JPH06107611A - Production of betaine - Google Patents

Production of betaine

Info

Publication number
JPH06107611A
JPH06107611A JP2238191A JP2238191A JPH06107611A JP H06107611 A JPH06107611 A JP H06107611A JP 2238191 A JP2238191 A JP 2238191A JP 2238191 A JP2238191 A JP 2238191A JP H06107611 A JPH06107611 A JP H06107611A
Authority
JP
Japan
Prior art keywords
betaine
waste liquid
waste liquor
raw material
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2238191A
Other languages
Japanese (ja)
Inventor
正幸 ▲塚▼田
Masayuki Tsukada
Yoshifumi Oikawa
善史 及川
Kazuyoshi Minoshima
和良 蓑島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOKUREN FEDERATION OF AGRICULT COOP
Original Assignee
HOKUREN FEDERATION OF AGRICULT COOP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOKUREN FEDERATION OF AGRICULT COOP filed Critical HOKUREN FEDERATION OF AGRICULT COOP
Priority to JP2238191A priority Critical patent/JPH06107611A/en
Publication of JPH06107611A publication Critical patent/JPH06107611A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To efficiently produce high-purity betaine from a waste liquor of the Stephen process or a chromatographic waste liquor at a lower cost than that of a conventional method without using a chemical such as a regenerating agent. CONSTITUTION:A waste liquor of the Stephen process or a chromatographic waste liquor is used as a raw material solution and a salt type strong acidic cation exchange resin is used as a separating agent to fractionate the resultant effluent fraction. Thereby, a high-purity betaine fraction is obtained and crystallized by a boiling method. The hydrous crystal of the betaine is produced by regulating the boiling temperature to <=90 deg.C and the anhydrous crystal is produced by carrying out the whole process ranging from the boiling to the separation at >=100 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、甜菜糖工業廃棄物から
ベタインを高純度に回収して、製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for recovering and producing betaine from beet sugar industrial waste with high purity.

【0002】[0002]

【従来の技術】ベタインは、従来から飼料添加物として
用いられている他、調味料及び風味改良剤などの用途も
開発されている有用物質である。ベタインは、動植物界
に広く存在する塩基性含窒素化合物であり、特に甜菜根
他のアカザ科植物及びタコ、イカ等の水産動物に多く含
まれる。また、化学的に安定な物質で、甜菜糖製造時の
石炭等による高アルカリ処理及び濃縮・晶出等の加熱処
理においても分解せず、糖蜜中に移行することが知られ
ている。
BACKGROUND OF THE INVENTION Betaine is a useful substance that has been conventionally used as a feed additive and has also been developed as a seasoning and a flavor improver. Betaine is a basic nitrogen-containing compound that is widely present in the animal and plant kingdoms, and is particularly abundant in sugar beet root and other plants of the family Chenopodiaceae and aquatic animals such as octopus and squid. Further, it is known that it is a chemically stable substance and is not decomposed even in a high alkali treatment with coal or the like during the production of beet sugar and a heat treatment such as concentration and crystallization, and is transferred into molasses.

【0003】従来、工業的にベタインを回収するには、
甜菜糖工業副産物に分類される廃糖蜜からクロマト分離
法で回収する方法、および廃糖蜜から更に蔗糖を回収し
た後の、甜菜糖工業廃棄物に分類される、いわゆるステ
ッフェン廃液から化学的に回収する方法が、主として採
用されていた。またさらに、その他、ベタインの回収例
として報告されたものは、甜菜糖工業廃棄物に分類され
るイオン交換脱塩法使用樹脂の再生廃液から得た例、甜
菜糖醗酵残渣を原料として化学的処理により金属塩の除
去を行うか又はイオン交換樹脂への吸着を利用してベタ
インを得た例が、存在していた。
Conventionally, in order to recover betaine industrially,
A method of recovering from molasses that is classified as a by-product of the beet sugar industry by a chromatographic separation method, and chemically recovering from so-called Steffen waste liquid that is classified as a waste of sugar beet industry after recovering further sucrose from the molasses The method was mainly adopted. Furthermore, in addition, other cases reported as examples of recovery of betaine include an example obtained from a recycled waste liquid of a resin used in the ion-exchange desalting method, which is classified as a sugar beet sugar industrial waste, and a chemical treatment using sugar beet fermentation residue as a raw material. There has been an example in which betaine was obtained by removing the metal salt by means of or by using adsorption on an ion exchange resin.

【0004】図1に従来の、化学的方法とイオン交換脱
塩法によるベタインの製造のフロー図を示す。図1に示
すように、化学的方法は、ステッフェン廃液を硫酸で処
理し、沈澱物と溶液とに分け、溶液をさらに精製してベ
タインを得るものである。イオン交換脱塩法は、糖蜜を
イオン交換脱塩処理したそのイオン交換樹脂をアンモニ
アで溶出処理し、その再生廃液を精製してベタインを得
ようとするものである。
FIG. 1 shows a flow chart of the production of betaine by the conventional chemical method and ion exchange desalination method. As shown in FIG. 1, the chemical method is to treat the Steffen waste liquor with sulfuric acid, divide it into a precipitate and a solution, and further purify the solution to obtain betaine. The ion-exchange desalting method is a method in which the ion-exchange resin obtained by subjecting molasses to an ion-exchange desalting treatment is eluted with ammonia, and the recycled waste liquid is purified to obtain betaine.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来お
こなわれていた、前記方法では塩酸、硫酸、有機溶媒、
アンモニア等の薬品を使用するため、精製コストが高く
つくという問題点があった。また、これらの方法からは
効率よく高純度のベタインを得ることはできなかった。
However, in the above-mentioned method which has been conventionally performed, hydrochloric acid, sulfuric acid, an organic solvent,
Since a chemical such as ammonia is used, the refining cost is high. Moreover, betaine of high purity could not be efficiently obtained from these methods.

【0006】さらに、最近、甜菜糖工業副産物である廃
糖蜜からイオン交換樹脂を分離剤として蔗糖を回収して
いるが、この蔗糖を回収した残りの脱糖区分(以下、ク
ロマト廃液という。甜菜糖工業廃棄物に分類される。)
から高純度のベタインを回収した例は報告されていな
い。そこで本発明は、前記したこのような問題点を解決
するために、ステフッフェン廃液、または、クロマト廃
液から再生剤等の薬品を使用せずに、従来の方法より安
価に、効率よく、高純度のベタインを製造する方法を提
供することを目的とする。
Furthermore, recently, sucrose has been recovered from waste molasses, which is a by-product of the beet sugar industry, by using an ion exchange resin as a separating agent. It is classified as industrial waste.)
No case has been reported in which high-purity betaine was recovered from E.coli. Therefore, in order to solve the above-mentioned problems, the present invention does not use a chemical such as a regenerant from the Steffuffen waste liquid or the chromatographic waste liquid, at a lower cost than the conventional method, efficiently, and with high purity. It is an object to provide a method for producing betaine.

【0007】[0007]

【課題を解決するための手段】本発明は前記した問題点
を解決するために、甜菜糖蜜から塩型強酸性陽イオン交
換樹脂を分離剤として蔗糖を回収したときに生じる廃液
(いわゆる、クロマト廃液)を原料液とするか、また
は、甜菜糖密からステッフェン法で蔗糖を回収したとき
に生じる廃液(いわゆる、ステッフェン廃液)を原料液
とし、この原料液を塩型強酸性陽イオン交換樹脂を分離
剤に用いて分別し、ベタインを回収して、ベタインの製
造方法としたものである。
In order to solve the above-mentioned problems, the present invention provides a waste liquid (a so-called chromatographic waste liquid) produced when sucrose is recovered from beet molasses using a salt type strongly acidic cation exchange resin as a separating agent. ) Is used as the raw material liquid, or the waste liquid generated when sucrose is recovered from the beet sugar concentrate by the Steffen method (so-called Steffen waste liquid) is used as the raw material liquid, and this raw material liquid is separated into salt-type strongly acidic cation exchange resin This is a method for producing betaine by separating it using the agent and collecting betaine.

【0008】本発明で用いるクロマト廃液またはステッ
フェン廃液の組成は、1例を示せば次のようなものがあ
る。
The composition of the chromatographic waste liquid or the Steffen waste liquid used in the present invention is as follows, for example.

【0009】[0009]

【表1】 [Table 1]

【0010】本発明において使用するイオン交換樹脂と
しては、ジビニルベンゼン含有量の低い、例えば、6%
程度の含有量の、即ち、架稿度の低いものが好ましく、
例えば、ダイヤイオンUBK530K(商品名)、ダウ
エックス99(商品名)等の樹脂が好適に用いられ、そ
の平均粒径は、320〜360μmのものが好ましい。
また、これと結合する塩としては、ナトリウム塩を使用
するのが良い。
The ion exchange resin used in the present invention has a low divinylbenzene content, for example, 6%.
It is preferable that the content is about the same, that is, that the degree of drafting is low,
For example, resins such as Diaion UBK530K (trade name) and Dowex 99 (trade name) are preferably used, and the average particle diameter thereof is preferably 320 to 360 μm.
Moreover, it is preferable to use a sodium salt as a salt to be bound with this.

【0011】次に、塩型強酸性陽イオン交換樹脂を用い
た本発明のベタインの製造方法を説明する。例えば、ク
ロマト廃液をダイヤイオンUBK530K、平均粒径3
60ミクロン、Na型にて処理した場合について説明す
ると、内径180mm、高さ1000mmの保温ジャケ
ット付ステンレス製カラムに、上記ダイヤイオンUBK
530K−Na型を24l充填し、80℃に調温する。
このカラムの上部から濾過器で前処理され、80℃に加
温されたクロマト廃液(ブリックス57.6、蔗糖1
0.9%(固形分当たり)、ベタイン10.1%(固形
分当たり))を1.2l(樹脂量の5%(V/V))供
給し、SV(空間速度:流出量l/樹脂量l/1時間)
0.55で樹脂中を流下させ、引き続き80℃の蒸留水
を同じSVで供給する。最初の流出液6.6lは廃棄
し、以降0.8lを1フラクションとして順次採取し、
表2の結果を得た。なお、蔗糖、ベタインの分析法につ
いては、蔗糖が液体クロマトグラフ法、ベタインは、ラ
イネッケ塩法で行なった。表2中の表示は無水ベースと
した。
Next, a method for producing betaine of the present invention using a salt type strong acid cation exchange resin will be described. For example, chromatographic waste liquid is Diaion UBK530K, average particle size 3
A case of treatment with 60 micron, Na type will be explained. A stainless steel column with an inner diameter of 180 mm and a height of 1000 mm with a heat insulation jacket is prepared by using the above-mentioned DIAION UBK.
24l of 530K-Na type is filled and the temperature is adjusted to 80 ° C.
Chromatography waste liquid (Brix 57.6, sucrose 1) that had been pretreated from the top of this column with a filter and heated to 80 ° C.
0.9% (per solid content), betaine 10.1% (per solid content) 1.2l (5% of resin amount (V / V)) was supplied, and SV (space velocity: outflow amount 1 / resin) Amount l / 1 hour)
At 0.55, the resin is made to flow down, and then distilled water at 80 ° C. is supplied at the same SV. The first effluent, 6.6 l, was discarded, and 0.8 l was sequentially collected as one fraction.
The results shown in Table 2 were obtained. Regarding the analysis method of sucrose and betaine, the liquid chromatography method was used for sucrose and the Rynekke salt method was used for betaine. The indications in Table 2 are based on anhydrous basis.

【0012】[0012]

【表2】 [Table 2]

【0013】表2に示すように、樹脂の分子篩効果によ
り、ベタインは二糖類である蔗糖およびその他の非糖分
より後に流出し、各フラクションのベタイン純度が異な
っている。従って、回収フラクションを任意に選択する
ことにより、即ち、カットポイントを変えることによ
り、ベタイン純度の高い回収液を得ることができる。こ
の回収液を濃縮し、煎糖法による結晶成長をおこなって
ベタイン1水和物結晶を容易に採取できる。また、煎糖
を高温度で行うことにより、無水ベタイン結晶を得るこ
ともできる。
As shown in Table 2, due to the molecular sieving effect of the resin, betaine flows out after the disaccharide sucrose and other non-sugar components, and the betaine purity of each fraction differs. Therefore, by arbitrarily selecting the recovery fraction, that is, by changing the cut point, it is possible to obtain a recovery liquid with high betaine purity. The recovered solution is concentrated and crystal growth is performed by the infusion method to easily collect betaine monohydrate crystals. Also, anhydrous betaine crystals can be obtained by performing decoction at high temperature.

【0014】前述の例においては、一つの条件について
説明したが、樹脂カラムに供給する各廃液の濃度範囲は
ブリックス10〜60であれば良く、供給量も樹脂に対
し2.5〜7.5%(V/V)まで良く、通液速度SV
は、0.25〜0.75の範囲においては、大差がな
い。本発明は、上記の如く、クロマト廃液およびステッ
フェン廃液を塩型強酸性陽イオン交換樹脂を分離剤に用
い、得られる流出液を適当な範囲で回収し、これを濃
縮、煎糖することにより、高純度ベタインを1水和結晶
または無水結晶として容易に製造することができるもの
である。特に、本発明においては、環境上問題となる薬
品類を全く使用することなく製造することができ、工業
的価値は極めて大きいものである。
In the above example, one condition was explained, but the concentration range of each waste liquid supplied to the resin column may be Brix 10 to 60, and the supply amount is 2.5 to 7.5 with respect to the resin. % (V / V), liquid flow rate SV
Is not significantly different in the range of 0.25 to 0.75. As described above, the present invention uses a chromatographic waste liquid and a Steffen waste liquid as a separating agent of a salt type strongly acidic cation exchange resin, recovers the resulting effluent in an appropriate range, and concentrates and sucrose the same. High-purity betaine can be easily produced as monohydrate crystals or anhydrous crystals. In particular, in the present invention, it is possible to manufacture without using any chemicals that cause environmental problems, and the industrial value is extremely large.

【0015】即ち、含水結晶を作るときは煎糖温度を9
0℃以下にして行い、無水結晶を作るときは煎糖から分
離までの全工程を100℃以上に保ちながら、結晶成長
および分離を行い、かつ、結晶を洗浄しないようにして
行う。
That is, when making hydrous crystals, the decoction temperature is set to 9
When the anhydrous crystal is prepared at 0 ° C. or lower, all the steps from the decoction to the separation are maintained at 100 ° C. or higher while the crystal is grown and separated, and the crystal is not washed.

【0016】[0016]

【実施例1】径180mm、高さ1000mmの保温ジ
ャケット付ステンレス製カラムにNa型に再生したダウ
エックス99の平均粒径330ミクロンを24l充填
し、ジャケットに80℃の温水を循環して保温しながら
カラム上部より80℃の温水を通水し、樹脂槽を80℃
に調温する。流出水が80℃に達した時点で温水の供給
を止める。次に、クロマト廃液(ブリックス49.2、
蔗糖17.25%onBX、ベタイン17.10%on
BX)1.2lを濾過し、80℃に加熱してSV0.5
5でイオン交換樹脂カラムを流下させ、引き続き80℃
の蒸留水を同じSVで供給する。
Example 1 A stainless steel column having a diameter of 180 mm and a height of 1000 mm with a heat insulating jacket was filled with 24 liters of an average particle size of 330 μm of Dowex 99 regenerated into Na type, and warm water was circulated at 80 ° C. in the jacket to keep it warm While passing 80 ° C warm water from the top of the column, keep the resin tank at 80 ° C.
To adjust the temperature. When the effluent reaches 80 ° C, the hot water supply is stopped. Next, chromatographic waste liquid (Brix 49.2,
Sucrose 17.25% on BX, betaine 17.10% on
BX) 1.2 l is filtered, heated to 80 ° C. and SV 0.5
5. Flow down the ion exchange resin column at 5 and continue at 80 ° C.
Of distilled water is supplied at the same SV.

【0017】最初の流出液8lを廃棄し、0.8lを1
フラクションとし、No.11〜13の3フラクション
を回収する。これと同じ処理を8回反復し、ベタイン純
度88.30%の回収液を得た。この回収液をブリック
ス60まで濃縮して母液とし、ロータリーエバポレータ
ーを使用して煎糖法による結晶成長を行った。ウォータ
ーバス温度を90℃に保ち、フラスコ内真空度を120
Torr、液温を80℃として結晶成長を行ったとこ
ろ、ベタイン1水和物の結晶スラリー1217gを得
た。これを3000rpmで遠心分離し、同じ条件で3
9gの散水を行った後、恒温器により105℃、5時間
の静置乾燥を行い、純度98.0%、水分1.5%のベ
タイン518gを得た。含水ベタインを乾燥する前後の
写真を図2に示し、図2(a)は乾燥前、図2(b)は
乾燥後のものである。乾燥した結晶は内部から水分が抜
けるため乳白色となり、表面の光沢がなくなっている。
得られたベタインの純度は、市販試薬ベタインを基準と
し、ライネッケ塩による沈澱の迅速比色法により定量し
た。この粗結晶の回収率は、無水換算で供給クロマト廃
液中のベタインに対し50.5%であった。
8 l of the first effluent is discarded and 0.8 l
Fraction, No. Collect 3 fractions 11-13. The same treatment as this was repeated 8 times to obtain a recovered solution having a betaine purity of 88.30%. The recovered liquid was concentrated to Brix 60 to obtain a mother liquor, and crystal growth was performed by a sucrose method using a rotary evaporator. Keep the water bath temperature at 90 ° C and the vacuum degree in the flask to 120
Crystal growth was performed at Torr and a liquid temperature of 80 ° C. to obtain 1217 g of a crystal slurry of betaine monohydrate. Centrifuge this at 3000 rpm, and
After 9 g of water was sprayed, it was allowed to stand and dry for 5 hours at 105 ° C. in a thermostat to obtain 518 g of betaine having a purity of 98.0% and a water content of 1.5%. Photographs before and after drying the hydrous betaine are shown in FIG. 2, FIG. 2 (a) before being dried, and FIG. 2 (b) after being dried. The dried crystals become milky white due to the loss of water from the inside, and the surface has no gloss.
The purity of the obtained betaine was quantified by a rapid colorimetric method of precipitation with a lineecke salt, using the commercially available reagent betaine as a reference. The recovery rate of this crude crystal was 50.5% with respect to betaine in the supplied chromatographic waste liquid on an anhydrous basis.

【0018】[0018]

【実施例2】実施例1で使用した樹脂の入ったカラムと
同じカラムを実施例1と同様80℃に調温し、これにス
テッフェン廃液(ブリックス54.8、ベタイン15.
2%(固形分当たり))1.2lを濾過して80℃に加
熱し、SV0.55で樹脂槽を流下させ、引き続き80
℃の温水を同じSVで供給し、最初の流出液8lを廃棄
し、No.12〜14の3フラクションを回収する。こ
れと同じ走査を8回反復し、ベタイン純度89.7%の
回収液を得た。
Example 2 The same column containing the resin used in Example 1 was adjusted to 80 ° C. as in Example 1, and Steffen waste liquid (Brix 54.8, betaine 15.
1.2% of 2% (per solid content) was filtered and heated to 80 ° C., and the resin tank was allowed to flow down with SV 0.55, followed by 80
C. hot water at the same SV was supplied and the first effluent 8 l was discarded, no. Collect 3 fractions 12-14. The same scan was repeated 8 times to obtain a recovered solution having a betaine purity of 89.7%.

【0019】この回収液を実施例1と同様ブリックス6
0まで濃縮して母液とし、オイルバスを高温の130℃
に保ち、フラスコ内真空度を300Torr、液温を1
10℃として結晶成長を行ったところ、無水ベタインの
結晶スラリー1036gを得た。これを3000rpm
で無散水による遠心分離を行い、恒温器により105
℃、2時間の静置乾燥を行い、純度99.0%、水分
0.27%の無水ベタイン結晶325gを得た。無水ベ
タインの乾燥前後の写真を図3に示し、図3(a)は乾
燥前、図3(b)は乾燥後のものである。無水結晶は表
面の水分が乾燥するのみで、乾燥後も透明で光沢が失わ
れていない。
This recovered liquid was used as in Example 1 for Brix 6
Concentrate to 0 to give mother liquor, and heat oil bath at high temperature of 130 ℃
Keep the vacuum inside the flask at 300 Torr and the liquid temperature at 1
When crystal growth was performed at 10 ° C., 1036 g of anhydrous betaine crystal slurry was obtained. 3000 rpm
Centrifuge without water sprinkling in a thermostat
The mixture was allowed to stand and dry at 2 ° C. for 2 hours to obtain 325 g of anhydrous betaine crystals having a purity of 99.0% and a water content of 0.27%. Photographs of anhydrous betaine before and after drying are shown in FIG. 3, where FIG. 3 (a) is before drying and FIG. 3 (b) is after drying. The water content of the anhydrous crystal is only dried, and it remains transparent and does not lose its luster even after drying.

【0020】この無水ベタインの回収率は、供給ステッ
フェン廃液中のベタインに対し、32.0%であった。
The recovery rate of this anhydrous betaine was 32.0% with respect to betaine in the supplied Steffen waste liquid.

【0021】[0021]

【発明の効果】本発明によれば、次の効果が奏される。 (1)環境上問題となる薬品類を全く使用することなく
高純度ベタインを製造することができる。 (2)高純度ベタインを1水和結晶または無水結晶とし
て容易に製造することができる。
According to the present invention, the following effects are exhibited. (1) High-purity betaine can be produced without using any chemicals that cause environmental problems. (2) High-purity betaine can be easily produced as monohydrate crystals or anhydrous crystals.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の、化学的方法とイオン交換脱塩法による
ベタインの製造のフロー図を示す。
FIG. 1 shows a flow chart of the production of betaine by a conventional chemical method and an ion exchange desalination method.

【図2】含水ベタインを乾燥する前後の状態を示し、図
2(a)は乾燥前、図2(b)は乾燥後のものである。
2A and 2B show states before and after drying of hydrous betaine, FIG. 2A being before drying and FIG. 2B being after drying.

【図3】無水ベタインを乾燥する前後の状態を示し、図
3(a)は乾燥前、図3(b)は乾燥後のものである。
3A and 3B show states before and after drying of anhydrous betaine, where FIG. 3A is before drying and FIG. 3B is after drying.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年9月30日[Submission date] September 30, 1993

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図2[Name of item to be corrected] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図2】 [Fig. 2]

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図3】 [Figure 3]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 甜菜糖蜜から塩型強酸性陽イオン交換樹
脂を分離剤として蔗糖を回収したときに生じる廃液を原
料液とし、この原料液を塩型強酸性陽イオン交換樹脂を
分離剤に用いて分別し、ベタインを回収することを特徴
とするベタインの製造方法。
1. A waste liquid generated when sucrose is recovered from a sugar beet molasses using a salt-type strong acid cation exchange resin as a separating agent is used as a raw material liquid, and the raw material liquid is used as a separating agent. A method for producing betaine, characterized in that the betaine is collected and separated to collect betaine.
【請求項2】 甜菜糖密からステッフェン法で蔗糖を回
収したときに生じる廃液を原料液とし、この原料液を塩
型強酸性陽イオン交換樹脂を分離剤に用いて分別し、ベ
タインを回収することを特徴とするベタインの製造方
法。
2. A waste liquid generated when sucrose is collected from beet sugar-to-sugar by the Steffen method is used as a raw material liquid, and the raw material liquid is fractionated by using a salt type strong acid cation exchange resin as a separating agent to recover betaine. A method for producing betaine characterized by the above.
JP2238191A 1991-02-15 1991-02-15 Production of betaine Pending JPH06107611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2238191A JPH06107611A (en) 1991-02-15 1991-02-15 Production of betaine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2238191A JPH06107611A (en) 1991-02-15 1991-02-15 Production of betaine

Publications (1)

Publication Number Publication Date
JPH06107611A true JPH06107611A (en) 1994-04-19

Family

ID=12081075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2238191A Pending JPH06107611A (en) 1991-02-15 1991-02-15 Production of betaine

Country Status (1)

Country Link
JP (1) JPH06107611A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033784A1 (en) * 1997-12-25 1999-07-08 Organo Corporation Process for recovering betaine
JP2014217302A (en) * 2013-05-07 2014-11-20 日本甜菜製糖株式会社 Prevention and/or therapeutic agent for livestock urolithiasis
US10047338B2 (en) 2014-04-17 2018-08-14 Euglena Co., Ltd. Algae cultivation method and production method for osmotic pressure regulator
US10214559B2 (en) 2014-07-03 2019-02-26 Heriot-Watt University Protein recovery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999033784A1 (en) * 1997-12-25 1999-07-08 Organo Corporation Process for recovering betaine
US6099654A (en) * 1997-12-25 2000-08-08 Organo Corporation Process for recovering betaine
JP2014217302A (en) * 2013-05-07 2014-11-20 日本甜菜製糖株式会社 Prevention and/or therapeutic agent for livestock urolithiasis
US10047338B2 (en) 2014-04-17 2018-08-14 Euglena Co., Ltd. Algae cultivation method and production method for osmotic pressure regulator
US10214559B2 (en) 2014-07-03 2019-02-26 Heriot-Watt University Protein recovery

Similar Documents

Publication Publication Date Title
US4359430A (en) Betaine recovery process
JP3018201B2 (en) Xylose recovery method
SU1500164A3 (en) Method of recovering sacchars and lignosulfonates from spent sulfite lye
US4332622A (en) Direct production of a pure sugar product from cane juice
EP0054544B1 (en) Betaine recovery process
JPH09506513A (en) How to purify sugar beet juice
US2375165A (en) Recovery of nitrogenous products from organic wastes
EP2292803B1 (en) Separation process
JP2007043940A (en) Method for collecting inositol
JPS62126193A (en) Production of l-rhamnose
JPH02275835A (en) Method for recovering citric acid from solution containing citric acid
JPH06107611A (en) Production of betaine
DE69824868T2 (en) PROCESS FOR PREPARING L-ARABINOSE FROM SUGAR BEET PULP
JP5184768B2 (en) Method for recovering sugar solution with high trehalose content and method for producing crystalline trehalose
US9080221B2 (en) System and process for refining sugar
JPH01244000A (en) Method for treating beet sugar liquid
US4351672A (en) Removal of objectionable flavor and odor characteristics in finished sugar products produced from molasses
JPS6327496A (en) Production of l-fucose
WO2014158558A1 (en) L-glucose production from l-glucose/l-mannose mixtures using simulated moving bed separation
US2712552A (en) Method for extracting aconitic acid from sugarcane and sorgo juices, sirups, and molasses
JP3566485B2 (en) Purification method of sugar beet leachate
JPS62255453A (en) Method for separating and purifying valine
JPS6313438B2 (en)
JP3567638B2 (en) Sugar production method from sugar beet leachate
JPS62292750A (en) Separation and purification or arginine

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19990826