JPH01109000A - Method for treatment of beet solution - Google Patents

Method for treatment of beet solution

Info

Publication number
JPH01109000A
JPH01109000A JP62267355A JP26735587A JPH01109000A JP H01109000 A JPH01109000 A JP H01109000A JP 62267355 A JP62267355 A JP 62267355A JP 26735587 A JP26735587 A JP 26735587A JP H01109000 A JPH01109000 A JP H01109000A
Authority
JP
Japan
Prior art keywords
packed bed
exchange resin
fluid
sucrose
cation exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62267355A
Other languages
Japanese (ja)
Other versions
JPH0476680B2 (en
Inventor
Yukiteru Tanaka
田中 幸輝
Takeshi Sugawara
健 菅原
Masao Ando
安藤 雅夫
Masao Tamura
雅男 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKUREN FEDERATION OF AGRICULT COOP
Mitsubishi Kasei Techno Engineers Ltd
Original Assignee
HOKUREN FEDERATION OF AGRICULT COOP
Mitsubishi Kasei Techno Engineers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKUREN FEDERATION OF AGRICULT COOP, Mitsubishi Kasei Techno Engineers Ltd filed Critical HOKUREN FEDERATION OF AGRICULT COOP
Priority to JP62267355A priority Critical patent/JPH01109000A/en
Publication of JPH01109000A publication Critical patent/JPH01109000A/en
Publication of JPH0476680B2 publication Critical patent/JPH0476680B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE: To separate and collect sucrose as well as useful substances such as inositol and raffinose by passing sugar beet molasses through molasses-boiling and desalting step and chromatographic separation step.
CONSTITUTION: Sugar beet molasses is separated into beet sugar and beet molasses by boiling. The resultant boiled beet molasses is passed through H type cation exchange resin and OH type anion exchange resin in molasses-boiling and desalting step to remove betaine and salts. Then, the resultant desalted solution is separated into inositol-rich, sucrose-rich and raffinose-rich fractions, by chromatographic separation step. In the chromatographic separation step, the front and rear ends of a bed packed by using sodium type or potassium type cation exchange resin as an absorbent are connected by fluid passage and fluid is made to communicate from the front end of the packed bed to the direction of the rear end and circulated.
COPYRIGHT: (C)1989,JPO

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、甜菜糖液の処理方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for treating sugar beet liquid.

詳しくは、本発明は甜菜糖蜜中に存在するシ1糖やその
他の有用°物質をクロマトグラフィーの手法を用いて分
離することにより、砂糖の回収を図ると共に、イノシト
ール、ラフィノース等の有用物質を分離採取することを
特徴とする甜菜糖液の処理方法に関する。
Specifically, the present invention aims to recover sugar and separate useful substances such as inositol and raffinose by separating silica and other useful substances present in sugar beet molasses using chromatography techniques. The present invention relates to a method for processing a sugar beet solution, which comprises collecting the sugar beet solution.

〔従来の技術〕[Conventional technology]

従来、甜菜より、甜菜糖を製造する方法は、第1+gに
示す如く、甜菜をttllL、浸出浴で甜菜糖液を抽出
し、炭酸飽充等の方法で清浄し、イオン交換樹脂で脱色
、精選した糖汁をB140前後までa縮して濃縮汁を得
、濃縮汁を煎糖(A煎糖)して、これより製品砂糖を得
るが、このとき分蜜した糖蜜おLび洗浄水は、A糖蜜と
して、再び煎糖(B煎糖)し、B砂糖とB糖蜜とを得る
。このB砂糖については、溶解し濃縮汁に戻し、再度A
7i[糖工程で煎糖する。
Conventionally, the method for producing beet sugar from sugar beets is as shown in 1+g: extract sugar beet liquid using a leaching bath, clean it by carbonation, decolorize it with an ion exchange resin, and select it. The resulting sugar juice is a-condensed to around B140 to obtain concentrated juice, and the concentrated juice is roasted with sugar (A-flanked sugar) to obtain product sugar. As A molasses, the sugar is again roasted (B roasted sugar) to obtain B sugar and B molasses. For this B sugar, dissolve it, return it to the concentrated juice, and re-add A.
7i [In the sugar process, boil sugar.

一方、B糖蜜は、BxJO前後に希釈した後ダイヤイオ
ンPK220等の陽イオン交換樹脂とダイヤイオン11
に30等の陰イオン交換樹脂とによりベタインと塩とを
除去して、脱塩処理液を得る。
On the other hand, B molasses is diluted before and after BxJO, and then mixed with a cation exchange resin such as Diaion PK220 and Diaion 11.
Then betaine and salt are removed using an anion exchange resin such as No. 30 to obtain a desalted solution.

との脱塩処理液の一部は、纜縮・乾燥しててん菜食蜜糖
を得るが、他の部分は清浄工程に戻しシw@lを回収し
ている。
A portion of the desalted solution is compressed and dried to obtain sugar beet sucrose, while the other portion is returned to the cleaning process to recover the sugar.

てん菜食蜜糖は、糖蜜中の各種成分を含むので風味のあ
る甘味料として、またラフィノースを7%以上含むので
、健康食品として使用されている。
Beet molasses sugar is used as a flavorful sweetener because it contains various components found in molasses, and as a health food because it contains 7% or more of raffinose.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、この製法の問題点は、てん菜食蜜糖にはラフィ
ノース含量を出来るだけ多にしたいが、そうすると、煎
糖がし雌〈なり、シ璽糖の回収が阻害されるために、ラ
フィノース含量は5〜4%が限度と思われる。
However, the problem with this production method is that although it is desirable to have as much raffinose content as possible in the beet sugar, the raffinose content becomes too thick and the recovery of the beet sugar is inhibited. The limit seems to be 5-4%.

一方、本発明者等は、クロマト分離手法により、複数の
有機化合物を容易に効率よく3つの画分に分離する方法
を発明し、さきに特許出願を行った(特願昭47−30
7/2J号)。
On the other hand, the present inventors invented a method for easily and efficiently separating multiple organic compounds into three fractions using a chromatographic separation method, and previously filed a patent application (Japanese Patent Application No. 47-30
7/2J issue).

そこで、本発明者等は、上記の問題点を解決するために
、脱塩処理液を、上記のクロマト分離方法により、高純
度のシ璽糖画分とラフィノースが′?i1ヒされた画分
とその他の画分に分ける方法が有効であると考えテスト
を行った。
Therefore, in order to solve the above problems, the present inventors separated the desalted solution into high-purity siliceous sugar fraction and raffinose using the above-mentioned chromatographic separation method. We thought that a method of separating the i1-treated fraction and other fractions would be effective and conducted a test.

その結果、上記クロマト分離の方法で分離すれば、ラフ
ィノース含量の少ない脱塩処理液を使用しても(即ち煎
糖がし易い状態)j−2jチの範囲で任意のラフィノー
ス含量のてん菜食蜜糖を得ることができると同時に、そ
の他の画分からは単に濃縮・晶析させることKより、高
純度のイノシトール粉末と利用価値の高い液糖を各々副
産物として得られることを発見し、本発明を完成した。
As a result, if the chromatographic separation method described above is used, even if a desalted solution with a low raffinose content is used (i.e., in a state where it is easy to boil sugar), sugar beet nectar with any raffinose content within the range of It was discovered that while sugar can be obtained, high-purity inositol powder and liquid sugar with high utility value can be obtained as by-products from other fractions by simply concentrating and crystallizing them. completed.

(第2図参照) 〔問題点を解決する丸めの手段〕 一般に、甜菜糖液をNa型またはに型の強酸性陽イオン
交換樹脂を吸着剤としてクロマト分離すると、以下の順
序で流出する。
(See Figure 2) [A rounding means to solve the problem] Generally, when a beet sugar solution is chromatographed using a Na-type or Ni-type strongly acidic cation exchange resin as an adsorbent, the following flow occurs in the following order.

(1)  灰分(無機塩類) (2)多糖類およびその誘導体 (3)  ラフィノースおよび他のJli類(4)  
ショ糖および他の2糖類 (5)  単糖類(液糖)およびイノシトール(6) 
 ベタインおよびアミノ酸類 甜菜糖類を工業的にクロマト分離する場合、単基式であ
れば、上記6画分に各々分離することも不可能ではない
が、単基式では、分離機能が悪く、ショ糖の回収率が低
いため経済的に成り立たない。特公昭4ct−23jt
号、特公昭j3−λrり23号等の方法は、その例であ
り、イノシトール画分にシ璽糖が多量に含まれるため、
騨母等で1類を除去させないと、イノシトールを回収す
ることはできない。
(1) Ash (inorganic salts) (2) Polysaccharides and their derivatives (3) Raffinose and other Jlis (4)
Sucrose and other disaccharides (5) Monosaccharides (liquid sugar) and inositol (6)
When industrially chromatographically separating betaine and amino acids and beet sugars, it is not impossible to separate each of the above six fractions using a single-base method; however, with a single-base method, the separation function is poor, and It is not economically viable due to the low recovery rate. Special Public Showa 4ct-23jt
The method disclosed in Japanese Patent Publication No. Shoj3-λr23 is an example of this, and since the inositol fraction contains a large amount of sucrose,
Inositol cannot be recovered unless Category 1 is removed using a mound or the like.

そこで、近年、工業的に利用されている方法は、擬似移
動床式クロマト分離装喧であるが。
Therefore, a method that has been used industrially in recent years is a simulated moving bed chromatographic separation device.

この方法では2つの画分に分離することしかできない。This method only allows separation into two fractions.

例えば、上記6成分の(3)と(4)の間で分離すると
、(5)〜(6)の成分は、成り行で分離されるため、
通常μ04がシ璽糖画分に、残りの1.0%はラフィノ
ース画分に分画されるという結果となる。
For example, when separating between (3) and (4) of the above six components, components (5) and (6) are separated in order, so
Usually, the result is that μ04 is fractionated into the sucrose fraction and the remaining 1.0% is fractionated into the raffinose fraction.

しかし、これを上記特願昭47−307123号の方法
でクロマト分離すると3つの画分に同時に効率よく分離
することができるので、上記6成分を(1)〜(3)画
分と(4)画分とそして(5)〜(6)画分の3つの画
分に分離することができる。
However, if this is chromatographically separated using the method described in Japanese Patent Application No. 47-307123, it can be efficiently separated into three fractions at the same time. It can be separated into three fractions: fraction and fractions (5) and (6).

しかし、このようにして分画した(6)〜り6)画分に
ベタインおよびアミノ酸類が含まれていると、この画分
を濃縮・晶析してゆくとベタイ/が先ず析出するので、
高純度のイノシトールを得ることはできない。
However, if betaine and amino acids are contained in fractions (6) to 6) separated in this way, betaine will precipitate out first when this fraction is concentrated and crystallized.
High purity inositol cannot be obtained.

ところが、ペタイ/は、陽イオン交換樹脂によりてBt
!lの脱塩工程で除去することができる。
However, Bt/Petai/Bt
! It can be removed in a desalting step.

ここで使用する陽イオン交換樹脂としては。The cation exchange resin used here is:

交換基としてスルホン酸基を有するスチレン−ジビニル
ベンゼン系強酸性陽イオン交侠樹脂を挙げることができ
る。
Examples of the exchange group include styrene-divinylbenzene-based strongly acidic cation crosslinking resins having a sulfonic acid group.

これらのイオン交換舗11&は、ゲル状のイオン交換樹
脂であっても、また多孔性のイオン交換樹脂であっても
差支7tない。
These ion exchange resins 11& may be made of gel-like ion exchange resin or porous ion exchange resin.

例えば、ダイヤイオンBK1B%S K / / 0゜
PKJ/A、PK220等を挙げることができる。
For example, Diamondion BK1B%SK//0°PKJ/A, PK220, etc. can be mentioned.

上記陽イオン交換樹脂に対して脱塩工程に使用される陰
イオン交換樹脂としては、ダイヤイオ72AJOr%′
PAJ/J、PA4’/J、EIA/lム、WAコ1%
11AJO等を挙げることができる。
The anion exchange resin used in the desalting process for the above cation exchange resin is DIAIO 72AJOr%'
PAJ/J, PA4'/J, EIA/lm, WA co1%
11AJO and the like.

ダイヤイオンは三菱化成工業株式会社の登鎌商標である
Diaion is a registered trademark of Mitsubishi Chemical Industries, Ltd.

上記のイオン交換樹脂を使用して、煎糖蜜を■型陽イオ
ン交換樹脂塔に通過させてベタインを除、去する際には
、単にベタインのみでなく、勿論ナトリウム、カリウム
、カルシウム等のイオンをも除去することがで墾るが、
本発明における療糖蜜の処理においては、陽イオン交換
樹力旨塔からのベタインの漏出を以って煎糖蜜の通液操
作を打切り、使用した陽イオン交換樹脂の再正を行う必
要が生ずる。
When using the above ion exchange resin to remove betaine by passing the decocted molasses through a type cation exchange resin column, it is necessary to remove not only betaine but also ions such as sodium, potassium, and calcium. It is also cultivated by removing it,
In the treatment of molasses according to the present invention, leakage of betaine from the cation exchange resin tower makes it necessary to stop the operation of passing the molasses and recondition the cation exchange resin used.

ベタインの漏出は、通常ライネッヶ塩法に上り検出すれ
ばよい。
Leakage of betaine can usually be detected using the Reinecke salt method.

陽イオン交換樹脂の再生は、通常の陽イオン交換樹脂で
あれば再生に際し、適当量の、そして適当濃度の鉱酸を
使用すれば、容易に再生することができるが、本発明に
使用し、機能が減退した陽イオン交換樹脂は、先ずアル
カリで処理し・た後、適当量の、そして適当濃度の鉱酸
を使用し、H型の陽イオン交換w指に再生することが必
要である。アルカリ処理に使用するアルカリ剤としては
、水酸化ナトリウム、水酸化カリウム、水酸化アンモニ
ウム等を挙げることができる。
The cation exchange resin can be easily regenerated by using an appropriate amount and concentration of mineral acid when regenerating a normal cation exchange resin, but when used in the present invention, It is necessary to first treat a cation exchange resin whose function has decreased with an alkali and then regenerate it into an H-type cation exchange resin using an appropriate amount and concentration of mineral acid. Examples of the alkali agent used in the alkali treatment include sodium hydroxide, potassium hydroxide, ammonium hydroxide, and the like.

陽イオン交換樹脂のアルカリ処理は、通常、陰イオン交
換樹脂の再生と同時に行われる。
The alkaline treatment of the cation exchange resin is usually performed at the same time as the regeneration of the anion exchange resin.

陰イオン交換樹脂の再生は、例えば、水酸化ナトリウム
の10″it%水fj穎を、陽イオン交換樹脂の交換容
量の1ose4@量を使用して、容量速度(v/h)≠
、j程度の条件で通表し、その流出液を、更に、陽イオ
ン交換樹脂塔に通夜してやれば、陽イオン交換樹脂のア
ルカリ処理も同時に完了させることができる。アルカリ
処理され九陽イオン交換樹脂は、光分に洗浄し、次いで
鉱酸によりH型に再生すれば良い。
Regeneration of the anion exchange resin can be carried out, for example, by using 10"it% water of sodium hydroxide in an amount of 1ose4 of the exchange capacity of the cation exchange resin, at a capacity rate (v/h) ≠
, j, and the effluent is allowed to pass through the cation exchange resin tower overnight, thereby completing the alkali treatment of the cation exchange resin at the same time. The alkali-treated nine cation exchange resin may be washed with light and then regenerated into H type with mineral acid.

鉱酸としては、塩酸、硫酸のような鉱酸を挙げることが
できる。
Examples of mineral acids include hydrochloric acid and sulfuric acid.

再生条件としては、例えば、5[07%水溶液を使用す
る場合、陽イオン交換樹脂の交換容量のlコ0チ当量を
使用し、容量速[vL、を程度の条件で充填塔に通液す
れば良い。
As the regeneration conditions, for example, when using a 5[07% aqueous solution, 100 equivalents of the exchange capacity of the cation exchange resin are used, and the liquid is passed through the packed column at a volumetric rate [vL]. Good.

このように、■型陽イオン文(A樹脂とOH型陰イオン
交換樹脂とに通過させ、ベタインと塩とを除去して得ら
れた脱塩処理液を、次にクロマト分離工程により処理し
て、イノシトールが富化された画分とシーI塘が富化さ
れた画分とそしてラフィノースが富化された画分に分離
する。
In this way, the desalted solution obtained by passing it through the ■ type cation exchange resin (A resin and the OH type anion exchange resin to remove betaine and salt) is then treated in a chromatographic separation step. The mixture is separated into an inositol-enriched fraction, a Si-I-tang enriched fraction, and a raffinose-enriched fraction.

次に、クロマト分離工程の詳細について説明液してクロ
マト分離するが、クロマト分離に使用する吸着剤として
は、ナトリウム型又はカリウム型の陽イオン交換樹脂が
便用される。
Next, the details of the chromatographic separation process will be explained.The liquid is chromatographically separated.As the adsorbent used for the chromatographic separation, a sodium type or potassium type cation exchange resin is conveniently used.

陽イオン交換樹脂としては、スチレン−ジビニルベンゼ
ン系のスルホン酸型強酸性陽イオン交換樹脂が好ましく
使用される。
As the cation exchange resin, a styrene-divinylbenzene-based sulfonic acid type strongly acidic cation exchange resin is preferably used.

例えば、ダイヤイオンIFRK/J/111FRKl≠
1%TJBK!JOK、UBKjJOG等を挙げること
ができる。
For example, Diaion IFRK/J/111FRKl≠
1% TJBK! Examples include JOK, UBKjJOG, and the like.

上記吸着剤を充填塔に充填し、充填床を形成させる。The adsorbent is packed into a packed column to form a packed bed.

この充填塔は、その前端と後端とが流体通路で連結され
、流体を前端から後端とが流体の循環を可能にしたクロ
マト系を形成させた充填床である。
This packed column is a packed bed whose front end and rear end are connected by a fluid passage to form a chromatographic system in which fluid can be circulated from the front end to the rear end.

本発明は、このようなりロマト分離系を使用して、次に
示す各工程により脱塩処理液をイノシトールが富化され
九画分とシl糖が富化された画分とそしてラフィノース
が富化された画分とに分離する。
The present invention utilizes such a romatoseparation system to divide the desalted solution into inositol-enriched nine fractions, silyl sugar-enriched fractions, and raffinose-enriched fractions through the following steps. The fraction is separated into

すなわち、 中 充填床前端から上記脱塩処理液を供給しつつ、充填
床後端からショ糖が富化され九画分を抜出す第1工程、 (ii)  充填床中間から水を供給しつつ充填床後端
からシ璽糖が富化された画分を抜出す第2工程、 OiD  充填床への流体の供給及び充填床からの流体
の抜き出しを行わずに床内の流体を循環させ、第1工程
で抜き出されずに残存するイノシトールとショ糖とが混
在する帯域を充填された充填床からなり、その前端に移
動させる第3工程、(1v)充填床前端から水を供給し
つつ充填床後端からイノシトールが富化された画分を抜
出す第4工程、 (V)  充填床前端から水を供給しつつ充填床後端か
らラフィノースが富化された画分を抜出す第!工程、 (vD  充填床への流体の供給及び充填床からの流体
の抜き出しを行わずに床内の成体を循環させ、第j工程
で抜き出されずに残存するラフィノースとシl糖とが混
在する帯域を充填された充填床からなり、その前端に移
動させる第6工程、の第1工程〜第6工程を繰返し行う
ことにより達成される。
That is, the first step is to extract the sucrose-enriched nine fractions from the rear end of the packed bed while supplying the desalted solution from the front end of the packed bed, (ii) while supplying water from the middle of the packed bed. a second step of withdrawing the citrus-enriched fraction from the rear end of the packed bed, OiD circulating the fluid in the bed without supplying fluid to the packed bed and withdrawing fluid from the packed bed; The third step consists of a packed bed filled with a zone in which inositol and sucrose that remain without being extracted in the first step are mixed, and is moved to the front end of the bed, (1v) while supplying water from the front end of the packed bed. 4th step of extracting the inositol-enriched fraction from the rear end of the packed bed; (V) extracting the raffinose-enriched fraction from the rear end of the packed bed while supplying water from the front end of the packed bed! Step, (vD) Circulating the adult body in the bed without supplying fluid to the packed bed or withdrawing fluid from the packed bed, and raffinose and silucrose remaining without being extracted in the j-th step are mixed. This is accomplished by repeating the first to sixth steps, including the sixth step of moving the zone consisting of a packed bed to its front end.

〔作用〕[Effect]

本発明は、特にベタイ/と塩とを除去した脱塩処理液を
、新規なりロマト分離法により、シ目糖が富化された画
分、イノシトールが富化された画分及びラフィノースが
富化された画分に分画する方法を提供することを目的と
するものであるが、脱塩処理液において、ベタインと塩
とが除去されていること、そしてその脱塩処理液を上述
の新規クロマト分離法に組合わせることによりて、初め
てシー1糖が富化された画分、イノシトールが富化され
た画分及びラフィノースが富化された画分に分離分画す
ることが可能となったものと考えられる。
In particular, the present invention uses a novel romatoseparation method to extract a desalted solution from which betatai and salts have been removed, to obtain a fraction enriched in citric acid, a fraction enriched in inositol, and a fraction enriched in raffinose. The purpose of this method is to provide a method for fractionating the desalted solution into the above-mentioned novel chromatography solution. By combining this method with a separation method, it became possible for the first time to separate and fractionate into a fraction enriched with sea monosaccharide, a fraction enriched with inositol, and a fraction enriched with raffinose. it is conceivable that.

〔実施例〕〔Example〕

次に実施例により本発明をさらに説明するが、本発明は
、かかる実施例に限定されるものではない。
Next, the present invention will be further explained with reference to examples, but the present invention is not limited to these examples.

実施例I 第1図における脱塩処理液をBx40に濃縮したクロ啼
ト供給液の組成を第1表に示した。
Example I Table 1 shows the composition of a chlorine feed solution obtained by concentrating the desalting solution shown in FIG. 1 to Bx40.

第3図は、本発明において、クロマ、ト分離工程を実施
するための装置の概略図である。
FIG. 3 is a schematic diagram of an apparatus for carrying out the chroma separation step in the present invention.

図中、l及び2はナトリウム型又はカリウム型の陽イオ
ン交侯樹脂を吸着剤として充填した充填床であり、3は
クロマト供給液の貯蔵槽を示し、≠は水(脱着剤)の貯
蔵槽を示し、j〜りは谷画分の抜出しラインを示し、i
o〜12はパルプを示し、そして20は循環ポンプを夫
々示す。
In the figure, 1 and 2 are packed beds filled with sodium or potassium type cation crosslinking resin as an adsorbent, 3 is a storage tank for chromatography supply liquid, and ≠ is a storage tank for water (desorbent). , j~ri indicates the extraction line of the valley fraction, and i
o to 12 indicate pulp, and 20 indicates a circulation pump, respectively.

上記第3図に示した装置において、内径33、!■、充
填層部タコ0■の直列に連結した2本のカラムに1ri
o−の吸着剤(Na型の強酸性陽イオン交換樹脂、ダイ
ヤイオンσBKjJOK)を使用し、容量速度/、00
01111/ hで、下記第2表に示すタイム・スケジ
ユールで分離操作を繰返し行った。
In the apparatus shown in FIG. 3 above, the inner diameter is 33,! ■, 1ri in two columns connected in series with packed bed part tacho 0■
o- adsorbent (Na-type strongly acidic cation exchange resin, Diamond σBKjJOK) was used, and the capacity rate was /,00
At 01111/h, the separation operation was repeated according to the time schedule shown in Table 2 below.

第1表 (Bx以以外重量管示す) (注)  (1)  A画分へのイノシトールの回収率
(2)B画分への蔗糖の回収率 (3)C画分へのラフィノースの回収率第2表 12サイクル目で定常状態に達したので、各画分のサン
プルを採取し、分析したところ、第7表の通りでありた
Table 1 (weight tubes other than Bx are shown) (Note) (1) Recovery rate of inositol in fraction A (2) Recovery rate of sucrose in fraction B (3) Recovery rate of raffinose in fraction C Table 2 Since a steady state was reached at the 12th cycle, samples of each fraction were taken and analyzed, and the results were as shown in Table 7.

このA画分11をロータリー・エバポレーターで真空濃
縮したところ、Bz参0前後で液が白濁し、イノシトー
ルが析出しはじめた。
When this A fraction 11 was vacuum concentrated using a rotary evaporator, the liquid became cloudy around 0 Bz and inositol began to precipitate.

さらに、徐々に濃縮し、Bx40に達したところで、内
容物を取出し、2j℃まで冷却し、遠心分離した所、純
度タタ、!チのイノシトールの白色粉末/ /、/ 1
と下記第3表に示す組成の液糖を得た。
Further, it was gradually concentrated, and when it reached Bx40, the contents were taken out, cooled to 2J℃, centrifuged, and the purity was ! White inositol powder / /, / 1
A liquid sugar having the composition shown in Table 3 below was obtained.

1 J 表          (重i%)実施例λ 実施例1と同一の原料および同一のクロマト分離装置を
使用して、下記第参表のタイム・スケジュールで分離操
作を繰返し行った。
1 J Table (weight i%) Example λ Using the same raw materials and the same chromatographic separation apparatus as in Example 1, the separation operation was repeated according to the time schedule shown in the table below.

第1表 (注)(1)  ム画分へのイノシトールの回収率(2
)B画分への蔗糖の回収率 (3)C画分へのラフィノースの回収率12サイクル目
で定常状態に達したので、各画分のサンプルを採取した
ところ、第5表の通りであった。
Table 1 (Note) (1) Recovery rate of inositol to mu fraction (2
) Recovery rate of sucrose in fraction B (3) Recovery rate of raffinose in fraction C Since a steady state was reached at the 12th cycle, samples of each fraction were collected, and as shown in Table 5. Ta.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ベタインと塩とを除去する煎糖蜜脱塩
工程と新規なりロマト分離工程とを結合させることによ
って、ショ糖が富化された画分、イノシトールが富化さ
れた画分及びラフィノースが富化された画分く容易に分
画することができる。さらに、上記クロマト分離工程を
実施する際に1上記各工程の切替え時間を調節するとと
Kよシ、ラフィノースが富化された画分のラフィノース
組成を、j−2!−の範囲で任意に調節することができ
る。
According to the present invention, a sucrose-enriched fraction, an inositol-enriched fraction, and The raffinose-enriched fraction can be easily fractionated. Furthermore, when carrying out the above chromatographic separation step, if the switching time of each of the above steps is adjusted, the raffinose composition of the raffinose-enriched fraction is changed to j-2! It can be adjusted arbitrarily within the range of -.

また、イノシトールが富化された画分のシラ糖組成は、
!−以下にすることができるので、この画分を単K11
lk縮・晶析させるととKよって、容易に高純度のイノ
シトール粉末と、利用価値の高い液糖とを得ることがで
きる。
In addition, the silasugar composition of the inositol-enriched fraction is
! -This fraction can be used for mono-K11
By carrying out lk condensation and crystallization, it is possible to easily obtain highly pure inositol powder and liquid sugar with high utility value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の甜菜の処理工程を示す図であり、第2図
は本発明の甜菜の処理工程を示す図であり、そして第3
図は本発明のクロマト分離を行う装置の概略図である。 Iおよびコ・・・・・・・・・・・・・・・・・・・・
・・・・充填床3・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・クロマト供給
液参・・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・水槽j〜り・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・ 抜
出しラインlO〜lり・・・・・・・・・・・・・・・
・・・・・・・・・パルプ20・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・ 循環
ポンプ出願人 ホクレン農業協同組合連合会 三菱化成テクノエンジニアズ株式会社 代理人 弁理士 長谷用   − (ほか1名) 第12 一5甘ス ↓ ↓ t 熾 7ん菜食1ai 昂 2図 甜菜 ↓ 滲出惇 ↓
FIG. 1 is a diagram showing a conventional sugar beet processing process, FIG. 2 is a diagram showing a sugar beet processing process of the present invention, and FIG.
The figure is a schematic diagram of an apparatus for performing chromatographic separation according to the present invention. I and Co・・・・・・・・・・・・・・・・・・
・・・・Packed bed 3・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・ Chromatography supply liquid ・・・・・・・・・・・・・・・・・・・・・・
・・・・・・・・・・・・Aquarium j~ri・・・・・・・
・・・・・・・・・・・・・・・・・・・・・・・・ Extraction line lO~lri・・・・・・・・・・・・・・・
・・・・・・・・・Pulp 20・・・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・・ Circulation pump applicant Hokuren Agricultural Cooperative Federation Mitsubishi Kasei Techno Engineers Co., Ltd. Agent Patent attorney Hase - (1 other person) ) No. 12 15 Sweets ↓ ↓ t 熾7 Vegetarian 1ai 昂 2 figs Sugar beets ↓ Exuding water ↓

Claims (3)

【特許請求の範囲】[Claims] (1)甜菜糖液を煎糖して甜菜糖と煎糖蜜とに分離し、
そして得られた煎糖蜜をH型陽イオン交換樹脂とOH型
陰イオン交換樹脂とに通過させ、ベタインと塩とを除去
する煎糖蜜脱塩工程と、該工程により得られた脱塩処理
液を、イノシトールが富化された画分とショ糖が富化さ
れた画分とそしてラフィノースが富化された画分とに分
離するクロマト分離工程とを組合わせることを特徴とす
る甜菜糖液の処理方法。
(1) Separate beet sugar solution into beet sugar and roasted molasses,
Then, the roasted molasses is desalted by passing it through an H-type cation exchange resin and an OH-type anion exchange resin to remove betaine and salt, and the desalted liquid obtained by this process is , a treatment of a beet sugar solution characterized by combining a chromatographic separation step of separating into an inositol-enriched fraction, a sucrose-enriched fraction, and a raffinose-enriched fraction. Method.
(2)特許請求の範囲第1項記載の甜菜糖液の処理方法
において、クロマト分離工程が、ナトリウム型又はカリ
ウム型の陽イオン交換樹脂を吸着剤として充填された充
填床からなり、その前端と後端とが流体通路で連結され
、流体を充填床の前端から後端の方向に流通させて流体
の循環を可能にしたクロマト分離系に、脱塩処理液を流
通させ、 (i)充填床前端から上記脱塩処理液を供給しつつ、充
填床後端からショ糖が富化された 画分を抜出す第1工程、 (ii)充填床中間から水を供給しつつ充填床後端から
ショ糖が富化された画分を抜出す第 2工程、 (iii)充填床への流体の供給及び充填床からの流体
の抜き出しを行わずに床内の流体を循 環させ、第1工程で抜き出されずに残存す るイノシトールとショ糖とが混在する帯域 を充填床の前端に移動させる第3工程、 (iv)充填床前端から水を供給しつつ充填床後端から
イノシトールが富化された画分を抜 出す第4工程、 (v)充填床前端から水を供給しつつ充填床後端からラ
フィノースが富化された画分を抜 出す第5工程、 (vi)充填床への流体の供給及び充填床からの流体の
抜き出しを行わずに床内の流体を循 環させ、第5工程で抜き出されずに残存す るラフィノースとショ糖とが混在する帯域 を充填床の前端に移動させる第6工程、 の第1工程〜第6工程を繰返し行うことを特徴とする方
法。
(2) In the method for processing a sugar beet sugar solution according to claim 1, the chromatographic separation step consists of a packed bed filled with a sodium type or potassium type cation exchange resin as an adsorbent; The desalination treatment liquid is passed through a chromatography separation system that is connected to the rear end by a fluid passage and allows the fluid to circulate from the front end to the rear end of the packed bed, and (i) the packed bed. A first step of extracting the sucrose-enriched fraction from the rear end of the packed bed while supplying the desalination treatment liquid from the front end; (ii) from the rear end of the packed bed while supplying water from the middle of the packed bed; a second step of withdrawing the sucrose-enriched fraction; (iii) circulating the fluid in the bed without supplying the fluid to the packed bed and withdrawing the fluid from the packed bed; a third step in which a zone containing a mixture of inositol and sucrose that remains without being extracted is moved to the front end of the packed bed; (iv) inositol is enriched from the rear end of the packed bed while supplying water from the front end of the packed bed; (v) a fifth step of extracting the raffinose-enriched fraction from the rear end of the packed bed while supplying water from the front end of the packed bed; (vi) supplying the fluid to the packed bed. The fluid in the bed is circulated without supplying or extracting the fluid from the packed bed, and the zone where raffinose and sucrose are mixed and remains without being extracted in the fifth step is moved to the front end of the packed bed. A method characterized by repeatedly performing the first to sixth steps of step 6.
(3)特許請求の範囲第1項記載の甜菜糖液の処理方法
において、H型陽イオン交換樹脂が、アルカリと酸とに
より再生されたH型陽イオン交換樹脂であることを特徴
とする方法。
(3) The method for treating sugar beet liquid according to claim 1, characterized in that the H-type cation exchange resin is an H-type cation exchange resin regenerated with an alkali and an acid. .
JP62267355A 1987-10-23 1987-10-23 Method for treatment of beet solution Granted JPH01109000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62267355A JPH01109000A (en) 1987-10-23 1987-10-23 Method for treatment of beet solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62267355A JPH01109000A (en) 1987-10-23 1987-10-23 Method for treatment of beet solution

Publications (2)

Publication Number Publication Date
JPH01109000A true JPH01109000A (en) 1989-04-26
JPH0476680B2 JPH0476680B2 (en) 1992-12-04

Family

ID=17443667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62267355A Granted JPH01109000A (en) 1987-10-23 1987-10-23 Method for treatment of beet solution

Country Status (1)

Country Link
JP (1) JPH01109000A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033784A1 (en) * 1997-12-25 1999-07-08 Organo Corporation Process for recovering betaine
JP2005530850A (en) * 2002-06-26 2005-10-13 フィンフィーズ フィンランド オイ How to recover betaine
WO2013072048A1 (en) * 2011-11-15 2013-05-23 Tiense Suikerraffinaderij N.V. Process for the recovery of betaine from molasses

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033784A1 (en) * 1997-12-25 1999-07-08 Organo Corporation Process for recovering betaine
US6099654A (en) * 1997-12-25 2000-08-08 Organo Corporation Process for recovering betaine
JP2005530850A (en) * 2002-06-26 2005-10-13 フィンフィーズ フィンランド オイ How to recover betaine
WO2013072048A1 (en) * 2011-11-15 2013-05-23 Tiense Suikerraffinaderij N.V. Process for the recovery of betaine from molasses
US9896410B2 (en) 2011-11-15 2018-02-20 Tiense Suikerraffinaderij N.V. Process for the recovery of betaine from molasses
EA031950B1 (en) * 2011-11-15 2019-03-29 Тьенс Суикерраффинадериж Н.В. Process for the recovery of betaine from molasses

Also Published As

Publication number Publication date
JPH0476680B2 (en) 1992-12-04

Similar Documents

Publication Publication Date Title
US4075406A (en) Process for making xylose
JP4973970B2 (en) Multi-step process for recovering betaine, erythritol, inositol, sucrose, mannitol, glycerol and amino acids from process solutions using weak acid cation exchange resins
JP2004510163A (en) Recovery of monosaccharides from solution using a weakly acidic cation exchange resin for chromatographic separation
JPH09506513A (en) How to purify sugar beet juice
CN111233658B (en) Method for extracting shikimic acid and quinic acid from folium ginkgo
JPS60199390A (en) Obtaining of citric acid
US2375164A (en) Recovery of betaine and betaine salts from sugar beet wastes
US20030198694A1 (en) Preparation antioxidants enriched functional food products from sugar cane and beet
JPS62126193A (en) Production of l-rhamnose
JPH02275835A (en) Method for recovering citric acid from solution containing citric acid
CN112795710A (en) Regeneration method of ion exchange resin in sugar production process
SU786904A3 (en) Method of xylose production
JPH01244000A (en) Method for treating beet sugar liquid
JPH01109000A (en) Method for treatment of beet solution
US5369122A (en) Process for manufacturing a humectant
CN1484974A (en) Preparation method of functional food enriched with anti-oxydation group from sugar cane and beet
JP3566485B2 (en) Purification method of sugar beet leachate
CN114702379B (en) Purification method of red lactic acid
WO2014158558A1 (en) L-glucose production from l-glucose/l-mannose mixtures using simulated moving bed separation
JPH06107611A (en) Production of betaine
FR3018811A1 (en) PROCESS FOR EXTRACTING ACONIC ACID FROM PRODUCTS FROM THE SUGAR CANE INDUSTRY
US10549238B2 (en) Methods of regenerating a resin used to decolorize a biomass feedstream and related systems
JP3567638B2 (en) Sugar production method from sugar beet leachate
US2526111A (en) Production of white sugar from colored sugar bearing fluids without molasses as a by-product
JP5856619B2 (en) Method for producing inulin