場合にも、同報告
の方法を適用して生産性の向上を図ることが考えられる
ところとなるが、単純には同方法をそのまま適用するこ
とはできない。その理由は、同報告の方法は、一つの原
料成分から一つの反応生成物が生成される方法に関する
ものであって、上記のように3以上の成分が混在する混
合液から原料成分や生成物を分離する操作に単純に適用
できず、しかも反応器と組み合わせることで3以上の成
分を区分できる技術も従来知られてないかったからであ
る。
[0007] Therefore, when producing a mixed solution containing three or more components including dextran as described above, it may be possible to apply the method of the same report to improve productivity. The same method cannot be simply applied as is. The reason is that the method in the same report is related to a method in which one reaction product is produced from one raw material component, and as mentioned above, raw material components and products are produced from a mixed liquid containing three or more components. This is because it cannot be simply applied to an operation for separating components, and there has been no known technology that can separate three or more components by combining it with a reactor.

【0008】またそれだけでなく、触媒反応や酵素反応
等の生成物阻害反応あるいは可逆反応については、反応
形態として生成物阻害により、反応がある程度以上進行
しないで平衡になる反応が多く、そのことが生産性の向
上の大きな制約となっている側面があり、そこで反応平
衡を生成物側に偏らせて転化率を高くし生産性の向上を
図る検討が従来から多くされていたが、これに有効な操
作、例えば生成物を反応系から連続的に分離するような
操作、を工業的な装置,設備で実施することは容易でな
いという問題もあった。また原料の有効利用のために、
反応液から生成物を分離し残余の原料を再利用すること
も従来からよく行なわれている。
[0008] In addition, in the case of product inhibition reactions or reversible reactions such as catalytic reactions and enzymatic reactions, there are many reactions in which equilibrium occurs without the reaction proceeding beyond a certain level due to product inhibition. This is a major constraint on improving productivity, and many studies have traditionally focused on biasing the reaction equilibrium toward the product side to increase the conversion rate and improve productivity. There is also a problem in that it is not easy to carry out such operations, such as operations for continuously separating the product from the reaction system, using industrial equipment and equipment. In addition, for the effective use of raw materials,
It has also been a common practice to separate the product from the reaction solution and reuse the remaining raw material.

【0009】しかし上述したような種々のいずれの対策
も、生成物と原料が3以上の成分として含まれる多成分
系の液を対象としてまでは検討されておらず、従来方法
をこのような多成分系に適用することは極めて困難な場
合が多く、せいぜいバッチ方式の処理において、混合液
から生成物を分離した後の原料成分を原料として再利用
して原料の利用効率を向上することが考えられている程
度が現状であった。
However, none of the various countermeasures described above has been studied for multi-component liquids containing products and raw materials as three or more components, and conventional methods cannot be applied to such multi-component liquids. It is often extremely difficult to apply it to component systems, and at best, it is considered to improve the efficiency of raw material utilization by reusing the raw material components as raw materials after separating the product from the mixed liquid in batch-type processing. The current situation was to the extent that

【0010】なお以上のような原料から生成物への転化
率がある程度以上に進行せず、しかも3以上の成分を含
む多成分系の液から目的物質を分離しなければならない
という困難な問題を包含する反応系についての同様の問
題は、上記のデキストランを製造する場合に限られたも
のではなく、他にも種々例示される。例えば、糖化澱粉
を原料として製造されるサイクロデキストリン(以下C
Dと略記する)は、疎水性物質を包接し条件が異なると
ころで放出するため食品添加物等に使用される物質とし
て一般によく知られたものであり、その製造は一般にC
GTaseを使用して行なわれているが、この反応はC
Dが約50%前後で平衡に達してしまうため上述と同様
の問題がある。すなわち従来からその製造法として採用
されている回分式の操作では原料の利用効率が低い。そ
のため反応液からUF膜等により糖化澱粉を分離回収す
ることも行なわれているが、これでは原料の再利用はで
きても連続的なα−CD,β−CD,γ−CDの製造を
実現できないから、本質的な経済性の改善等は満足され
ない。
[0010] Furthermore, the conversion rate from raw materials to products as described above does not proceed beyond a certain level, and moreover, there is the difficult problem that the target substance must be separated from a multicomponent liquid containing three or more components. Similar problems regarding the reaction system involved are not limited to the case of producing the above-mentioned dextran, but are exemplified in various other ways. For example, cyclodextrin (C
(abbreviated as D) is generally well known as a substance used in food additives because it clathrates hydrophobic substances and releases them under different conditions, and its production is generally carried out by C.
Although this reaction is carried out using GTase, C
Since equilibrium is reached when D is around 50%, there is a problem similar to that described above. That is, the batch-type operation that has been conventionally adopted as a manufacturing method has low raw material utilization efficiency. For this reason, saccharified starch is separated and recovered from the reaction solution using a UF membrane, etc., but this method allows the raw materials to be reused, but it is not possible to continuously produce α-CD, β-CD, and γ-CD. Since this is not possible, essential economic improvements cannot be achieved.

【0011】また、シュクロースを塩酸,硫酸等の鉱酸
や強酸性陽イオン交換樹脂に接触させ、酸分解により果
糖と葡萄糖を製造する方法も一般に行なわれており、得
られた製品は転化糖として利用したり、果糖と葡萄糖を
分離してオリゴ糖の製造原料として、あるいは医療用と
して従来から利用されている。しかしこの酸分解の反応
も一般的には60%程度以上には進まない。
[0011] In addition, a method of producing fructose and glucose by acid decomposition by contacting sucrose with mineral acids such as hydrochloric acid or sulfuric acid or a strongly acidic cation exchange resin is also commonly used, and the resulting product is an invert sugar. It has traditionally been used as a raw material for producing oligosaccharides by separating fructose and glucose, or for medical purposes. However, this acid decomposition reaction generally does not proceed to more than about 60%.

【0012】0012

【発明が解決しようとする課題】このように、酵素反応
や触媒反応等の生成物阻害反応や可逆反応によって有用
物質を製造するに際し、原料が生成物に転化する反応が
平衡に達する系では、上記した問題を解消して効率的で
経済性に優れた製造を実現できるようにすることが従来
から望まれていた。特に、反応液が3以上の成分を含む
場合には、従来提案が全くないため新らしい方法が求め
られていた。
[Problems to be Solved by the Invention] As described above, when producing useful substances by product inhibition reactions and reversible reactions such as enzymatic reactions and catalytic reactions, in a system where the reaction in which raw materials are converted to products reaches equilibrium, It has been desired to solve the above problems and realize efficient and economical manufacturing. In particular, when the reaction solution contains three or more components, a new method has been sought since there have been no previous proposals.

【0013】以上のような種々の観点から、本発明者は
種々研究を重ね、反応後の液が原料を含めて3以上の成
分を含む生成物阻害反応あるいは可逆反応によって有用
物質を製造する場合に、連続的且つ経済性の高い製造を
実現できる方法を提供することを目的として本発明を開
発するに至ったものである。
[0013] From the various viewpoints mentioned above, the present inventor has conducted various studies and found that when a useful substance is produced by a product inhibition reaction or a reversible reaction in which the reaction solution contains three or more components including raw materials. Therefore, the present invention was developed with the aim of providing a method that can realize continuous and highly economical manufacturing.

【0014】本発明の他の目的は、小型の装置により効
率よく目的物質を製造できる方法を提供することにある
Another object of the present invention is to provide a method for efficiently producing a target substance using a compact device.

【0015】また本発明の更に具体的な他の目的は次の
ことにある。すなわち例えば従来法によりデキストラン
を回分式方法で製造した場合、原料のシュクロースと生
成物であるデキストランおよび果糖を含む混合液にアル
コールを添加してデキストランを沈殿回収しているため
、残った液はシュクロース,果糖と共にアルコールを含
んでいる。このため残余の液から各成分を回収するには
アルコール分離が必要であり、原料のシュクロース回収
に手数がかかる。このため一般的には回収操作を行なわ
ずに別途甘味剤として利用するか、ないしは廃棄されて
いたが、本発明はこれらの成分も効率よく分離すること
で目的物質製造の経済性を一層向上させることができる
新規な有用物質の製造方法の提供を目的するものである
Other more specific objects of the present invention are as follows. In other words, for example, when dextran is produced in a batch process using the conventional method, alcohol is added to a mixed solution containing the raw material sucrose and the products dextran and fructose to precipitate and recover the dextran, so the remaining solution is It contains alcohol along with sucrose and fructose. Therefore, alcohol separation is required to recover each component from the remaining liquid, and recovery of the raw material sucrose is time-consuming. For this reason, it is generally used as a sweetener separately or discarded without performing a recovery operation, but the present invention further improves the economic efficiency of producing the target substance by efficiently separating these components. The purpose of the present invention is to provide a method for producing a new useful substance that can be produced using the following methods.

【0016】[0016]

【課題を解決するための手段及び作用】本発明者は、以
上のような種々の目的を達成するために、生成物阻害反
応又は可逆反応により、原料及び反応生成物の3以上の
成分が混在する混合液を製造する第1の工程と、この混
合液をクロマト分離装置に移送する第2の工程と、移送
された混合液を三つ以上の区分にクロマト分離する第3
の工程と、分離した区分のうち原料成分を含む区分を上
記第1の工程に返送する第4の工程とを連続して行なう
ことを特徴とする生成物阻害反応又は可逆反応による有
用物質の製造方法を完成した。
[Means and Actions for Solving the Problems] In order to achieve the above-mentioned various objects, the present inventor has proposed a method in which three or more components of raw materials and reaction products are mixed together by a product inhibition reaction or a reversible reaction. a first step of producing a mixed solution, a second step of transferring this mixed solution to a chromatographic separation device, and a third step of chromatographically separating the transferred mixed solution into three or more sections.
Production of a useful substance by a product inhibition reaction or a reversible reaction, characterized in that the step of step 1 and the fourth step of returning the separated section containing the raw material components to the first step are carried out in succession. completed the method.

【0017】このような方法を実施するために用いられ
る装置としては、原液の供給を受けて、内部の固定化担
体に担持した触媒あるいは酵素等による反応を行なわせ
る反応器と、この反応器から原料成分及び生成物の混合
した液が送られて各成分をクロマト分離する複数の塔か
らなる擬似移動層装置と、反応器から擬似移動層装置に
反応液を送る液移送系と、擬似移動層装置で分離した原
液を含む成分を反応器に戻す液移送系とを組合せた装置
が代表的に例示され、より具体的には、生成物阻害反応
又は可逆反応により原料及び反応生成物の3以上の成分
が混在する混合液を製造する反応器と、無端循環系を形
成する複数の吸着剤充填塔からなり、かついずれかの吸
着剤充填塔に連続供給される上記混合液の中に含まれて
いる上記各々の成分が富豊化した帯域を液の流れ方向に
沿って順次に分離形成する吸着剤充填塔群、混合液供給
位置よりも上流の吸着剤充填塔から、該分離されたうち
の第1の区分を抜き出す第1の抜出手段、混合液供給位
置よりも下流の吸着剤充填塔から、分離された第2の区
分を抜き出す第2の抜出手段、この第2の抜出手段より
も更に下流の位置の吸着剤充填塔から、分離された第3
の区分を抜き出す第3の抜出手段を備えた擬似移動層装
置と、上記反応器から擬似移動層装置のいずれかの吸着
剤充填塔を選択して上記混合液を供給する混合液移送手
段と、上記擬似移動層装置の第1〜第3の抜出手段から
抜き出されたうちの原料の富豊化された区分の液を反応
器に返送する手段と、反応器から擬似移動層装置に上記
混合液を移送する位置、及び上記第1〜第3の抜出手段
により各区分の液を抜き出す位置を、上記無端循環系と
して形成された複数の吸着剤充填塔の群に対し同期して
混合液の流れの下流側に経時的に移行させる制御手段と
、を有することを特徴とする生成物阻害反応又は可逆反
応による有用物質の製造装置を例示することができる。
[0017] The apparatus used to carry out such a method includes a reactor which receives a stock solution and causes a reaction using a catalyst or an enzyme supported on an internal immobilized carrier, and a reactor which receives a stock solution and performs a reaction using a catalyst or an enzyme supported on an internal immobilized carrier. A simulated moving bed device consisting of a plurality of columns to which a mixed liquid of raw material components and products is sent and chromatographically separates each component, a liquid transfer system that sends a reaction liquid from a reactor to a simulated moving bed device, and a simulated moving bed. A typical example is a device that combines a liquid transfer system that returns components including the stock solution separated in the device to the reactor, and more specifically, a device that combines three or more raw materials and reaction products by a product inhibition reaction or a reversible reaction. It consists of a reactor that produces a mixed solution containing a mixture of components, and a plurality of adsorbent-packed towers forming an endless circulation system, and contains the components contained in the mixed solution that is continuously supplied to any of the adsorbent-packed towers. A group of adsorbent packed towers that sequentially separate and form zones enriched with each of the above components along the flow direction of the liquid, and from the adsorbent packed tower upstream of the mixed liquid supply position, a first extracting means for extracting the first section of the mixed liquid, a second extracting means for extracting the separated second section from the adsorbent packed tower downstream of the mixed liquid supply position; A separated third
a simulated moving bed device equipped with a third extraction means for extracting the segment; and a mixed liquid transfer means for selecting any adsorbent packed tower of the simulated moving bed device from the reactor and supplying the mixed liquid. , means for returning to the reactor the liquid of the enriched fraction of the raw material extracted from the first to third extraction means of the simulated moving bed device, and The position at which the mixed liquid is transferred and the position at which each section of liquid is extracted by the first to third extraction means are synchronized with respect to the group of a plurality of adsorbent packed towers formed as the endless circulation system. An example of an apparatus for producing a useful substance by a product inhibition reaction or a reversible reaction is characterized in that it has a control means for moving the mixed liquid to the downstream side of the flow over time.

【0018】上記の擬似移動層装置は、反応器と組み合
わせでき、かつ3以上の成分を分離して回収できるもの
であれば特に限定されないが、特には例えば以下の実施
例1において説明する擬似移動層装置や本出願人が提案
している「特定成分の分離法」に適用される擬似移動層
装置(特開昭62−91205号)に準拠した装置、更
には本出願人の提案に係わる「多成分系の分離方法及び
装置」(特願平2−402826号)に準拠した擬似移
動層装置等を好適な例として例示することができる。こ
のうちの後者の「多成分系の分離装置」は、吸着剤が充
填された単位充填層の多数個を用いて無端直列状の循環
流路を形成し、かつこの循環流路が循環、遮断可能に設
けられられている系であって、吸着剤に対する親和性の
異なる3以上の成分を含む原料流体を前記多数個の単位
充填層に流通させることにより、吸着剤に対する親和力
の弱い成分から強い成分に順次に分かれた吸着帯域を形
成する系に対し、親和力の弱い成分が形成している吸着
帯域よりも上流の位置において上記系の循環を遮断しな
がらこの遮断の下流の位置で該系に原料流体を供給する
と共に、該遮断位置の上流で吸着帯域を形成している成
分のうちで予め定めた成分のものを該系から抜き出す工
程と、遮断を解除して、原料流体を供給することなく上
記系を循環させながら、上記工程で残留した各成分を、
2成分系の擬似移動床の方法にしたがって脱着剤流体を
供給しながら各別に抜き出す工程とを1サイクルとして
繰り返すか、あるいは更に必要に応じて上記後者の工程
の次ぎに、上記系内で流体を循環させながら、循環方向
に親和力の弱いものから強いものに分けられている各成
分の吸着帯域それぞれに対し、脱着剤流体の供給及び各
々の成分の抜き出しを行ないつつ、各成分に対する脱着
剤流体の供給及び画分の抜き出し位置を吸着帯域の移動
に合わせて順次に循環流の下流側に移行させる工程を行
なうようにした方法に用いられる装置である。例えば、
吸着剤が充填された単位充填槽の多数個を用いて形成さ
れた無端直列の循環流路と、この循環流の途中に設けら
れた開閉可能の一つの遮断弁と、この遮断弁の下流位置
で循環流路に接続された原料流体供給手段と、遮断弁の
上流位置で循環流路に接続された流体抜出手段と、上記
単位充填層の隣接間毎に接続された脱着剤流体供給手段
及び流体抜出手段とを備えた構成のものが例示でき、同
装置に本発明方法を実現するように反応器を接続するこ
とで本発明装置が構成できる。また本発明方法には例え
ば特開昭63−158105号に準拠したクロマト分離
装置を用いることも可能である。
The above-mentioned simulated moving bed device is not particularly limited as long as it can be combined with a reactor and three or more components can be separated and recovered. A layer device or a device based on the pseudo moving bed device (Japanese Patent Application Laid-open No. 1982-91205) applied to the “Specific Component Separation Method” proposed by the present applicant, as well as “ A suitable example is a pseudo moving bed device based on the Japanese Patent Application No. 2-402826 entitled "Multicomponent Separation Method and Apparatus". Of these, the latter "multi-component separation device" uses a large number of unit packed beds filled with adsorbents to form an endless series circulation channel, and this circulation channel is used for circulating and blocking. This is a system in which a raw material fluid containing three or more components having different affinities for the adsorbent is passed through the plurality of unit packed beds, so that components with a weaker affinity for the adsorbent are replaced by a component with a stronger affinity for the adsorbent. For a system that forms adsorption zones that are sequentially divided into components, the circulation of the system is blocked at a position upstream of the adsorption zone where components with weak affinity are formed, and the circulation of the system is blocked at a position downstream of this blockage. a step of supplying the raw material fluid and extracting from the system a predetermined component among the components forming the adsorption zone upstream of the cutoff position; and releasing the cutoff and supplying the raw material fluid. While circulating the above system, each component remaining in the above process is removed.
The steps of supplying the desorbent fluid and withdrawing each separately according to a two-component simulated moving bed method are repeated as one cycle, or if necessary, the latter step can be followed by removing the fluid in the system. While circulating, the desorbent fluid is supplied to each adsorption zone of each component, which is divided into adsorption zones from weak to strong affinity in the circulation direction, and each component is extracted. This device is used in a method in which the supply and extraction positions of fractions are sequentially shifted to the downstream side of the circulating flow in accordance with the movement of the adsorption zone. for example,
An endless serial circulation flow path formed using a large number of unit packed tanks filled with adsorbent, one cutoff valve that can be opened and closed provided in the middle of this circulation flow, and the downstream position of this cutoff valve. a raw material fluid supply means connected to the circulation flow path at a position upstream of the cutoff valve, a fluid extraction means connected to the circulation flow path at a position upstream of the cutoff valve, and a desorbent fluid supply means connected to each adjacent space of the unit packed bed. An example of this is a device having a configuration including a device and a fluid extraction means, and the device of the present invention can be constructed by connecting a reactor to the device to realize the method of the present invention. Further, in the method of the present invention, it is also possible to use, for example, a chromatographic separation apparatus based on JP-A-63-158105.

【0019】本発明の方法はその実施に際して特に好ま
しくは、第1の工程で酵素反応等により原料成分から生
成物が生成される反応が平衡に達する前、好ましくは原
料成分から生成物への転化率が、平衡に至ったときの転
化率の1/10〜8/10、最適には2/10〜6/1
0程度の段階で、反応液を第2の工程に移すように操作
することがよい。このような操作は原料流体の流速設定
や反応器の形状,大きさ等により該反応器内での滞留時
間を調節することで適宜与えることができ、このように
することで高い反応速度での反応を行なわせ、単位時間
あたりの生成物生成量を高く出来る他、酵素反応では経
時的に失活する酵素活性を有効に利用でき、更に決めら
れた生産量を確保するのに必要な装置特に反応器を小型
のものとできるという利点がある。
[0019] In carrying out the method of the present invention, it is particularly preferable that in the first step, before the reaction in which the product is produced from the raw material components by an enzymatic reaction or the like reaches equilibrium, the conversion of the raw material components to the product is preferably carried out. The conversion rate is 1/10 to 8/10, optimally 2/10 to 6/1 of the conversion rate when equilibrium is reached.
It is preferable to move the reaction solution to the second step at a stage of about 0. Such operations can be performed as appropriate by adjusting the residence time in the reactor depending on the flow rate setting of the raw material fluid, the shape and size of the reactor, etc. By doing this, high reaction rates can be achieved. In addition to allowing the reaction to occur and increasing the amount of product produced per unit time, it is also possible to effectively utilize the enzyme activity that deactivates over time in enzymatic reactions. There is an advantage that the reactor can be made small.

【0020】また、上記第4の工程において、例えば限
外濾過膜装置等を用いて原料成分を含む液を濃縮してか
ら第一の工程に返送することも好ましい。
[0020] In the fourth step, it is also preferable that the liquid containing the raw material components is concentrated using, for example, an ultrafiltration membrane device and then returned to the first step.

【0021】[0021]

【発明の効果】本発明の方法によれば、混合液中に3以
上の成分を含むことになる生成物阻害反応又は可逆反応
の系によって製造される有用物質を、その生成反応と分
離操作を連続させることが可能となるため、目的物質を
効率よく生産し、分離回収できる。
Effects of the Invention According to the method of the present invention, useful substances produced by a product inhibition reaction or reversible reaction system in which three or more components are contained in a mixed solution can be produced by combining the production reaction and separation operation. Since it is possible to do this continuously, the target substance can be efficiently produced and separated and recovered.

【0022】また反応液中の原料成分を富豊化して反応
器に返送することで、該原料成分を無駄なく極めて有効
に利用することができ、上記のように連続した生産が可
能であることと合わせて経済性の高い生産が実施できる
。特に目的物質と原料の成分が分離しにくい場合には、
一般的な擬似移動層では、これらの混合部分を分離する
ために吸着剤を充填した塔長を長くすることが必要にな
るのが普通であるが、本発明の装置ではこの混合部分を
反応器に返送するようにしているので、塔長を短くして
も収率等に支障がないという利点がある。
[0022] Furthermore, by enriching the raw material components in the reaction solution and returning them to the reactor, the raw material components can be used extremely effectively without waste, and continuous production as described above is possible. In combination with this, highly economical production can be carried out. Especially when it is difficult to separate the target substance and raw material components,
In a general simulated moving bed, it is necessary to increase the length of the column filled with adsorbent in order to separate these mixed parts, but in the device of the present invention, this mixed part is separated into a reactor. This has the advantage that even if the column length is shortened, the yield will not be affected.

【0023】また本発明方法の操作において、原料が生
成物に転化する反応が平衡に達する前、特にその転化率
が十分に低い段階でクロマト分離装置に移送させるよう
にすることで、一般に高い反応速度で反応を行なわせる
ことが可能となり、単位時間あたりの生成物の生成量を
高く維持出来る他、例えば酵素反応の場合には、経時的
に失活する酵素の活性を有効に利用でき、更に決められ
た生産量を確保するのに必要な装置特に反応器を小型の
ものとできる等々の優れた効果がある。
In addition, in the operation of the method of the present invention, by transferring the raw material to the chromatographic separation device before the reaction of converting the raw material to the product reaches equilibrium, especially at a stage where the conversion rate is sufficiently low, generally a high reaction rate can be achieved. In addition to making it possible to carry out the reaction at a high speed and maintaining a high amount of product produced per unit time, for example, in the case of enzymatic reactions, it is possible to effectively utilize the activity of enzymes that deactivate over time. There are excellent effects such as the ability to downsize the equipment, especially the reactor, required to ensure a fixed production amount.

【0024】更にまた、クロマト分離装置から反応器に
原料の富豊化された液を返送する過程に限外濾過膜装置
等の濃縮手段を設けた場合には、原料を含む区分の回収
率を高めても反応器への返送液濃度を適宜に制御できる
ので、原料液の反応器へのフィード量が制限されること
もなく、かつ高効率の反応を行なわせることができると
いう効果がある。
Furthermore, if a concentration means such as an ultrafiltration membrane device is provided in the process of returning the raw material-enriched liquid from the chromatographic separation device to the reactor, the recovery rate of the fraction containing the raw material will be reduced. Even if the concentration is increased, the concentration of the liquid returned to the reactor can be appropriately controlled, so the amount of raw material liquid fed to the reactor is not limited, and the reaction can be carried out with high efficiency.

【0025】[0025]

【実施例】以下本発明を実施例に基づいて詳細に説明す
るが、本発明がこれらの実施例に限定されるものでない
ことは当然である。
EXAMPLES The present invention will be explained in detail below based on Examples, but it is obvious that the present invention is not limited to these Examples.

【0026】実施例1 固定化酵素の調製 Leuconostoc  mesenteroide
s をシュクロースを主成分とする培地で25℃、24
時間培養後、培地上澄みを分画分子量1万の限外濾過膜
により透析、減圧濃縮した。この液を2.5%ハイドロ
キシルプロピル・メチルセルロースアセテートサクシネ
ート溶液に加え、架橋剤であるカルボジイミドを徐々に
添加し、pHを5.5に調整し6時間反応させた。その
後、pHを4.0に低下させ、固定化酵素を沈殿回収し
た。この固定化酵素を、pH5.5に調整したシュクロ
ース溶液に溶解し、生成した果糖の量から活性を測定し
たところ、0.5u/g・担体の酵素活性を有すること
が確認された。
Example 1 Preparation of immobilized enzyme Leuconostoc mesenteroid
s in a sucrose-based medium at 25°C for 24 hours.
After culturing for an hour, the medium supernatant was dialyzed using an ultrafiltration membrane with a molecular weight cutoff of 10,000 and concentrated under reduced pressure. This solution was added to a 2.5% hydroxylpropyl methyl cellulose acetate succinate solution, carbodiimide as a crosslinking agent was gradually added, the pH was adjusted to 5.5, and the mixture was reacted for 6 hours. Thereafter, the pH was lowered to 4.0, and the immobilized enzyme was precipitated and collected. When this immobilized enzyme was dissolved in a sucrose solution adjusted to pH 5.5 and the activity was measured from the amount of fructose produced, it was confirmed that the enzyme had an enzyme activity of 0.5 u/g of carrier.

【0027】デキストランの製造装置 本例で用いる上記固定化酵素はpH値により溶解,沈澱
し、溶解状態で酵素活性を発揮するものである。このた
め本例の製造装置は、主反応器1,pH調整器2及び分
離器3を基本構成とする反応器と、擬似移動層装置の組
合せにより構成されている。
Dextran Production Apparatus The above-mentioned immobilized enzyme used in this example dissolves and precipitates depending on the pH value, and exhibits enzyme activity in the dissolved state. For this reason, the production apparatus of this example is configured by a combination of a reactor whose basic configuration is a main reactor 1, a pH adjuster 2, and a separator 3, and a pseudo moving bed device.

【0028】固定化酵素を用いる本例の反応器は、図1
に示すように主反応器1、pH調整器2、分離器3によ
り構成され、これらは、主反応器が500ml容、pH
調整器及び分離器は各々50ml容をなしている。
The reactor of this example using immobilized enzyme is shown in FIG.
As shown in the figure, it consists of a main reactor 1, a pH regulator 2, and a separator 3.
The regulator and separator each have a capacity of 50 ml.

【0029】4はシュクロースが充填されている原液タ
ンクであり、原液フィードポンプ5により主反応器1に
この原液を供給するようになっている。6は酸タンク、
7はアルカリタンクであり、分岐経路の各々に開閉弁を
設けたフィードライン8からポンプ9を介して主反応器
1に酸又はアルカリを送り、該主反応器1内のpH調整
を行なえるようになっている。10は温度センサ、11
はpHセンサ、12は撹拌装置、13はヒータであり、
各々主反応器1に付設されて該主反応器1内の反応条件
を最適条件に保つことができるようにしている。
Reference numeral 4 denotes a stock solution tank filled with sucrose, and the stock solution is supplied to the main reactor 1 by a stock solution feed pump 5. 6 is an acid tank,
7 is an alkali tank, in which acid or alkali is sent to the main reactor 1 through a pump 9 from a feed line 8 having an on-off valve in each of the branch routes, so as to adjust the pH inside the main reactor 1. It has become. 10 is a temperature sensor, 11
is a pH sensor, 12 is a stirring device, 13 is a heater,
Each reactor is attached to the main reactor 1 so that the reaction conditions within the main reactor 1 can be maintained at optimum conditions.

【0030】主反応器1に供給された原液は、酵素活性
によりシュクロースからデキストラン及び果糖を生成し
、これらを含む反応液(製造された混合液)は、ペリス
タポンプ14によりpH調整器2に送られ、酸タンク1
5からの酸供給によるpH調整で沈澱を生じ、下方の分
離器3において沈殿した固定化酵素は主反応器1に戻り
、反応液は溢流方式で反応液貯槽16に送られる。なお
17はpHセンサである。
The stock solution supplied to the main reactor 1 produces dextran and fructose from sucrose by enzyme activity, and the reaction solution (produced mixed solution) containing these is sent to the pH regulator 2 by the peristaltic pump 14. Acid tank 1
The immobilized enzyme precipitated in the lower separator 3 returns to the main reactor 1, and the reaction solution is sent to the reaction solution storage tank 16 in an overflow manner. Note that 17 is a pH sensor.

【0031】以上のようにして得られた反応液は、反応
液貯槽16からフィードポンプ18によりフィードライ
ン19を介して擬似移動層装置に送られる。
The reaction solution obtained as described above is sent from the reaction solution storage tank 16 to the simulated moving bed device via the feed line 19 by the feed pump 18.

【0032】次ぎに本例の擬似移動層装置について説明
すると、本例の擬似移動層分離装置は、12mmφ・2
00mmHの12本のカラム31〜42が無端直列に直
結されたカラム群から成っていて、各カラムには強酸性
陽イオン交換樹脂であるアンバーライトCG−6000
(商品名:D.V.B.6%、平均径0.25mm)が
、各々270mlづつ充填されている。50はこの無端
直列されたカラム群の循環ポンプである。
Next, the simulated moving bed separation device of this example will be explained. The simulated moving bed separation device of this example has a diameter of 12 mmφ.
It consists of a column group in which 12 columns 31 to 42 of 00 mmH are directly connected in an endless series, and each column is coated with Amberlite CG-6000, a strongly acidic cation exchange resin.
(Product name: D.V.B. 6%, average diameter 0.25 mm) is filled in 270 ml each. 50 is a circulation pump for this endless series of columns.

【0033】そしてこの擬似移動層装置は、反応液貯槽
16からフィードポンプ18により所定のカラムに反応
液が移送されるように接続されていると共に、これより
も上流側のカラムから果糖を抜き出すライン51と、下
流のカラムからデキストラン及びシュクロースの混合区
分を抜き出すライン52と、更に下流のカラムからデキ
ストランを抜き出すライン53と、溶離液を導入するラ
イン54とが図示の如く接続され、これらの位置関係を
維持しつつ、図示しない制御装置により、接続位置が経
時的に下流側に移行されるようになっている。したがっ
て各カラムの上流端及び下流端には上記各ライン19,
51〜54に対する接続を切換えるための開閉弁等が設
けられているが、これらは通常の擬似移動層装置の場合
と同様でありまた図が煩雑となるので図示は省略した。
This simulated moving bed device is connected so that the reaction liquid is transferred from the reaction liquid storage tank 16 to a predetermined column by a feed pump 18, and is also connected to a line for extracting fructose from the column on the upstream side. 51, a line 52 for extracting a mixed section of dextran and sucrose from a downstream column, a line 53 for extracting dextran from a further downstream column, and a line 54 for introducing an eluent are connected as shown in the figure, and these positions While maintaining the relationship, the connection position is shifted to the downstream side over time by a control device (not shown). Therefore, at the upstream and downstream ends of each column, the lines 19,
Opening/closing valves and the like are provided for switching connections to 51 to 54, but these are the same as in the case of a normal pseudo moving bed device, and are not shown because they would complicate the diagram.

【0034】そして、上記デキストラン及びシュクロー
スの混合区分の液を抜き出すライン52は、原液タンク
4に該液を返送するように接続されている。なおこのラ
イン52の途中に図示の如く例えば膜装置等の濃縮手段
55を設けることもできる。
A line 52 for extracting the liquid from the dextran and sucrose mixing section is connected to return the liquid to the stock solution tank 4. Note that a concentrating means 55 such as a membrane device may be provided in the middle of this line 52 as shown in the figure.

【0035】デキストランの製造 上記図1に示した装置を用いて、以下のデキストラン製
造を行なった。
Production of Dextran The following production of dextran was carried out using the apparatus shown in FIG.

【0036】シュクロース72gを純水に溶解して1リ
ットルとし、この溶液に0.1N塩酸を加えてpHを5
.3〜5.4に調整した。この溶液約100mlに上記
の固定化酵素を100g加え、撹拌器付きの主反応器1
に入れ、温度を45℃に保ち、またpHを5.3〜5.
4に保って撹拌しながら反応を5時間行なった。
Dissolve 72 g of sucrose in pure water to make 1 liter, and add 0.1N hydrochloric acid to this solution to adjust the pH to 5.
.. It was adjusted to 3-5.4. Add 100 g of the above immobilized enzyme to about 100 ml of this solution, and add it to the main reactor 1 equipped with a stirrer.
The temperature was maintained at 45°C, and the pH was adjusted to 5.3-5.
The reaction was carried out for 5 hours while stirring at a temperature of 4.

【0037】この反応液の10mlをペリスタポンプ1
4により取り出してpH調整器2に導入した。pH調整
器2では、N2 ガスにより撹拌しながら0.1N塩酸
溶液を添加してpH3.8〜3.9に調整した。このよ
うにしてpHを下げることで溶液中の固定化酵素を凝集
沈殿させた。この溶液は次に分離器3に導入され、沈殿
した固定化酵素を主反応器1に戻すことで連続的な処理
に利用した。他方、反応液は溢流により反応液貯槽16
に移した。なお以上の操作は予めpH調整器2にシュク
ロース液を50ml入れて置くことによって行なった。
10 ml of this reaction solution was pumped into peristaltic pump 1.
4 and introduced into pH adjuster 2. In the pH adjuster 2, a 0.1N hydrochloric acid solution was added while stirring with N2 gas to adjust the pH to 3.8 to 3.9. By lowering the pH in this manner, the immobilized enzyme in the solution was coagulated and precipitated. This solution was then introduced into separator 3 and the precipitated immobilized enzyme was returned to main reactor 1 for continuous processing. On the other hand, the reaction liquid flows into the reaction liquid storage tank 16 due to overflow.
Moved to. The above operation was performed by placing 50 ml of sucrose solution in the pH adjuster 2 in advance.

【0038】このようにして得られた溶液(反応液)は
、果糖を0.01モル(したがってデキストランは0.
01モルである)、及び未反応のシュクロースを約0.
19モル含んでいた。この反応液を8.4ml/hrの
流速で擬似移動層装置に供給した。
The solution (reaction liquid) thus obtained contains 0.01 mol of fructose (therefore, 0.01 mol of dextran).
01 mol), and unreacted sucrose to about 0.01 mol).
It contained 19 moles. This reaction solution was supplied to a simulated moving bed apparatus at a flow rate of 8.4 ml/hr.

【0039】擬似移動層装置では、液の供給口、抜き出
し口を約5分間毎に下流側に移動させながら、デキスト
ラン区分の抜き出し位置以降(下流)の規準流速を50
ml/hr、反応液の供給流量を8.4ml/hr、溶
離液の供給流量を42ml/hr、果糖区分の抜出流量
を20ml/hr、デキストラン区分の抜出流量を16
.1ml/hr、シュクロース及びデキストラン混合区
分の抜出流量を14.3ml/hrとなるようにして運
転を行なった。
In the simulated moving bed device, the standard flow rate after the extraction position (downstream) of the dextran section is adjusted to 50°C while moving the liquid supply and extraction ports to the downstream side every 5 minutes.
ml/hr, reaction solution supply flow rate 8.4 ml/hr, eluent supply flow rate 42 ml/hr, fructose fraction withdrawal flow rate 20 ml/hr, dextran division withdrawal flow rate 16 ml/hr.
.. The operation was carried out at a rate of 1 ml/hr and a discharge flow rate of 14.3 ml/hr from the sucrose and dextran mixing section.

【0040】上記により抜き出したシュクロース及びデ
キストラン混合区分の液は、平膜型RO膜装置で約3倍
(11ml)に濃縮し、これをシュクロース溶液(約9
0g/リットル)の0.2ml/hrに混合する形式で
主反応器1に供給して、原液供給時との反応状態の違い
を調べた。なお反応後の液を連続的にpH調整器2、分
離器3に導入することは継続して行なった。
The liquid in the sucrose and dextran mixed section extracted above was concentrated to about 3 times (11 ml) using a flat membrane RO membrane device, and then added to the sucrose solution (about 9 ml).
The solution was supplied to the main reactor 1 in a mixed form at a rate of 0.2 ml/hr (0 g/liter), and the difference in the reaction state from when the stock solution was supplied was investigated. Note that the liquid after the reaction was continuously introduced into the pH adjuster 2 and the separator 3.

【0041】その結果、分離器3から流出する反応液は
、果糖濃度が徐々に上昇し、約5時間後には0.01モ
ルとなり、未反応のシュクロース濃度は0.24モルと
なった。
As a result, the fructose concentration of the reaction solution flowing out from the separator 3 gradually increased to 0.01 mol after about 5 hours, and the concentration of unreacted sucrose to 0.24 mol.

【0042】以上の物質収支の関係をシュミレートした
結果を下記表1に示したが、実際の結果も上述の如くこ
れによく合致した。
The results of simulating the above material balance relationship are shown in Table 1 below, and the actual results also agreed well with this as described above.

【0043】[0043]

【表1】[Table 1]

【0044】次に、上記の反応で得られた反応液を、流
速14.1ml/hrで擬似移動層装置に供給したとこ
ろ、循環水量を50ml/hr、溶離液の供給量を65
ml/hr、果糖区分の抜出流量を25ml/hr、デ
キストラン及びシュクロース混合区分の抜出流量を25
.4ml/hr、デキストラン区分の抜出流量を28.
7ml/hrとする条件変更で分離が可能であった。な
お、デキストラン及びシュクロース混合区分の液は、1
0cm径のRO膜で濃縮した。
Next, the reaction solution obtained in the above reaction was supplied to a simulated moving bed apparatus at a flow rate of 14.1 ml/hr.
ml/hr, the withdrawal flow rate of the fructose section is 25 ml/hr, the withdrawal flow rate of the dextran and sucrose mixed section is 25 ml/hr.
.. 4 ml/hr, the withdrawal flow rate of the dextran section was 28.
Separation was possible by changing the conditions to 7 ml/hr. In addition, the liquid in the dextran and sucrose mixing section is 1
It was concentrated using an RO membrane with a diameter of 0 cm.

【0045】次に、デキストラン及びシュクロースの混
合区分の液と、シュクロースの原液0.32mlを混合
して、主反応器1に供給したが、生成する果糖濃度は0
.025モルで上述の場合と殆ど変化しなかった。従っ
て上記返送を行ないながらデキストランを製造し、果糖
,デキストランを分離する操作を連続的に行なえること
が確認された。
Next, the liquid in the dextran and sucrose mixed section and 0.32 ml of the sucrose stock solution were mixed and supplied to the main reactor 1, but the fructose concentration produced was 0.
.. At 0.025 mol, there was almost no change from the above case. Therefore, it was confirmed that it is possible to produce dextran while performing the above-mentioned return and to perform the operations of separating fructose and dextran continuously.

【0046】以上の操作の結果を分離を行なわない操作
の場合と比較してみると、デキストランの製造能力は約
1.7倍であり、本発明の優れた効果がこれによって確
認できる。
[0046] When the results of the above operation are compared with those of the operation without separation, the dextran production capacity is about 1.7 times, which confirms the excellent effect of the present invention.

【0047】以上の物質収支の関係をシュミレートした
結果を下記表2に示したが、上述した如く実際の結果も
これによく合致している。
The results of simulating the above material balance relationship are shown in Table 2 below, and as mentioned above, the actual results also match well.

【0048】[0048]

【表2】[Table 2]

【0049】実施例2 固定化酵素の調製 Bacillus  macerans(IFO  3
490)を、硫安を加えたポテト−炭酸カルシウム培地
で2日間、40℃で振盪培養し、遠心沈澱後の上澄液を
粗酵素として用いた。
Example 2 Preparation of immobilized enzyme Bacillus macerans (IFO 3)
490) was cultured with shaking at 40° C. for 2 days in a potato-calcium carbonate medium supplemented with ammonium sulfate, and the supernatant after centrifugal precipitation was used as the crude enzyme.

【0050】この酵素液2リットルにエチルアルコール
1リットルを加えた後、次ぎにコーンスターチ50g、
セライト50gを加えて撹拌、澱粉吸着を行なった、3
3%エチルアルコール溶液で洗浄後、20mlの40℃
に加温した脱イオン水で脱着した。得られた無色透明の
液を5×10−4MのCa++を含むpH6.20、1
0mM酢酸緩衝液中でコロジオンバッグにより透析、濃
縮し、DEAE−セルロースカラムにより0〜0.5M
  NaCl溶液でグラジエント溶出を行なった。更に
コロジオンバッグで濃縮し、精製酵素とした。比活性は
10IU/mgであった。
After adding 1 liter of ethyl alcohol to 2 liters of this enzyme solution, next 50 g of cornstarch,
50g of Celite was added and stirred to adsorb starch. 3
After washing with 3% ethyl alcohol solution, 20 ml of 40°C
It was desorbed with deionized water heated to . The resulting colorless and transparent liquid was dissolved at pH 6.20 and 1 containing 5 x 10-4M Ca++.
Dialyzed in 0mM acetate buffer by collodion bag, concentrated, and 0-0.5M by DEAE-cellulose column.
Gradient elution was performed with NaCl solution. It was further concentrated using a collodion bag to obtain purified enzyme. Specific activity was 10 IU/mg.

【0051】この酵素はCGTaseであり、FE−4
611(オルガノ社製)を担体として吸着させた。なお
FE−4611は、メタクリル酸グリシジルにジメチル
アミノエタノールを反応させてアミン基を導入し、エポ
キシ環が開環してアミノ基が導入されると共にアルコー
ル水酸基が生成された担体である。
[0051] This enzyme is CGTase, and FE-4
611 (manufactured by Organo) was adsorbed as a carrier. Note that FE-4611 is a carrier in which an amine group is introduced by reacting glycidyl methacrylate with dimethylaminoethanol, the epoxy ring is opened, an amino group is introduced, and an alcohol hydroxyl group is generated.

【0052】当該担体をカラムに充填してアルカリ溶液
で再生し、pH6前後の酢酸・酢酸ナトリウム緩衝液で
洗浄し、次いで前記操作で得られた酵素液を下降流で接
触時間0.5〜1時間で接触させた。この担体は1.0
mgのタンパク質を吸着していた。
[0052] The carrier is packed into a column, regenerated with an alkaline solution, washed with an acetic acid/sodium acetate buffer solution having a pH of around 6, and then the enzyme solution obtained in the above operation is passed downflow for a contact time of 0.5 to 1. Contacted in time. This carrier is 1.0
mg of protein was adsorbed.

【0053】サイクロデキストリンの製造装置本例の擬
似移動層装置には、特願平2−402826号記載に準
拠して図2のように構成したものを用いた。
Cyclodextrin Production Apparatus The simulated moving bed apparatus of this example was constructed as shown in FIG. 2 in accordance with the description in Japanese Patent Application No. 2-402826.

【0054】すなわち、図2の符号101〜112は、
強酸性陽イオン交換樹脂アンバーライトIR−1016
(商品名:D.V.B.4%;オルガノ社製)を夫々2
50ml充填した単位充填塔(カラム)であり、これら
の第1塔〜第12塔の各塔は、配管により無端直列状に
通液可能に接続されていると共に、系路中の循環ポンプ
120により通液されるようになっている。Bは、この
循環経路中の第12塔112から第1塔101の間に介
設された遮断弁であり、図示しない制御手段により開閉
制御されて、経路を循環状態とするか、あるいは遮断状
態とするか切換えできるように設けられている。
That is, the symbols 101 to 112 in FIG.
Strong acidic cation exchange resin Amberlite IR-1016
(Product name: D.V.B. 4%; manufactured by Organo)
It is a unit packed column (column) filled with 50 ml, and each of these first to twelfth columns are connected in an endless series by piping so that liquid can flow therethrough, and a circulation pump 120 in the system It is designed to allow fluid to flow through it. B is a cutoff valve interposed between the twelfth column 112 and the first column 101 in this circulation path, and is controlled to open and close by a control means (not shown) to put the path into a circulation state or into a cutoff state. It is provided so that it can be switched.

【0055】そしてこの遮断弁Bの下流側に位置する第
1塔101には、その上流端から開閉弁Aを介して反応
液を導入する反応液フィードライン122が接続され、
また第7塔107の上端から開閉弁123を介して溶離
液(純水)を導入する純水フィードライン124が接続
され、遮断弁Bの上流側に位置する第12塔112には
、その下流端から該第12塔内で富豊化された帯域を形
成している区分の液を抜き出す抜出ライン126が開閉
弁Cを介して接続されている。なお、上記第1塔〜第1
2塔の各塔101〜112には、図示しない開閉弁を介
して溶離液を導入するライン、及び各塔内で富豊化され
た帯域を形成している区分(返送液区分の場合もある)
の液を同じく図示しない開閉弁を介して抜き出す抜出ラ
インが上述と同様にして接続されているが、これらの全
て図示すると図が煩雑となってしまうため、ラインを破
線で示すことで他は省略し、具体的な流れの関係は以下
の製造例中で具体的に記載した。
[0055] A reaction liquid feed line 122 is connected to the first column 101 located on the downstream side of this shutoff valve B, through which a reaction liquid is introduced from its upstream end via an on-off valve A.
Further, a pure water feed line 124 that introduces an eluent (pure water) from the upper end of the seventh column 107 via an on-off valve 123 is connected to the twelfth column 112 located upstream of the shutoff valve B. A withdrawal line 126 for withdrawing the liquid of the section forming the enriched zone in the twelfth column is connected from the end via an on-off valve C. In addition, the above-mentioned first tower to first tower
Each of the two columns 101 to 112 has a line for introducing the eluent through an on-off valve (not shown), and a section forming an enriched zone within each column (which may also be a return liquid section). )
The extraction line for extracting the liquid through the on-off valve (also not shown) is connected in the same way as above, but since it would make the diagram complicated if all of these lines were shown, the lines are shown with broken lines so that the others are This is omitted, and the specific flow relationships are specifically described in the following production examples.

【0056】一方、反応器は上述した固定化酵素担体の
10mlを充填した主反応器(カラム)128に、原液
タンク129から原液(糖化澱粉)をポンプ130で供
給して所定時間滞留させた後、反応液貯槽131に貯留
する構成に設けた。この反応液貯槽131の液は、フィ
ードポンプ132で擬似移動層装置に移送させるように
した。この主反応器128は、上記の固定化酵素担体の
10mlをカラムに充填し、4%液化澱粉を温度50℃
、液流速SV0.1で通液し長時間反応させた場合、サ
イクロデキストリン(CD)を生成し、トータルCDと
して45〜50%、このうちα−CDは約16%、β−
CDは約26%、γ−CDは6%生成であった(なお液
流速をSV0.5にした場合は、トータルCDが30〜
35%、このうちα−CDは約12%、β−CDは約1
8%、γ−CDは2%生成であった)。
On the other hand, the reactor is a main reactor (column) 128 filled with 10 ml of the above-mentioned immobilized enzyme carrier, after which the stock solution (saccharified starch) is supplied from the stock solution tank 129 with a pump 130 and retained therein for a predetermined time. , and was configured to be stored in a reaction liquid storage tank 131. The liquid in this reaction liquid storage tank 131 was transferred to a simulated moving bed device by a feed pump 132. In this main reactor 128, 10 ml of the above-mentioned immobilized enzyme carrier was packed into a column, and 4% liquefied starch was added at a temperature of 50°C.
When the liquid is passed at a flow rate of SV 0.1 and reacted for a long time, cyclodextrin (CD) is produced, and the total CD is 45 to 50%, of which α-CD is about 16% and β-
Approximately 26% of CD and 6% of γ-CD were generated (when the liquid flow rate was set to SV 0.5, the total CD was 30~30%).
35%, of which α-CD is about 12% and β-CD is about 1
8%, and γ-CD was produced at 2%).

【0057】なお擬似移動層装置の各塔101〜112
から抜き出されたうちの原料成分を含む区分の液は、本
例では返送ライン133により原液タンク129に戻す
ように設けており、またこの返送ライン133の途中に
は、必要に応じて膜装置等の濃縮手段134を介設する
ことも好ましい。
[0057] Each tower 101 to 112 of the pseudo moving bed device
In this example, a return line 133 is provided to return the liquid in the section containing the raw material components to the stock solution tank 129, and a membrane device may be installed in the middle of this return line 133 as necessary. It is also preferable to provide a concentrating means 134 such as the like.

【0058】サイクロデキストリンの製造以上のように
構成した製造装置の主反応器128に、上記のように4
%液化澱粉を温度50℃、液流速SV0.1で通液し長
時間反応させ、この反応液を上記擬似移動層装置に18
8ml/hrの流速で通液した。
Production of Cyclodextrin In the main reactor 128 of the production apparatus constructed as above, four
% liquefied starch at a temperature of 50°C and a liquid flow rate of SV 0.1 to react for a long time, and the reaction solution was transferred to the above-mentioned simulated moving bed apparatus for 18 hours.
The liquid was passed through at a flow rate of 8 ml/hr.

【0059】この際、まず擬似移動層装置は遮断弁Bを
閉じ、他方弁A,Cは開いておいて、反応液を第1塔目
に反応液を188ml/hrで注入し、純水を第7塔1
17に136ml/hrで注入し、第12塔の下部より
β、γ−CD区分の液を324ml/hrで抜出し、こ
の操作を2.4分間運転した(図3参照)。
At this time, first, the simulated moving bed apparatus closes the shutoff valve B, while leaving the valves A and C open, and injects the reaction liquid into the first column at a rate of 188 ml/hr, and then pours pure water into the first column. 7th tower 1
No. 17 was injected at a rate of 136 ml/hr, and the liquid in the β and γ-CD sections was extracted from the bottom of the twelfth column at a rate of 324 ml/hr, and this operation was run for 2.4 minutes (see Figure 3).

【0060】その後、上記遮断弁Bを開き、かつ弁A,
Cは閉じて、系内にある液を循環しながら溶離液(純水
)を第8塔108に124ml/hr注入し、第4塔1
04の下部より澱粉区分の液を76ml/hrで抜き出
すと同時に第10塔110の下部よりα−CD区分の液
を48ml/hrで抜き出す操作で2.4分間運転した
。なお循環流は第11塔目から第4塔目に至る部分で2
83ml/hrとした(図4参照)。
After that, the above-mentioned shutoff valve B is opened, and valves A,
C is closed and the eluent (pure water) is injected at 124 ml/hr into the eighth column 108 while circulating the liquid in the system.
The operation was carried out for 2.4 minutes by withdrawing the starch fraction liquid from the lower part of No. 04 at a rate of 76 ml/hr and at the same time withdrawing the α-CD fraction liquid from the lower part of the 10th column 110 at a rate of 48 ml/hr. Note that the circulation flow is 2 in the part from the 11th column to the 4th column.
It was set at 83 ml/hr (see Figure 4).

【0061】次に各注入,抜き出し,循環の流量は一定
のまま、各注入口,抜出口を流れ方向に1塔分づつ移動
させ(すなわち純水を第9塔目に注入し、澱粉区分の液
を第5塔めから抜き出し、α−CD区分の液を第11塔
目から抜き出す)て2.4分間運転した。このように、
各注入口及び抜出口を流れ方向に順次2.4分間づつ運
転、移動を繰り返して、純水注入口が第7塔目に至るま
で継続した。
Next, while keeping the flow rates of each injection, withdrawal, and circulation constant, each inlet and withdrawal port are moved one column in the flow direction (that is, pure water is injected into the ninth column, and the starch division is The liquid was taken out from the fifth column, and the liquid in the α-CD section was taken out from the 11th column), and the operation was continued for 2.4 minutes. in this way,
Each inlet and outlet were operated and moved sequentially in the flow direction for 2.4 minutes each until the pure water inlet reached the seventh column.

【0062】その後、再び遮断弁Bを閉じかつ弁A,C
を開いて、反応液を188ml/hr、純水を第7塔に
136ml/hr注入し、第12塔下部よりβ、γ−C
D区分の液を324ml/hrで抜き出しながら2.4
分間運転した。
After that, shut off valve B is closed again, and valves A and C are closed.
The reaction solution was injected at 188 ml/hr and pure water at 136 ml/hr into the 7th column, and β, γ-C was injected from the bottom of the 12th column.
2.4 while drawing out the liquid in section D at a rate of 324 ml/hr.
I drove for a minute.

【0063】以後、遮断弁Bを閉じかつ弁A,Cを開い
て、前回と同様、塔内にある液を循環させながら、各注
入口,抜出口を順次に切換え移動させる運転を行ない、
これを繰り返した。
[0063] Thereafter, shutoff valve B was closed and valves A and C were opened, and as in the previous operation, each inlet and outlet were sequentially switched and moved while circulating the liquid in the column.
This was repeated.

【0064】以上のようにした運転により、実質的に連
続した操作で各成分が富豊化された帯域に分離された区
分の液を、塔内から抜き出すことができた。但しβ、γ
−CD区分は1サイクル毎に抜き出した。
[0064] Through the operation as described above, the liquid separated into zones enriched with each component could be extracted from the column in a substantially continuous operation. However, β, γ
-CD sections were extracted every cycle.

【0065】以上の擬似移動層装置の運転で得られた澱
粉区分の液は、UF膜装置134で濃縮し、原料と混合
するように原料タンク129に返送した。
[0065] The starch fraction liquid obtained by the above operation of the simulated moving bed device was concentrated in the UF membrane device 134 and returned to the raw material tank 129 to be mixed with the raw material.

【0066】10サイクル終了後のα−CD区分は純度
として約85〜90%、β及びγ−CD区分は純度とし
て約80〜85%、澱粉区分は純度として約80%に精
製された。
After 10 cycles, the α-CD fraction was purified to a purity of about 85-90%, the β- and γ-CD fractions to a purity of about 80-85%, and the starch fraction to a purity of about 80%.

【0067】得られたCD区分は製品として回収し、澱
粉区分は上述の如く返送して原液タンク129で原液と
混合してCDの生産に再利用した。この原液に混合され
る澱粉区分の液はCDを少し含んでいるが、固定化酵素
で反応させると、純原液を処理した場合と殆ど変わると
ころはなく、擬似移動層装置での分離の結果も同様であ
った。
The obtained CD fraction was recovered as a product, and the starch fraction was returned as described above, mixed with the stock solution in the stock solution tank 129, and reused for CD production. The starch fraction mixed with this stock solution contains a small amount of CD, but when reacted with the immobilized enzyme, there is almost no difference from the treatment of the pure stock solution, and the results of separation using a simulated moving bed apparatus are also similar. It was the same.

【0068】以上の製造装置による生産性は、擬似移動
層装置を用いた分離を行なわなかった場合に比べ、生産
能力が約3倍となった。また擬似移動層装置の分離結果
は非常に安定していた。
[0068] The productivity with the above manufacturing apparatus was approximately three times as high as the production capacity when separation was not performed using the pseudo moving bed apparatus. Moreover, the separation results of the pseudo moving bed device were very stable.

【0069】実施例3 アンバーライトIR−120(商品名)を充填したH型
カラム(充填量は10ml)を主反応器として実施例2
の製造装置を構成し、これに50%シュクロースを原液
として、50℃でSV2で通液した。これによりシュク
ロースが加水分解され、葡萄糖と果糖がそれぞれ約28
%生成し、未反応シュクロース約44%を含む反応液が
反応液貯槽131に得られ、次ぎにSV5で通液すると
葡萄糖と果糖がそれぞれ約20%生成した。
Example 3 Example 2 was carried out using an H-type column (filling amount: 10 ml) packed with Amberlite IR-120 (trade name) as the main reactor.
A manufacturing apparatus was constructed, and 50% sucrose as a stock solution was passed through it at 50°C and SV2. This hydrolyzes sucrose, producing approximately 28% of each of glucose and fructose.
%, and a reaction solution containing about 44% unreacted sucrose was obtained in the reaction solution storage tank 131. Next, when the liquid was passed through SV5, about 20% each of glucose and fructose was produced.

【0070】この反応液を擬似移動層装置に通液し、実
施例2と略同様に運転した。
[0070] This reaction solution was passed through a simulated moving bed apparatus and operated in substantially the same manner as in Example 2.

【0071】すなわち、まず擬似移動層装置の遮断弁B
を閉じ、他方弁A,Cは開いておいて、反応液を第1塔
目に反応液を188ml/hrで注入し、純水を第7塔
117に178ml/hrで注入し、第12塔の下部よ
り葡萄糖区分の液を366ml/hrで抜出し、この操
作を3分間運転した(第5図参照)。
That is, first, the shutoff valve B of the pseudo moving bed device
is closed, while valves A and C are left open. The reaction solution is injected into the first column at a rate of 188 ml/hr, pure water is injected into the seventh column 117 at a rate of 178 ml/hr, and the reaction solution is injected into the seventh column 117 at a rate of 178 ml/hr. The glucose compartment liquid was drawn out from the bottom of the tank at a rate of 366 ml/hr, and this operation was run for 3 minutes (see Figure 5).

【0072】その後、上記遮断弁Bを開き、かつ弁A,
Cは閉じて、系内にある液を循環しながら溶離液(純水
)を第8塔108に162ml/hr注入し、第4塔1
04の下部よりシュクロース区分の液を57ml/hr
で抜き出すと同時に第10塔110の下部より果糖区分
の液を105ml/hrで抜き出す操作で3分間運転し
た。なお循環流は第11塔目から第4塔目に至る部分で
283ml/hrとした(第6図参照)。
After that, the above-mentioned shutoff valve B is opened, and valves A,
C is closed, and the eluent (pure water) is injected at 162 ml/hr into the eighth column 108 while circulating the liquid in the system.
57ml/hr of liquid from the sucrose section from the bottom of 04
At the same time, the fructose fraction was extracted from the lower part of the 10th column 110 at a rate of 105 ml/hr, and the operation was continued for 3 minutes. The circulating flow was 283 ml/hr from the 11th column to the 4th column (see Figure 6).

【0073】次に各注入,抜き出し,循環の流量は一定
のまま、各注入口,抜出口を流れ方向に1塔分づつ移動
させて(すなわち純水を第9塔目に注入し、シュクロー
ス区分の液を第5塔目から抜き出し、果糖区分の液を第
11塔目から抜き出す)3分間運転した。このように、
各注入口及び抜出口を流れ方向に順次3分間づつ運転、
移動を繰り返して、純水注入口が第7塔目に至るまで継
続した。
Next, while keeping the flow rates of each injection, withdrawal, and circulation constant, each inlet and withdrawal port are moved one column at a time in the flow direction (that is, pure water is injected into the ninth column, and the sucrose is The liquid in the section was drawn out from the 5th column, and the liquid in the fructose section was drawn out from the 11th column.) The operation was carried out for 3 minutes. in this way,
Run each inlet and outlet in the flow direction for 3 minutes each.
The movement was repeated until the pure water inlet reached the seventh column.

【0074】その後、再び遮断弁Bを閉じかつ弁A,C
を開いて、反応液を188ml/hr、純水を第7塔に
178ml/hr注入し、第12塔下部より葡萄糖区分
の液を366ml/hrで抜き出しながら3分間運転し
た。
After that, shut off valve B is closed again and valves A and C are closed.
The reactor was opened, the reaction solution was injected at 188 ml/hr, pure water was injected into the 7th column at 178 ml/hr, and the operation was continued for 3 minutes while extracting the glucose fraction liquid from the bottom of the 12th column at 366 ml/hr.

【0075】以後、遮断弁Bを閉じかつ弁A,Cを開い
て、前回と同様、塔内にある液を循環させながら、各注
入口,抜出口を順次に切換え移動させる運転を行ない、
これを繰り返した。
[0075] Thereafter, shutoff valve B was closed and valves A and C were opened, and as in the previous operation, each inlet and outlet were sequentially switched and moved while circulating the liquid in the tower.
This was repeated.

【0076】以上のようにした運転により、実質的に連
続した操作で各成分が富豊化された帯域に分離された区
分の液を、塔内から抜き出すことができた。但し葡萄糖
区分は1サイクル毎に抜き出した。
[0076] Through the operation as described above, the liquid separated into zones enriched with each component could be extracted from the column in a substantially continuous operation. However, the glucose classification was extracted every cycle.

【0077】以上の擬似移動層装置の運転で得られたシ
ュクロース区分の液は、UF膜装置134で濃縮し、原
料と混合するように原料タンク129に返送した。
The sucrose fraction liquid obtained by the above operation of the simulated moving bed device was concentrated in the UF membrane device 134 and returned to the raw material tank 129 to be mixed with the raw material.

【0078】10サイクル終了後の果糖区分は純度とし
て約80〜85%、葡萄糖区分は純度として約85〜9
0%、シュクロース区分は純度として約80%に精製さ
れた。
[0078] After 10 cycles, the purity of the fructose category is about 80-85%, and the purity of the glucose category is about 85-9%.
0%, the sucrose fraction was purified to approximately 80% purity.

【0079】得られた葡萄糖,果糖区分は製品として回
収し、シュクロース区分は返送して原料と混合し、反応
に再利用した。混合原料であるシュクロースは単糖を少
し含むがイオン交換樹脂で反応させた場合に、シュクロ
ース原液を反応させた場合とその結果は殆ど変わるとこ
ろがなく、擬似移動層装置での分離結果も同様であった
。本例の生産性を擬似移動層装置による分離を行なわな
い場合と比べると、固定化酵素での生産能力は約1.8
倍であり、擬似移動層装置での分離結果は非常に安定し
ていた。
The obtained grape sugar and fructose fractions were recovered as products, and the sucrose fraction was returned, mixed with raw materials, and reused for the reaction. Sucrose, which is a mixed raw material, contains a small amount of monosaccharide, but when reacted with an ion exchange resin, the results are almost the same as when reacted with a sucrose stock solution, and the separation results with a simulated moving bed device are also the same. Met. Comparing the productivity of this example with the case without separation using a simulated moving bed device, the production capacity with immobilized enzyme is approximately 1.8
The separation result with the simulated moving bed apparatus was very stable.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】実施例1のデキストラン製造装置の構成概要を
示した図である。
FIG. 1 is a diagram showing an outline of the configuration of a dextran production apparatus of Example 1.

【図2】実施例2のデキストリン製造装置の構成概要を
示した図である。
FIG. 2 is a diagram showing an outline of the configuration of a dextrin manufacturing apparatus of Example 2.

【図3】実施例2の製造装置における擬似移動層装置の
運転状況の一部を説明する図である。
FIG. 3 is a diagram illustrating a part of the operating status of the simulated moving bed device in the manufacturing apparatus of Example 2.

【図4】実施例2の製造装置における擬似移動層装置の
他の運転状況を説明する図である。
FIG. 4 is a diagram illustrating another operating situation of the simulated moving bed device in the manufacturing apparatus of Example 2.

【図5】実施例3の製造装置における擬似移動層装置の
運転状況の一部を説明する図である。
FIG. 5 is a diagram illustrating a part of the operating status of the simulated moving bed device in the manufacturing apparatus of Example 3.

【図6】実施例3の製造装置における擬似移動層装置の
他の運転状況を説明する図である。
FIG. 6 is a diagram illustrating another operating situation of the simulated moving bed device in the manufacturing apparatus of Example 3.

【符号の説明】[Explanation of symbols]

1:主反応器、2:pH調整器、3:分離器、4:原液
タンク、16:反応液貯槽、18:フィードポンプ、1
9:フィードライン、31〜42:カラム、50:循環
ポンプ、51〜53:抜出ライン、54:溶離液導入ラ
イン、B:遮断弁。
1: Main reactor, 2: pH adjuster, 3: Separator, 4: Stock solution tank, 16: Reaction solution storage tank, 18: Feed pump, 1
9: Feed line, 31-42: Column, 50: Circulation pump, 51-53: Extraction line, 54: Eluent introduction line, B: Shutoff valve.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  生成物阻害反応又は可逆反応により、
原料及び反応生成物の3以上の成分が混在する混合液を
製造する第1の工程と、この混合液をクロマト分離装置
に移送する第2の工程と、移送された混合液を三つ以上
の区分にクロマト分離する第3の工程と、分離した区分
のうち原料成分を含む区分を上記第1の工程に返送する
第4の工程とを連続して行なうことを特徴とする生成物
阻害反応又は可逆反応による有用物質の製造方法。
Claim 1: By a product inhibition reaction or a reversible reaction,
A first step of producing a mixed solution containing three or more components of raw materials and reaction products, a second step of transferring this mixed solution to a chromatographic separation device, and a second step of producing a mixed solution containing three or more components of raw materials and reaction products; A product inhibition reaction characterized in that a third step of chromatographic separation into fractions and a fourth step of returning the fraction containing raw material components among the separated fractions to the first step are performed continuously; A method for producing useful substances through reversible reactions.
【請求項2】  請求項1において、第1の工程に供給
された原料は、その原料成分が生成物に転化する反応が
平衡に達する前に該第1工程を通過して第2工程に移行
することを特徴とする生成物阻害反応又は可逆反応によ
る有用物質の製造方法。
2. In claim 1, the raw material supplied to the first step passes through the first step and moves to the second step before the reaction in which the raw material components are converted into products reaches equilibrium. A method for producing a useful substance by a product inhibition reaction or a reversible reaction.
【請求項3】  請求項1又は2において、第3の工程
のクロマト分離が、擬似移動層装置により行なわれるこ
とを特徴とする生成物阻害反応又は可逆反応による有用
物質の製造方法。
3. A method for producing a useful substance by a product inhibition reaction or a reversible reaction according to claim 1 or 2, wherein the chromatographic separation in the third step is performed using a simulated moving bed device.
【請求項4】  請求項1乃至3のいずれかにおいて、
第3の工程でクロマト分離された原料成分を含む区分を
第1の工程に返送する第4の工程の途中に、返送液を濃
縮する工程を有することを特徴とする生成物阻害反応又
は可逆反応による有用物質の製造方法。
[Claim 4] In any one of claims 1 to 3,
A product inhibition reaction or a reversible reaction characterized by having a step of concentrating the returned liquid during the fourth step of returning the fraction containing the raw material components chromatographically separated in the third step to the first step. A method for producing useful substances.
【請求項5】  請求項1乃至4のいずれかにおいて、
第1の工程でシュクロースを原料として酵素反応により
デキストランを生成し、この第1の工程で製造されたデ
キストランと果糖及び未反応のシュクロースの混在する
混合液を、第2の工程で擬似移動層装置によるクロマト
分離を行なう第3の工程に移送し、第3の工程において
、果糖が富豊化された第1の区分を擬似移動層操作によ
り分離して当該混合液の供給位置よりも上流側で抜き出
し、デキストラン及びシュクロースが混在した第2の区
分を擬似移動層操作により分離して上記供給位置よりも
下流側から抜き出して第4の工程を経て第1の工程に返
送し、更にデキストランが富豊化された第3の区分を上
記擬似移動層操作により分離して上記第2の区分の抜出
位置よりも更に下流側から抜き出す操作を連続して行な
うことを特徴とする酵素反応によりデキストランを製造
する方法。
[Claim 5] In any one of claims 1 to 4,
In the first step, dextran is produced by an enzymatic reaction using sucrose as a raw material, and the mixed solution containing the dextran produced in the first step, fructose, and unreacted sucrose is subjected to pseudo-transfer in the second step. The mixture is transferred to a third step in which chromatographic separation is carried out using a layer device, and in the third step, the first fraction enriched with fructose is separated by a pseudo moving bed operation and is separated upstream from the supply position of the mixed liquid. A second section in which dextran and sucrose are mixed is separated by a simulated moving bed operation, extracted from the downstream side of the supply position, and returned to the first step through a fourth step. By an enzymatic reaction characterized in that the third section enriched with is separated by the pseudo moving bed operation and extracted from a further downstream side than the extraction position of the second section. A method of producing dextran.
【請求項6】  生成物阻害反応又は可逆反応により原
料及び反応生成物の3以上の成分が混在する混合液を製
造する反応器、無端循環系を形成する複数の吸着剤充填
塔からなり、かついずれかの吸着剤充填塔に連続供給さ
れる上記混合液の中に含まれている上記各々の成分が富
豊化した帯域を液の流れ方向に沿って順次に分離形成す
る吸着剤充填塔群と、混合液供給位置よりも上流の吸着
剤充填塔から、該分離されたうちの第1の区分を抜き出
す第1の抜出手段と、混合液供給位置よりも下流の吸着
剤充填塔から、分離された第2の区分を抜き出す第2の
抜出手段と、この第2の抜出手段よりも更に下流の位置
の吸着剤充填塔から、分離された第3の区分を抜き出す
第3の抜出手段とを備えた擬似移動層装置、上記反応器
から擬似移動層装置のいずれかの吸着剤充填塔を選択し
て上記混合液を供給する混合液移送手段、上記擬似移動
層装置の第1〜第3の抜出手段から抜き出されたうちの
原料の富豊化された区分の液を反応器に返送する手段、
反応器から擬似移動層装置に上記混合液を移送する位置
、及び上記第1〜第3の抜出手段により各区分の液を抜
き出す位置を、上記無端循環系として形成された複数の
吸着剤充填塔の群に対し同期して混合液の流れの下流側
に経時的に移行させる制御手段、を有することを特徴と
する生成物阻害反応又は可逆反応による有用物質の製造
装置。
6. A reactor for producing a mixture of three or more components of raw materials and reaction products through a product inhibition reaction or a reversible reaction, comprising a plurality of adsorbent-packed columns forming an endless circulation system, and A group of adsorbent-packed towers that sequentially separate and form zones enriched with each of the above components contained in the mixed liquid that is continuously supplied to one of the adsorbent-packed towers along the flow direction of the liquid. and a first extraction means for extracting the first section of the separated portion from the adsorbent packed tower upstream of the mixed liquid supply position, and from the adsorbent packed tower downstream of the mixed liquid supply position, A second extracting means for extracting the separated second section, and a third extracting means for extracting the separated third section from the adsorbent packed tower located further downstream than the second extracting means. a simulated moving bed device comprising a discharge means, a mixed liquid transfer means for selecting one of the adsorbent packed towers of the simulated moving bed device from the reactor and supplying the mixed liquid, a first of the simulated moving bed device; ~ means for returning the liquid of the raw material-enriched fraction extracted from the third extraction means to the reactor;
A plurality of adsorbent packings formed as the endless circulation system are arranged at positions where the mixed liquid is transferred from the reactor to the simulated moving bed device and where liquids in each section are extracted by the first to third extracting means. 1. An apparatus for producing a useful substance by a product inhibition reaction or a reversible reaction, comprising a control means for synchronously moving the flow of a mixed liquid to a downstream side of a group of columns over time.
JP3113008A 1991-05-17 1991-05-17 Method and apparatus for producing useful substance by product inhibition reaction or reversible reaction Expired - Lifetime JP2888667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3113008A JP2888667B2 (en) 1991-05-17 1991-05-17 Method and apparatus for producing useful substance by product inhibition reaction or reversible reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3113008A JP2888667B2 (en) 1991-05-17 1991-05-17 Method and apparatus for producing useful substance by product inhibition reaction or reversible reaction

Publications (2)

Publication Number Publication Date
JPH04341174A true JPH04341174A (en) 1992-11-27
JP2888667B2 JP2888667B2 (en) 1999-05-10

Family

ID=14601128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3113008A Expired - Lifetime JP2888667B2 (en) 1991-05-17 1991-05-17 Method and apparatus for producing useful substance by product inhibition reaction or reversible reaction

Country Status (1)

Country Link
JP (1) JP2888667B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017523905A (en) * 2014-06-06 2017-08-24 ジョージア テック リサーチ コーポレイション Process for operating a simulated moving bed reactor
CN114231579A (en) * 2022-01-13 2022-03-25 福州大学 Method for continuously and circularly preparing D-psicose
CN114774174A (en) * 2022-04-14 2022-07-22 河海大学 Marsh gas purification device with flexibly replaced filler in situ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017523905A (en) * 2014-06-06 2017-08-24 ジョージア テック リサーチ コーポレイション Process for operating a simulated moving bed reactor
CN114231579A (en) * 2022-01-13 2022-03-25 福州大学 Method for continuously and circularly preparing D-psicose
CN114774174A (en) * 2022-04-14 2022-07-22 河海大学 Marsh gas purification device with flexibly replaced filler in situ
CN114774174B (en) * 2022-04-14 2023-10-24 河海大学 Biogas purification device with in-situ flexible replacement of filler

Also Published As

Publication number Publication date
JP2888667B2 (en) 1999-05-10

Similar Documents

Publication Publication Date Title
Goulas et al. Synthesis of isomaltooligosaccharides and oligodextrans in a recycle membrane bioreactor by the combined use of dextransucrase and dextranase
JP3070890B2 (en) Method for producing starch sugar
JPH0262239B2 (en)
CA1333779C (en) Method for producing galactooligosaccharide
CN109925742B (en) Chromatographic separation device and method for separating vitamin C mother liquor by using same
JPS61205494A (en) Production of branched dextrin and straight-chain oligosaccharide
JPH04341174A (en) Production of useful substance by product-inhibiting reaction or reversible reaction and its system
KR100776895B1 (en) Process for producing high 2-?-?-?-glucopyranosyl-?-ascorbic acid content product
US4966851A (en) Process for isolation of lysozyme and avidin from egg white
JPH01287104A (en) Production of multiple-branched glucosyl-cyclodextrin
JP3783756B2 (en) Desalination method
Barker et al. A novel approach to the production of clinical‐grade dextran
US20230227487A1 (en) Improved demineralization of fermentation broths and purification of fine chemicals such as oligosaccharides
JPH0191788A (en) Method for purifying lactic acid
JP4697697B2 (en) Process for producing 2-O-α-D-glucopyranosyl-L-ascorbic acid-rich product
JP5531363B2 (en) Method for separating 1,5-D-anhydroglucitol
Okabe et al. Development of a cyclodextrin production process using specific adsorbents
Barker et al. Simulated counter-current chromatographic bioreactor-separators
CN101210238B (en) Affinity micro-filtration separation purification method for producing zytase
JP3614279B2 (en) Method for producing galactosyl sucrose
JP3542892B2 (en) Method for producing useful substance using simulated moving bed type chromatographic separation operation
JPH02115193A (en) Purification of difructose-dianhydride
Tsuchiyama et al. A novel process of cyclodextrin production by the use of specific adsorbents: part II. A new reactor system for selective production of α-cyclodextrin with specific adsorbent
CN104498460A (en) Method for purifying kallikrein by hydrophobic interaction chromatography
JPH07100000A (en) Production of starch saccharide

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080219

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090219

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120219

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120219

Year of fee payment: 13