JP3614279B2 - Method for producing galactosyl sucrose - Google Patents

Method for producing galactosyl sucrose Download PDF

Info

Publication number
JP3614279B2
JP3614279B2 JP21322197A JP21322197A JP3614279B2 JP 3614279 B2 JP3614279 B2 JP 3614279B2 JP 21322197 A JP21322197 A JP 21322197A JP 21322197 A JP21322197 A JP 21322197A JP 3614279 B2 JP3614279 B2 JP 3614279B2
Authority
JP
Japan
Prior art keywords
liquid
solution
raw material
galactosyl sucrose
sucrose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21322197A
Other languages
Japanese (ja)
Other versions
JPH1146788A (en
Inventor
健治 橋本
元明 河瀬
耕三 原
孝輝 藤田
文彦 松田
隆之 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ensuiko Sugar Refining Co Ltd
Organo Corp
Original Assignee
Ensuiko Sugar Refining Co Ltd
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ensuiko Sugar Refining Co Ltd, Organo Corp filed Critical Ensuiko Sugar Refining Co Ltd
Priority to JP21322197A priority Critical patent/JP3614279B2/en
Publication of JPH1146788A publication Critical patent/JPH1146788A/en
Application granted granted Critical
Publication of JP3614279B2 publication Critical patent/JP3614279B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ガラクトシルスクロース(他にラクトシルフラクトシド、あるいはラクトスクロースと称されることもある)の製造方法に関するものである。
【0002】
【従来技術】
ガラクトシルスクロースは、ビフィズス菌増殖因子としての活性を有しており、特定保健食品(厚生省認可)として人々の健康に役立つものである。
【0003】
従来から、このガラクトシルスクロースは、ラクトースとスクロースにフラクトシル基転移酵素を作用させることによって、酵素反応により製造できることが知られており、またこの製造を効率化する方法として、ラクトースとスクロースにフラクトシル基転移酵素及びインベルターゼ欠損酵母を作用させる方法が提案されている(特開平4−293494号公報)。
【0004】
【発明が解決しようとする課題】
ところで、上記のフラクトシル基転移酵素を用いた酵素反応は、平衡反応であるため、上記のガラクトシルスクロースを回分式で製造する方法では、ガラクトシルスクロースが反応固形分中の30%程度しか得られず、収率が低いという問題がある。
【0005】
これに対し、上記特開平4−293494号公報記載の方法は、酵素反応で生成したグルコースを酵母が消費するため、平衡反応が生成物の生成方向に進んでガラクトシルスクロースの含有率を反応固形分中の60%程度にまで高めることができるという利点がある。しかし、原理的に酵母が原料の糖分を摂取して失われるという問題があり、また酵母の取扱が容易でないという問題がある。
【0006】
そこで本発明者らは、上記フラクトシル基転移酵素を用いた酵素反応が平衡反応であって、回分式では平衡反応率以上に収率を高めることができないが、生成されたガラクトシルスクロースを酵素反応の領域から分離させれば反応が生成物の生成方向に進み、総括的な反応率を平衡反応率以上に高くしてガラクトシルスクロース含有率の高い反応液が得られる点に注目し、鋭意検討を進めて本発明をなすに至ったものである。
【0007】
すなわち、本発明の目的は、酵素反応とクロマト分離とを同時に行わせることによって全体操作を簡略化したガラクトシルスクロースの製造方法を提供するところにある。
【0008】
また本発明の別の目的は、回分式のように純度をよくするために長いカラムを用いて溶離液を多量に用いる必要がなく、純度が高く収率にも優れていて、後段の濃縮工程の負担も小さくでき、ガラクトシルスクロースを効率よく高い生産性をもって低コストに製造できる方法を提供するところにある。
【0009】
【課題を解決するための手段】
請求項1のガラクトシルスクロースの製造方法の発明は、内部に充填剤層が形成された塔の複数を無端に連結した系内で液を一方向に循環流として流す操作と、この系にラクトースとスクロースを原料として含む原料液、フラクトシル基転移酵素を含む酵素液及び溶離液をそれぞれ供給し、かつ充填剤に対する親和力の弱いガラクトシルスクロースに富むA区分液、及び充填剤に対する親和力の強いグルコースに富むC区分液をそれぞれ上記系外に抜出す操作と、前記の各液を供給する入口の位置及び各区分液を該系から抜出す出口の位置を弁の切換えにより上記一方向に間欠的に移動させて、上記入口及び出口に対して充填剤を液の流れとは見かけ上反対方向に移動させる疑似移動層式クロマト分離の操作とを行って、酵素反応により上記原料からガラクトシルスクロースを生成させかつ同時にクロマト分離操作で分離して系外に抜出し、得られたガラクトシルスクロース含有液に含まれる塩類を除去する処理を行うことを特徴とする。
【0010】
上記において、擬似移動層装置としては、例えば、内部に充填剤層を形成し複数の塔を配管で無端に連結した系と、この系の所定位置に原料,溶離液,酵素液を供給しかつその供給位置を間欠的に循環流の下流側に切換え移動することができる液供給系と、分離した成分の富化帯域の液を循環系外に抜出しかつ液供給系と同期して間欠的に循環流の下流側に切換え移動することができる液抜出系と、これら液供給系及び液抜出系の切換え移動を行わせる制御手段の組合せによって構成されたものを用いることができる。
【0012】
請求項1の発明において、擬似移動層の内部は、必要に応じて酵素反応及びクロマト分離に適した条件(pH,温度等)に設定されることは当然であり、例えば酵素液には酵素が活性至適条件に維持されるように活性化剤、緩衝液等が添加される。また擬似移動層の充填剤が水素イオン形になって糖を加水分解することを防止したり、擬似移動層内のpHを至適pHに保つように溶離液には水酸化ナトリウム等を添加することが好ましい。また、原料液である糖液は脱塩したものまたは酵素反応の至適pHに調整したものを用いることが好ましい。
【0013】
本発明においては、擬似移動層装置から得られたガラクトシルスクロース含有液に含まれる塩類を除去する処理が行われる。脱塩処理は、ガラクトシルスクロースの分解を招かないように処理することが必要であり、例えば50℃程度に加温した糖液を強塩基性アニオン交換樹脂、弱酸性カチオン交換樹脂の順に通液して脱塩する方法(リバース法)、30℃以下に冷却した糖液を強酸性カチオン交換樹脂(又は弱酸性カチオン交換樹脂)と強塩基性アニオン交換樹脂の混床に通液して脱塩する方法(混床法)、10℃以下に冷却した糖液を強酸性カチオン交換樹脂、強塩基性アニオン交換樹脂(又は弱塩基性アニオン交換樹脂)の順に通液して脱塩する方法(冷脱塩法)などを挙げることができる。
【0014】
この発明によれば、凝似移動層装置内で、
ラクトース+スクロース=ガラクトシルスクロース+グルコース
の酵素反応と、生成されたガラクトシルスクロースに富む液の分離とを同時に行うことができて、酵素反応装置と分離装置を別々に設ける必要がないので、全体操作、設備を簡略化してガラクトシルスクロースを製造することができると共に、平衡反応である上記反応を右方向(ガラクトシルスクロース生成方向)に進めることができて、平衡反応率よりも高い収率でガラクトシルスクロースを製造することができる。
【0015】
また、得られたガラクトシルスクロース含有液の脱塩処理を行うので、これに含まれる塩類を除去して、高品質のガラクトシルスクロースを製造することができる。
【0016】
請求項の発明は、上記発明において、酵素液を、原料液の供給口に該原料液と共に供給することを特徴とし、請求項の発明は、酵素液の系への供給位置を、グルコースに富む区分液を系外に抜出す出口と、原料液の供給口との間としたことを特徴とする。
【0017】
この発明によれば、酵素と原料を効率よく接触させることができ、特に請求項の発明によれば、酵素が他の物質に比べて移動流速が速いので、原料の供給位置よりも循環流の上流側から流れる酵素は、より効率よく原料と接触することができる。
【0018】
請求項の発明は、上記の各発明において、アルカリ金属形の強酸性カチオン交換樹脂により充填剤層を形成したことを特徴とする。
【0019】
本発明方法において用いられる充填剤は、例えばイオン交換樹脂、ゲルろ過用充填剤などを挙げることができるが、アルカリ金属形の強酸性カチオン交換樹脂を用いるこの発明によれば、比較的低分子の糖類である単糖と2糖と3糖を分子量により分離でき、ガラクトシルスクロースの製造に最適である。
【0020】
【発明の実施の形態】
実施形態1
図1は本発明方法を実施するのに用いられるロータリーバルブ型擬似移動層装置の一例の概要を示したものであり、実際の装置は、充填剤充填塔である12本のカラム1〜12を同一円周上に等角度をなすように離隔配置し、配管15によって無端状に連結されているが、この図1では、説明の便宜上カラムを直線状に展開配置した状態で示した。
【0021】
そしてこの装置では、この12本のカラムからなる系に対して原料液、酵素液,溶離水の各供給液をポンプ21,22,23により所定のカラムに供給し、A区分液及びC区分液を所定のカラムからポンプ24,25で抜出すように連結されると共に、図示しない開閉弁の切換えにより一定時間毎に循環流(図中に流れ方向を矢印で示した)の下流側に一カラムづつ、カラムとの連結が切換え移動されるようになっている。
【0022】
すなわち、図1の状態では、原料液及び酵素液はポンプ21,22によってカラム5の塔頂に液を供給するように連結されていると共に、溶離液はポンプ23によってカラム1の塔頂に供給するように連結され、かつA区分液はポンプ24によってカラム10の塔末から液を抜出し、C区分液はポンプ25によってカラム2の塔末から液を抜出すようにそれぞれ連結されている。そしてこの連結が間欠的に液の循環する下流側に移動されることによって、間欠的に移動された次の時点では、原料液及び酵素液はカラム6の塔頂へ、また溶離水はカラム2の塔頂へそれぞれ供給され、A区分液はカラム11の塔末から、C区分液はカラム3の塔末からそれぞれ液を抜出すように連結が切換えられる。以下同様にして各液の供給位置,抜出位置が一定時間毎にカラム一つづつ循環流の下流側に移動するように切換えられる。
【0023】
上記装置において、以上の操作を行うことで、無端接続されたカラムの系に原料液と酵素液の混合液として供給された原料と酵素は、酵素反応により反応生成物を生成し、生成されたうちの充填剤に対する親和力の弱い成分(A区分液の成分)は循環流によって原料よりも下流方向にその富化帯域が進み、A区分液の抜出し口から系外に抜出される。一方、生成物のうちの充填剤に対する親和力の強い成分(C区分液の成分)は、上述した供給口及び抜出口の一定時間毎の切換えにより充填剤が見掛け上循環流の流れとは反対方向に移動することにより、その富化帯域は原料の供給位置よりも上流側に移動し、供給される溶離水に押されてC区分液の抜出し口から系外に抜出される。
【0024】
以上のようにして、図1の装置を用いて本発明の方法を実施することにより、原料液に含まれる原料と、酵素液に含まれる酵素とが擬似移動層装置に供給される直前で混合された時点から擬似移動層装置内で酵素反応が進行することになると共に、同時に擬似移動層の作用であるクロマト分離が行われ、この酵素反応と擬似移動層式クロマト分離が同時に行われることによって、効率的な酵素反応と生成物質の分離抜出しを連続的に行うことができる。
【0025】
そして特に、酵素反応が平衡(可逆)反応である場合には、クロマト分離作用により生成物質が酵素反応の場から分離される(原料と酵素が接触する場から、これに関与しない場に移行する)ために、平衡(可逆)反応における生成物質生成の方向の反応を促進することができる。
【0026】
実施形態2
図2に示した本例は、上記図1で説明した実施形態1の装置に比べて、酵素液の供給位置を、C区分液の抜出し位置(図2で言えばカラム2の塔末)よりも下流で、原料液の供給位置(図2で言えばカラム5の塔頂)の上流において、カラムの系に酵素液を供給するようにしたものであり、その他の構成は実施形態1と同じである。なお図2は、カラム2の塔末からカラム3の塔頂への配管15に逆止弁30を設けた例として示しているが、この逆止弁30は必ずしも必須のものではなく、循環流の流量制御によって実質的に循環流が流れないようにするようにしてもよい。なおこの逆止弁も供給口及び抜出口と同様に一定時間毎に循環流の下流側に移動されるものである。
【0027】
本例の装置によれば、最も流れ方向への進み方が速い酵素液が循環流によって原料が存在する領域に渡って確実に通過するので、実施形態1に比べて酵素反応をより効率よく行わせることができる。
【0028】
実施例1
単位充填層として内径1.2cm、長さ20cmで加熱ジャケット付きのガラスカラムの12本を用いて図1のロータリーバルブ型擬似移動層装置を構成した。
【0029】
上記充填剤としては、ロームアンドハース社製のアンバーライトCR1310(クロマト分離用ゲル型強酸性カチオン交換樹脂)のナトリウム形を用いた。各ゾーンのカラム数は溶離液供給口から下流方向に2本、2本、6本、2本とした。すなわち、溶離液供給口からC区分抜出口までの充填剤に対して親和力の強い成分の回収ゾーンを2本、C区分抜出口から原料供給口までのゾーンを2本、原料供給口からA区分抜出口までのゾーンを6本、A区分抜出口から溶離液供給口までの親和力の弱い成分の回収ゾーンを2本とした。この装置内でβ−フラクトフラノシダーゼによる次のフラクトシル基転移反応を行わせた。
【0030】
ラクトース+スクロース=ガラクトシルスクロース+グルコース
ここで、ラクトースはガラクトースとグルコースの結合した物質、スクロースはグルコースとフラクトースの結合した物質、ガラクトシルスクロースはラクトースとフラクトースの結合した物質であり、該反応はスクロースを構成するフラクトースをラクトースに転移させる平衡反応である。
【0031】
pHを7.0に調整したラクトースとスクロースの混合水溶液ならびにβ−フラクトフラノシダーゼ原液の脱塩水による稀釈液を原料供給口より供給し、装置内のpHを調整するために脱塩水に10mg/Lの水酸化ナトリウムを溶解した溶離水を溶離液供給口から供給した。反応温度は55℃、原料糖濃度はそれぞれ10wt%、酵素濃度は180U/mlとした。ただし、1Uは常法により1分間に1μmolのフラクトシル基を転移させる酵素量とした。1サイクルの時間は2時間とした。また、各流速は次のようにした。
【0032】
原料供給口とC区分液抜出口間の単位充填塔における流速:1.45ml/min
原液液供給量:0.05ml/min
酵素液供給量:0.05ml/min
溶離水供給量:0.75ml/min
A区分液抜出し量:0.40ml/min
C区分液抜出し量:0.45ml/min
運転の結果、15時間後に下記表1に示す濃度と組成のA区分液とC区分液が得られた。
【0033】
【表1】

Figure 0003614279
【0034】
なお次式(i)で計算した出口基準の総括反応率は55.8%であり、比較例1の平衡反応率44.9%に比べて、10.9%高かった。
【0035】
【数1】
Figure 0003614279
【0036】
また、反応で生成したガラクトシルスクロースのA区分液での回収率は100%であり、A区分液のガラクトシルスクロースの純度は比較例1の回分反応に比べて19.5%高くすることができた。
【0037】
しかし、A区分液の電気伝導率は254μS/cmで、イオン交換樹脂法により測定した全カチオンは3.2meq/L、全アニオンは3.4meq/Lでありイオン性の不純物を含んでいた。そこでこのA区分液200mlを分画分子量1万の限外ろ過膜:ウルトラフィルターQO100(アドバンテック東洋株式会社製)で処理して酵素を分離した後、強酸性カチオン交換樹脂:アンバーライトAmb200C(ローム・アンド・ハース社製)の水素イオン形10mlと強塩基性アニオン交換樹脂:アンバーライトXT−5007(ローム・アンド・ハース社製)の水酸基形25mlを混合して充填したガラスカラムに通液した。通液温度は室温、通液速度は1ml/minとした。その結果、処理液の電気伝導率は0.8μS/cm、全カチオンと全アニオンは共にイオン交換樹脂法による測定限界の0.4meq/L以下となり高品質の糖液が得られた。
【0038】
なお、上記限外ろ過膜で分離した酵素は、ガラクトシルスクロース製造に用いる酵素として再利用することもできる。
【0039】
比較例1
実施例1の反応を回分反応で行った。55℃に保った実施例1と同じ原料液100mlにβ−フラクトフラノシダーゼを101U添加し、3時間、6時間、9時間、21時間、27時間後にそれぞれ2mlづつ反応液をサンプリングし、酵素を100℃、10分で加熱失活させた後、高速液体クロマトにより組成を測定した、その結果を下記表2に示した。
【0040】
【表2】
Figure 0003614279
【0041】
また次式(ii)で計算したラクトースからガラクトシルスクロースへの反応後基準の反応率は、3時間後25.9%、6時間後39.8%、9時間後44.9%、21時間後44.2%、27時間後39.6%であり、したがって回分法で平衡反応率は上記の反応率が最大となる反応時間(9時間)を採用しても44.9%が最大であることが分かる。
【0042】
【数2】
Figure 0003614279
【0043】
実施例2
図1のロータリーバルブ型擬似移動層装置で酵素液の供給場所を変更した図2の装置を用い他は、条件をすべて実施例1と同じにしてガラクトシルスクロースを製造した。
【0044】
運転の結果、15時間後に下記表3に示す濃度と組成のA区分液とC区分液とが得られた。
【0045】
【表3】
Figure 0003614279
【0046】
なお、実施例1と同様に計算した出口基準の総括反応率は60.2%であり、実施例1よりも4.4%高くなった。また反応で生成したガラクトシルスクロースのA区分液での回収率は100%であり、A区分液のガラクトシルスクロースの純度は実施例1の53.1%に比べ、5.2%高くすることができた。
【0047】
A区分液の電気伝導率は259μS/cmで、イオン交換樹脂法により測定した全カチオンは3.3meq/L、全アニオンは3.5meq/Lでありイオン性の不純物を含んでいた。そこで、このA区分液200mlを分画分子量1万の限外ろ過膜:ウルトラフィルターQO100(前出)で処理して酵素を分離した後、強酸性カチオン交換樹脂:アンバーライトAmb200C(前出)の水素イオン形10mlと強塩基性アニオン交換樹脂:アンバーライトXT−5007(前出)の水酸基形25mlを混合して充填したガラスカラムに通液した。通液温度は室温、通液速度は1ml/minとした。その結果、処理液の電気伝導率は0.8μS/cm、全カチオンと全アニオンは共にイオン交換樹脂法による測定限界の0.4meq/L以下となり高品質の糖液が得られた。
【0048】
【発明の効果】
本発明によれば、原料と酵素が存在する反応場からクロマト分離の働きで連続的にガラクトシルスクロースを分離する作用がはたらくので、ガラクトシルスクロースから原料生成方向への逆反応が抑制され、ガラクトシルスクロース生成の総括的な反応率が通常の攪拌槽内で行われる平衡反応率よりも高くなり、ガラクトシルスクロースを高い収率で製造することができるという効果が奏される。
【0049】
また、酵素反応とクロマト分離とを同時に行わせるので、酵素反応の操作あるいはクロマト分離の操作をそれぞれ単独に行う場合に比べて全体操作が簡略化され、設備的にも酵素反応装置と分離装置の二つを設備する必要がなく、純度が高く収率にも優れていて、後段の濃縮工程の負担も小さくでき、ガラクトシルスクロースを効率よく高い生産性をもって低コストで製造できるという効果が奏される。
【0050】
また、酵母を用いる従来法に比べて、原料を有効に利用でき、酵母取扱という煩雑さがない。
【図面の簡単な説明】
【図1】本発明の実施例1で用いられるロータリーバルブ型擬似移動層式クロマト分離装置の構成概要をフロー図として示した図。
【図2】本発明の実施例2で用いられるロータリーバルブ型擬似移動層式クロマト分離装置の構成概要をフロー図として示した図。
【符号の説明】
1〜12・・・カラム
15・・・配管
21・・・原料液供給ポンプ
22・・・酵素液供給ポンプ
23・・・溶離水供給ポンプ
24・・・A区分液抜出しポンプ
25・・・C区分液抜出しポンプ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing galactosyl sucrose (sometimes referred to as lactosyl fructoside or lactosucrose).
[0002]
[Prior art]
Galactosyl sucrose has activity as a bifidobacterial growth factor and is useful for people's health as a specified health food (approved by the Ministry of Health and Welfare).
[0003]
Conventionally, it has been known that galactosyl sucrose can be produced by enzymatic reaction by reacting lactose and sucrose with fructosyl transferase, and as a method for improving the efficiency of this production, fructosyl group transfer to lactose and sucrose. A method for allowing an enzyme and an invertase-deficient yeast to act has been proposed (Japanese Patent Application Laid-Open No. 4-293494).
[0004]
[Problems to be solved by the invention]
By the way, since the enzyme reaction using the fructosyl transferase described above is an equilibrium reaction, in the method for producing the galactosyl sucrose batchwise, only about 30% of the galactosyl sucrose in the reaction solid content is obtained. There is a problem that the yield is low.
[0005]
On the other hand, in the method described in JP-A-4-293494, since yeast consumes glucose produced by the enzyme reaction, the equilibrium reaction proceeds in the product production direction, and the content of galactosyl sucrose is reduced to the reaction solid content. There is an advantage that it can be increased to about 60%. However, in principle, there is a problem that the yeast loses the sugar content of the raw material, and there is a problem that handling of the yeast is not easy.
[0006]
Therefore, the present inventors have determined that the enzyme reaction using the fructosyltransferase is an equilibrium reaction, and the yield cannot be increased more than the equilibrium reaction rate in a batch system, but the produced galactosyl sucrose is used for the enzyme reaction. Focusing on the point that if the reaction is separated from the region, the reaction proceeds in the direction of product formation, and the overall reaction rate is higher than the equilibrium reaction rate, and a reaction solution having a high galactosyl sucrose content can be obtained. Thus, the present invention has been made.
[0007]
That is, an object of the present invention is to provide a method for producing galactosyl sucrose in which the entire operation is simplified by simultaneously performing an enzyme reaction and chromatographic separation.
[0008]
Another object of the present invention is that it is not necessary to use a large amount of eluent using a long column in order to improve the purity as in the batch type, and the purity is high and the yield is excellent, and the concentration step in the latter stage Therefore, the present invention provides a method for producing galactosyl sucrose efficiently and with high productivity at low cost.
[0009]
[Means for Solving the Problems]
The invention of the method for producing galactosyl sucrose according to claim 1 comprises an operation of flowing a liquid as a circulating flow in one direction in a system in which a plurality of towers in which a filler layer is formed is connected endlessly, and lactose and A raw material solution containing sucrose as a raw material, an enzyme solution containing a fructosyltransferase, and an eluent are supplied, respectively, and the A section solution rich in galactosyl sucrose having a weak affinity for the filler, and the C rich in glucose having a strong affinity for the filler. The operation of withdrawing the divided liquid out of the system, the position of the inlet for supplying each liquid, and the position of the outlet for extracting the divided liquid from the system are intermittently moved in the one direction by switching the valve. Then, a pseudo moving bed type chromatographic separation in which the filler is moved in the opposite direction to the flow of the liquid with respect to the inlet and the outlet, and the above reaction is performed by an enzyme reaction. Withdrawn from the system and separated by to produce a galactosyl sucrose and simultaneously chromatographic separation from charge, and performs a process of removing salt contained in the resulting galactosyl sucrose-containing solution.
[0010]
In the above, as the simulated moving bed apparatus, for example, a system in which a filler layer is formed inside and a plurality of towers are connected endlessly by piping, and a raw material, an eluent, and an enzyme solution are supplied to predetermined positions of this system, and A liquid supply system capable of intermittently switching and moving the supply position to the downstream side of the circulation flow, and extracting the liquid in the enriched zone of the separated components out of the circulation system and intermittently synchronizing with the liquid supply system A liquid discharge system that can be switched and moved to the downstream side of the circulating flow, and a control means that performs switching movement of the liquid supply system and the liquid discharge system can be used.
[0012]
In the invention of claim 1, the inside of the simulated moving bed is naturally set to conditions (pH, temperature, etc.) suitable for enzyme reaction and chromatographic separation as required. For example, the enzyme solution contains an enzyme. An activator, a buffer solution, or the like is added so as to maintain the optimum activity conditions. In addition, sodium hydroxide or the like is added to the eluent to prevent the sugar in the simulated moving bed from hydrolyzing sugar due to the hydrogen ion form, or to keep the pH in the simulated moving bed at the optimum pH. It is preferable. Moreover, it is preferable to use the sugar solution that is a raw material solution that has been desalted or adjusted to an optimum pH for the enzyme reaction.
[0013]
In this invention, the process which removes the salts contained in the galactosyl sucrose containing liquid obtained from the simulated moving bed apparatus is performed. The desalting treatment needs to be performed so as not to cause decomposition of galactosyl sucrose. For example, a sugar solution heated to about 50 ° C. is passed in the order of a strongly basic anion exchange resin and a weakly acidic cation exchange resin. Desalting (reverse method), sugar solution cooled to 30 ° C. or lower is passed through a mixed bed of strongly acidic cation exchange resin (or weakly acidic cation exchange resin) and strongly basic anion exchange resin for desalting. Method (mixed bed method) A method in which a sugar solution cooled to 10 ° C. or lower is passed in the order of a strongly acidic cation exchange resin and then a strongly basic anion exchange resin (or a weakly basic anion exchange resin) in this order to carry out desalting (cold desiccation). Salt method).
[0014]
According to the present invention, in the similar moving bed apparatus,
Since the enzymatic reaction of lactose + sucrose = galactosyl sucrose + glucose and the separation of the produced galactosyl sucrose-rich liquid can be carried out at the same time, it is not necessary to provide an enzyme reaction apparatus and a separation apparatus separately. The equipment can be simplified to produce galactosyl sucrose, and the above reaction, which is an equilibrium reaction, can proceed in the right direction (galactosyl sucrose production direction), producing galactosyl sucrose at a higher yield than the equilibrium reaction rate. can do.
[0015]
Moreover, since the obtained galactosyl sucrose-containing liquid is desalted, the salts contained therein can be removed to produce high-quality galactosyl sucrose.
[0016]
The invention of claim 2 is characterized in that, in the above invention, the enzyme solution is supplied to the supply port of the material solution together with the material solution, and the invention of claim 3 is characterized in that the supply position of the enzyme solution to the system is glucose It is characterized in that it is between the outlet for drawing out the rich liquid to the outside of the system and the supply port for the raw material liquid.
[0017]
According to this invention, the enzyme and the raw material can be efficiently contacted. In particular, according to the invention of claim 3 , since the moving speed of the enzyme is faster than that of other substances, the circulating flow is higher than the supply position of the raw material. Enzyme flowing from the upstream side of can contact the raw material more efficiently.
[0018]
The invention of claim 4 is characterized in that, in each of the above-mentioned inventions, a filler layer is formed of an alkali metal type strongly acidic cation exchange resin.
[0019]
Examples of the filler used in the method of the present invention include an ion exchange resin and a gel filtration filler. According to the present invention using an alkali metal strong acidic cation exchange resin, a relatively low molecular weight Monosaccharides, disaccharides and trisaccharides, which are saccharides, can be separated by molecular weight, and are optimal for the production of galactosyl sucrose.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1
FIG. 1 shows an outline of an example of a rotary valve type simulated moving bed apparatus used for carrying out the method of the present invention, and an actual apparatus includes 12 columns 1 to 12 which are packing columns. Although they are spaced apart at equal angles on the same circumference and connected endlessly by a pipe 15, in FIG. 1, for convenience of explanation, the columns are shown in a state of being linearly deployed.
[0021]
In this apparatus, the feed solutions of the raw material solution, the enzyme solution, and the eluent water are supplied to the predetermined columns by the pumps 21, 22, and 23 to the system consisting of the 12 columns, and the A section liquid and the C section liquid are supplied. Is connected to the predetermined column by pumps 24 and 25, and one column is provided downstream of the circulating flow (the flow direction is indicated by an arrow in the figure) at regular intervals by switching an on-off valve (not shown). The connection with the column is switched and moved.
[0022]
That is, in the state of FIG. 1, the raw material liquid and the enzyme liquid are connected so as to supply the liquid to the top of the column 5 by the pumps 21 and 22, and the eluent is supplied to the top of the column 1 by the pump 23. The section A liquid is extracted from the column end of the column 10 by the pump 24, and the section C liquid is connected by the pump 25 to extract the liquid from the column end of the column 2. Then, the connection is intermittently moved to the downstream side where the liquid circulates, and at the next time when the connection is intermittently moved, the raw material liquid and the enzyme liquid are sent to the top of the column 6 and the elution water is supplied to the column 2. The connection is switched so that the A section liquid is extracted from the column end of the column 11 and the C section liquid is extracted from the column end of the column 3, respectively. In the same manner, the supply position and extraction position of each liquid are switched so as to move to the downstream side of the circulation flow one column at a time.
[0023]
In the above apparatus, by performing the above operation, the raw material and the enzyme supplied as a mixed liquid of the raw material liquid and the enzyme liquid to the endlessly connected column system were produced by generating a reaction product by an enzymatic reaction. The component having a weak affinity for the filler (the component of the A section liquid) proceeds in the enrichment zone in the downstream direction from the raw material by the circulating flow, and is extracted out of the system from the outlet of the A section liquid. On the other hand, in the product, the component having a strong affinity for the filler (component of the C section liquid) is apparently opposite to the flow of the circulating flow due to the switching of the supply port and the outlet at regular intervals. , The enrichment zone moves to the upstream side of the feed position of the raw material, is pushed by the supplied elution water, and is drawn out of the system from the outlet of the C section liquid.
[0024]
By carrying out the method of the present invention using the apparatus of FIG. 1 as described above, the raw material contained in the raw material liquid and the enzyme contained in the enzyme liquid are mixed immediately before being supplied to the simulated moving bed apparatus. At the same time, the enzymatic reaction proceeds in the simulated moving bed apparatus, and at the same time, chromatographic separation, which is the action of the simulated moving bed, is performed, and this enzymatic reaction and simulated moving bed type chromatographic separation are performed simultaneously. Thus, efficient enzyme reaction and separation and extraction of the product can be performed continuously.
[0025]
In particular, when the enzyme reaction is an equilibrium (reversible) reaction, the product is separated from the field of the enzyme reaction by the chromatographic separation action (from the place where the raw material and the enzyme are in contact to the place where it is not involved) Therefore, the reaction in the direction of product generation in the equilibrium (reversible) reaction can be promoted.
[0026]
Embodiment 2
In this example shown in FIG. 2, compared with the apparatus of Embodiment 1 described above with reference to FIG. 1, the supply position of the enzyme solution is from the extraction position of the C-segment solution (the column 2 column end in FIG. 2). Also, the enzyme solution is supplied to the column system upstream of the supply position of the raw material solution (the top of the column 5 in FIG. 2), and the other configurations are the same as those of the first embodiment. It is. FIG. 2 shows an example in which a check valve 30 is provided in the pipe 15 from the column end of the column 2 to the top of the column 3, but the check valve 30 is not always essential, and the circulation flow is not necessarily required. It is also possible to prevent the circulating flow from substantially flowing by controlling the flow rate. This check valve is also moved downstream of the circulating flow at regular intervals, like the supply port and the outlet.
[0027]
According to the apparatus of this example, the enzyme solution that proceeds the fastest in the flow direction surely passes over the region where the raw material exists by the circulating flow, so that the enzyme reaction is performed more efficiently than in the first embodiment. Can be made.
[0028]
Example 1
The rotary valve type simulated moving bed apparatus of FIG. 1 was configured using 12 glass columns having an inner diameter of 1.2 cm, a length of 20 cm and a heating jacket as the unit packed bed.
[0029]
As the filler, a sodium form of Amberlite CR1310 (gel-type strongly acidic cation exchange resin for chromatographic separation) manufactured by Rohm and Haas was used. The number of columns in each zone was 2, 2, 6, or 2 in the downstream direction from the eluent supply port. That is, two recovery zones for components that have a strong affinity for the filler from the eluent supply port to the C section extraction port, two zones from the C section extraction port to the raw material supply port, and A section from the raw material supply port There were 6 zones up to the extraction outlet, and 2 recovery zones for components with low affinity from the A section extraction outlet to the eluent supply port. The next fructosyl group transfer reaction by β-fructofuranosidase was performed in this apparatus.
[0030]
Lactose + sucrose = galactosyl sucrose + glucose where lactose is a substance in which galactose and glucose are combined, sucrose is a substance in which glucose and fructose are combined, galactosyl sucrose is a substance in which lactose and fructose are combined, and the reaction constitutes sucrose It is an equilibrium reaction that transfers fructose to lactose.
[0031]
A mixed aqueous solution of lactose and sucrose adjusted to pH 7.0 and a diluted solution of β-fructofuranosidase stock solution with demineralized water is supplied from the raw material supply port, and 10 mg / L in demineralized water to adjust the pH in the apparatus. Elution water in which sodium hydroxide was dissolved was supplied from the eluent supply port. The reaction temperature was 55 ° C., the raw sugar concentration was 10 wt%, and the enzyme concentration was 180 U / ml. However, 1 U was defined as the amount of enzyme that transfers 1 μmol of fructosyl group per minute by a conventional method. The cycle time was 2 hours. Each flow rate was as follows.
[0032]
Flow rate in the unit packed tower between the raw material supply port and the C section liquid discharge outlet: 1.45 ml / min
Stock solution supply amount: 0.05 ml / min
Enzyme solution supply amount: 0.05 ml / min
Elution water supply amount: 0.75 ml / min
A section liquid extraction amount: 0.40 ml / min
C section liquid withdrawal amount: 0.45 ml / min
As a result of the operation, after 15 hours, A-class liquid and C-class liquid having the concentrations and compositions shown in Table 1 below were obtained.
[0033]
[Table 1]
Figure 0003614279
[0034]
The overall reaction rate based on the outlet calculated by the following formula (i) was 55.8%, which was 10.9% higher than the equilibrium reaction rate of 44.9% in Comparative Example 1.
[0035]
[Expression 1]
Figure 0003614279
[0036]
Further, the recovery rate of the galactosyl sucrose produced in the reaction in the A section liquid was 100%, and the purity of the galactosyl sucrose in the A section liquid could be increased by 19.5% compared to the batch reaction of Comparative Example 1. .
[0037]
However, the electric conductivity of the A section liquid was 254 μS / cm, the total cation measured by the ion exchange resin method was 3.2 meq / L, and the total anion was 3.4 meq / L, which contained ionic impurities. Therefore, 200 ml of this A-segment solution was treated with an ultrafiltration membrane with a molecular weight cut off of 10,000: Ultrafilter QO100 (manufactured by Advantech Toyo Co., Ltd.) to separate the enzyme, and then strongly acidic cation exchange resin: Amberlite Amb200C (Rohm The product was passed through a glass column filled with 10 ml of hydrogen ion form (manufactured by Andhers) and 25 ml of hydroxyl group of strongly basic anion exchange resin: Amberlite XT-5007 (manufactured by Rohm and Haas). The liquid passing temperature was room temperature, and the liquid passing speed was 1 ml / min. As a result, the electrical conductivity of the treatment liquid was 0.8 μS / cm, and the total cation and total anion were both below the measurable limit of 0.4 meq / L by the ion exchange resin method, and a high quality sugar liquid was obtained.
[0038]
In addition, the enzyme isolate | separated with the said ultrafiltration membrane can also be reused as an enzyme used for galactosyl sucrose manufacture.
[0039]
Comparative Example 1
The reaction of Example 1 was performed as a batch reaction. 101 U of β-fructofuranosidase was added to 100 ml of the same raw material solution as in Example 1 maintained at 55 ° C, and 2 ml each of the reaction solution was sampled after 3 hours, 6 hours, 9 hours, 21 hours, and 27 hours to obtain the enzyme. After inactivation at 100 ° C. for 10 minutes, the composition was measured by high performance liquid chromatography. The results are shown in Table 2 below.
[0040]
[Table 2]
Figure 0003614279
[0041]
The reaction rate on the basis of the reaction from lactose to galactosyl sucrose calculated by the following formula (ii) is 25.9% after 3 hours, 39.8% after 6 hours, 44.9% after 9 hours, and 21 hours later. 44.2% and 39.6% after 27 hours. Therefore, even when the reaction time (9 hours) at which the above reaction rate is maximized is adopted, the equilibrium reaction rate is 44.9% in the batch method. I understand that.
[0042]
[Expression 2]
Figure 0003614279
[0043]
Example 2
Galactosyl sucrose was produced under the same conditions as in Example 1 except that the apparatus of FIG. 2 in which the supply position of the enzyme solution was changed with the rotary valve type simulated moving bed apparatus of FIG. 1 was used.
[0044]
As a result of the operation, after 15 hours, A section liquid and C section liquid having the concentrations and compositions shown in Table 3 below were obtained.
[0045]
[Table 3]
Figure 0003614279
[0046]
The overall reaction rate based on the outlet calculated in the same manner as in Example 1 was 60.2%, which was 4.4% higher than that in Example 1. In addition, the recovery rate of the galactosyl sucrose produced in the reaction in the A section liquid is 100%, and the purity of the galactosyl sucrose in the A section liquid can be increased by 5.2% compared to 53.1% in Example 1. It was.
[0047]
The electric conductivity of the A section liquid was 259 μS / cm, the total cation measured by the ion exchange resin method was 3.3 meq / L, and the total anion was 3.5 meq / L, which contained ionic impurities. Therefore, 200 ml of this A-segmented solution was treated with an ultrafiltration membrane having a molecular weight cut-off of 10,000: Ultrafilter QO100 (supra) and the enzyme was separated, and then strongly acidic cation exchange resin: Amberlite Amb200C (supra). The solution was passed through a glass column filled with 10 ml of hydrogen ion form and 25 ml of hydroxyl group form of strongly basic anion exchange resin: Amberlite XT-5007 (supra). The liquid passing temperature was room temperature, and the liquid passing speed was 1 ml / min. As a result, the electrical conductivity of the treatment liquid was 0.8 μS / cm, and the total cation and total anion were both 0.4 meq / L or less, which is the measurement limit by the ion exchange resin method, and a high quality sugar liquid was obtained.
[0048]
【The invention's effect】
According to the present invention, the action of continuously separating galactosyl sucrose by the action of chromatographic separation from the reaction field where the raw material and the enzyme are present works, so that the reverse reaction from galactosyl sucrose to the raw material production direction is suppressed, and galactosyl sucrose production The overall reaction rate is higher than the equilibrium reaction rate performed in a normal stirring tank, and the effect that galactosyl sucrose can be produced in a high yield is exhibited.
[0049]
In addition, since the enzyme reaction and the chromatographic separation are performed simultaneously, the entire operation is simplified as compared with the case where the enzyme reaction operation or the chromatographic separation operation is performed independently, and the equipment of the enzyme reaction apparatus and the separation apparatus is also improved in terms of equipment. There is no need to install two, the purity is high, the yield is excellent, the burden of the subsequent concentration step can be reduced, and the effect of being able to produce galactosyl sucrose efficiently and with high productivity at low cost is achieved. .
[0050]
Moreover, compared with the conventional method using yeast, the raw material can be used effectively, and there is no trouble of handling yeast.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of a rotary valve type simulated moving bed chromatographic separation apparatus used in Example 1 of the present invention as a flow diagram.
FIG. 2 is a flow diagram showing an outline of the configuration of a rotary valve type simulated moving bed chromatographic separation apparatus used in Example 2 of the present invention.
[Explanation of symbols]
1-12 ... Column 15 ... Piping 21 ... Raw material liquid supply pump 22 ... Enzyme liquid supply pump 23 ... Elution water supply pump 24 ... A section liquid extraction pump 25 ... C Separate liquid extraction pump

Claims (4)

内部に充填剤層が形成された塔の複数を無端に連結した系内で液を一方向に循環流として流す操作と、この系にラクトースとスクロースを原料として含む原料液、フラクトシル基転移酵素を含む酵素液及び溶離液をそれぞれ供給し、かつ充填剤に対する親和力の弱いガラクトシルスクロースに富む区分液、及び充填剤に対する親和力の強いグルコースに富む区分液をそれぞれ上記系外に抜出す操作と、前記の各液を供給する入口の位置及び各区分液を該系から抜出す出口の位置を弁の切換えにより上記一方向に間欠的に移動させて、上記入口及び出口に対して充填剤を液の流れとは見かけ上反対方向に移動させる疑似移動層式クロマト分離の操作とを行って、酵素反応により上記原料からガラクトシルスクロースを生成させかつ同時にクロマト分離操作で分離して系外に抜出し、得られたガラクトシルスクロース含有液に含まれる塩類を除去する処理を行うことを特徴とするガラクトシルスクロースの製造方法。An operation in which a liquid is circulated in one direction as a circulating flow in a system in which a plurality of towers each having a filler layer formed therein are connected endlessly, a raw material liquid containing lactose and sucrose as raw materials, and fructosyltransferase An operation of supplying an enzyme solution and an eluent containing the solution and each of the A- segment solution rich in galactosyl sucrose having a weak affinity for the filler and the C- segment solution rich in glucose having a strong affinity for the filler, respectively, out of the system; The position of the inlet for supplying each liquid and the position of the outlet for extracting each divided liquid from the system are intermittently moved in the one direction by switching the valve, and the filler is liquidated to the inlet and the outlet. The galactosyl sucrose is produced from the above raw material by an enzymatic reaction, and the galactosyl sucrose is moved by the enzymatic reaction. Mato was separated by separation operation withdrawn out of the system, resulting method for producing a galactosyl sucrose and performs processing to remove salts contained in the galactosyl sucrose-containing solution. 請求項において、酵素液を、原料液の供給口に該原料液と共に供給することを特徴とするガラクトシルスクロースの製造方法。2. The method for producing galactosyl sucrose according to claim 1, wherein the enzyme solution is supplied together with the raw material liquid to the raw material liquid supply port. 請求項において、酵素液の系への供給位置を、グルコースに富む区分液を系外に抜出す出口と、原料液の供給口との間としたことを特徴とするガラクトシルスクロースの製造方法。2. The method for producing galactosyl sucrose according to claim 1, wherein the supply position of the enzyme solution to the system is between the outlet for extracting the glucose-rich sorting solution out of the system and the supply port of the raw material solution. 請求項ないしのいずれかにおいて、充填剤層がアルカリ金属形の強酸性カチオン交換樹脂により形成されていることを特徴とするガラクトシルスクロースの製造方法。The method for producing galactosyl sucrose according to any one of claims 1 to 3 , wherein the filler layer is formed of an alkali metal strong acidic cation exchange resin.
JP21322197A 1997-08-07 1997-08-07 Method for producing galactosyl sucrose Expired - Fee Related JP3614279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21322197A JP3614279B2 (en) 1997-08-07 1997-08-07 Method for producing galactosyl sucrose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21322197A JP3614279B2 (en) 1997-08-07 1997-08-07 Method for producing galactosyl sucrose

Publications (2)

Publication Number Publication Date
JPH1146788A JPH1146788A (en) 1999-02-23
JP3614279B2 true JP3614279B2 (en) 2005-01-26

Family

ID=16635548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21322197A Expired - Fee Related JP3614279B2 (en) 1997-08-07 1997-08-07 Method for producing galactosyl sucrose

Country Status (1)

Country Link
JP (1) JP3614279B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002153295A (en) * 2000-11-22 2002-05-28 Ensuiko Sugar Refining Co Ltd METHOD FOR CONTINUOUSLY PRODUCING beta-1,4- GALACTOSYLMALTOSE
DE60218043T2 (en) * 2001-07-02 2007-09-13 Hitachi Ltd. SUGAR CHAIN SYNTHESIS DEVICE
ES2870601T3 (en) * 2014-06-06 2021-10-27 Georgia Tech Res Inst Operating procedure of a simulated moving bed reactor

Also Published As

Publication number Publication date
JPH1146788A (en) 1999-02-23

Similar Documents

Publication Publication Date Title
CN111094311A (en) Method for purifying sialylated oligosaccharides
AU2009224095B2 (en) Process for isolating sialic acid containing oligosaccharides, and the compositions containing sialic acid containing oligosaccharides obtainable thereby
CN111447845A (en) Spray dried sialyllactose
AU2018373610A1 (en) Process for the purification of L-fucose from a fermentation broth
BR112020004892A2 (en) process for the purification of a neutral human milk oligosaccharide, and, method for producing a neutral human milk oligosaccharide.
US5630923A (en) Separation system for preparing high α-glycosyl-L-ascorbic acid
KR20160132009A (en) PROCESS FOR EFFICIENT PURIFICATION OF NEUTRAL HUMAN MILK OLIGOSACCHARIDES (HMOs) FROM MICROBIAL FERMENTATION
EP3821717A1 (en) A method for drying human milk oligosaccharides
CA1333779C (en) Method for producing galactooligosaccharide
JP3614279B2 (en) Method for producing galactosyl sucrose
WO2014200942A1 (en) Tagatose production from deproteinized whey and purification by continuous chromatography
JPS59184197A (en) Preparation of oligosaccharide of sialic acid bond
JPH0569116B2 (en)
JP3783756B2 (en) Desalination method
WO2022072323A1 (en) Process for purifying a human milk oligosaccharide and related compositions
JP3368389B2 (en) Method for separating sialic acid-containing oligosaccharides
JPH0767398B2 (en) How to treat beet sugar solution
JP3542892B2 (en) Method for producing useful substance using simulated moving bed type chromatographic separation operation
JPS63273491A (en) Production of galactooligosaccharide
JPH06253879A (en) Separation of oligosaccharide bonded with glucuronic acid
WO2022072333A1 (en) Process for purifying a human milk oligosaccharide and related compositions
JPS6328061B2 (en)
JP3567638B2 (en) Sugar production method from sugar beet leachate
JP2002051800A (en) Method for separating and obtaining monosaccharide
JPH01109000A (en) Method for treatment of beet solution

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040827

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040827

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees