JPS61205494A - Production of branched dextrin and straight-chain oligosaccharide - Google Patents

Production of branched dextrin and straight-chain oligosaccharide

Info

Publication number
JPS61205494A
JPS61205494A JP4666185A JP4666185A JPS61205494A JP S61205494 A JPS61205494 A JP S61205494A JP 4666185 A JP4666185 A JP 4666185A JP 4666185 A JP4666185 A JP 4666185A JP S61205494 A JPS61205494 A JP S61205494A
Authority
JP
Japan
Prior art keywords
branched
starch
amylase
saccharification
dextrin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4666185A
Other languages
Japanese (ja)
Other versions
JPH0154040B2 (en
Inventor
Tsukasa Yoshida
司 吉田
Yoshio Ishige
石毛 義勇
Masaki Matsudaira
松平 昌樹
Tadashi Takahashi
高橋 是
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANMATSU KOGYO KK
Original Assignee
SANMATSU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANMATSU KOGYO KK filed Critical SANMATSU KOGYO KK
Priority to JP4666185A priority Critical patent/JPS61205494A/en
Publication of JPS61205494A publication Critical patent/JPS61205494A/en
Publication of JPH0154040B2 publication Critical patent/JPH0154040B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

PURPOSE:A saccharified liquid containing a branched dextrin and a straight- chain oligosaccharide produced by the reaction of starch with alpha-amylase is passed through a gel-filtration agent to separate the branched dextrin from the straight-chain oligosaccharide. CONSTITUTION:A saccharified liquid containing a branched dextrin having alpha-1, 6 bond and a straight-chain oligosaccharide composed solely of alpha-1, 4 bond is produced by the reaction of starch with alpha-amylase. The saccharified liquid is fractionated with a gel filtration agent at a desired decomposition stage corresponding to the desired physical property. The gel-filtration agent is e.g. an ion exchange resin (practically having a crosslinking degree of 4-8).

Description

【発明の詳細な説明】 産呈上坐且里立互 本発明は〈澱粉から分枝デキストリン類及び直鎖オリゴ
糖類を選択分別してそれぞれを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for selectively fractionating branched dextrins and linear oligosaccharides from starch and producing them.

従米至孜玉迫宜呈 先に、本発明者らは、液化澱粉にβ−アミラーゼを作用
させて主としてマルトースとβ−リミットデキストリン
から成る糖化液を生成させ、該糖化液を01(型アニオ
ン交換樹脂に接触させることに ′よって高純度のマル
トースとβ−リミットデキストリンを分別して製造する
方法(特許第1,033,249号)を確立した。
Previously, the present inventors reacted liquefied starch with β-amylase to produce a saccharified solution mainly consisting of maltose and β-limited dextrin, and converted the saccharified solution into 01 (type anion exchange). We have established a method (Patent No. 1,033,249) for separately producing high-purity maltose and β-limit dextrin by bringing them into contact with a resin.

マルトースはD−グルコース2分子がα−1,4結合し
た三糖類であって、蔗糖及びグルコースと比較して低甘
味であるため、食品加工面では現在減せ素材として広く
利用されている。また一方、β−リミットデキストリン
は分枝構造をもつ巨大分子であって分枝デキストリンと
称せられるものであるが、その分子構造に起因した性質
として巨大分子であるにもかかわらず水に易溶であり、
粘性が大きくしかも安定しており老化することがない。
Maltose is a trisaccharide in which two D-glucose molecules are bonded with α-1,4 bonds, and has a lower sweetness than sucrose and glucose, so it is currently widely used as a reducing material in food processing. On the other hand, β-limit dextrin is a macromolecule with a branched structure and is called a branched dextrin, but due to its molecular structure, it is easily soluble in water despite being a macromolecule. can be,
It has a high viscosity and is stable, so it does not age.

したがって、食品加工面では弾性を賦与し、保水性が良
好であるなど食品素材として大きく注目を浴びている。
Therefore, in terms of food processing, it is attracting a lot of attention as a food material that imparts elasticity and has good water retention properties.

しかしながら、最近の市場動向としては、マルトースよ
りさらに低甘味が要求されており、また分枝デキストリ
ンについてはβ−リミットデキストリンよりさらに低分
子化したものへの物性に期待が寄せられている。
However, recent market trends are demanding lower sweetness than maltose, and there are expectations for the physical properties of branched dextrins with even lower molecular weight than β-limit dextrins.

澱粉は、D−グルコースがα−1,4結合で重合した直
鎖構造のアミロースと、主体がα−1,4結合で重合し
、各所でα−1,6結合でもって枝分かれをした樹枝状
構造をもつアミロペクチンから構成されている。このよ
うな構造をもつ澱粉の液化液にβ−アミラーゼを作用さ
せれば、直鎖構造のアミロースと樹枝状構造のアミロペ
クチンの外側の枝のみが攻撃を受け、内部構造が破壊さ
れないため前記特許のように、マルトースと巨大分子の
分枝デキストリンが得られるが、しかし澱粉にα−アミ
ラーゼを作用させれば、アミロースのみならずアミロペ
クチンの内部構造のα−1,4結合が任意に切断され、
α−1,6結合は攻撃されないため、マルトースより重
合度の高いいわゆる直鎖オリゴ糖類とβ−リミットデキ
ストリンより低分子化した分枝デキストリン類の糖化液
が得られることになる。
Starch consists of amylose, which has a linear structure in which D-glucose is polymerized with α-1,4 bonds, and dendritic amylose, which is mainly polymerized with α-1,4 bonds and branches at various points with α-1,6 bonds. It is composed of amylopectin with a structure. If β-amylase is applied to a liquefied starch having such a structure, only the outer branches of amylose, which has a linear structure, and amylopectin, which has a dendritic structure, will be attacked, and the internal structure will not be destroyed. Thus, branched dextrin with maltose and macromolecules is obtained, but when α-amylase is applied to starch, not only amylose but also α-1,4 bonds in the internal structure of amylopectin are arbitrarily cleaved.
Since α-1,6 bonds are not attacked, a saccharified solution of so-called linear oligosaccharides having a higher degree of polymerization than maltose and branched dextrins having a lower molecular weight than β-limit dextrin is obtained.

本発明者はらば、この点に着眼して上述した市場要求を
同時に満足させるためには、つまりマルトースより重合
度の高い直鎖オリゴ糖類とβ−リミットデキストリンよ
りさらに低分子化した分枝デキストリン類から成る澱粉
糖化液からそれぞれを選択分別し得る方法を提供するこ
とができれば該市場要求に対応することが可能となり、
したがって食品への応用範囲が飛躍的に拡大するものと
の見地に立って検討を進めた結果、本発明をなすに至っ
た。
The inventors of the present invention focused on this point and in order to simultaneously satisfy the above-mentioned market demands, the inventors sought to combine linear oligosaccharides with a higher degree of polymerization than maltose and branched dextrins with a lower molecular weight than β-limit dextrin. If we can provide a method that can selectively separate starch saccharified liquid consisting of
Therefore, as a result of our studies from the viewpoint that the range of application to foods will be dramatically expanded, we have arrived at the present invention.

而して、前記特許においては、澱粉のβ−アミラーゼに
よるマルトースと巨大分子のβ−リミットデキストリン
の糖化液からOH型アニオン交換樹脂に対するマルトー
スの吸着性を利用して効果的に双方を分離し得たのであ
るが、澱粉のα−アミラーゼによって低分子化した分枝
デキストリンと直鎖オリゴ¥FM類との糖化液について
は、OH型アニオン交換樹脂に対してもはや吸着性に差
がなくなり、0■型アニオン交換樹脂によっては効果的
に分別することが不可能である事がわかった。すなわち
、上記分枝デキストリンと直鎖オリゴ糖類とから成る糖
化液からそれぞれを分別することが問題となる。
In the above patent, maltose produced by β-amylase of starch and β-limited dextrin, which is a macromolecule, can be effectively separated from a saccharified solution by utilizing the adsorption properties of maltose to an OH-type anion exchange resin. However, for the saccharified solution of branched dextrin, which has been reduced in molecular weight by starch α-amylase, and linear oligo¥FM, there is no longer any difference in adsorption to the OH-type anion exchange resin, and 0. It was found that effective separation was not possible depending on the type of anion exchange resin. That is, the problem is to separate the branched dextrin and linear oligosaccharide from the saccharified liquid.

が ンしようとする。 占 本発明者らは、α−アミラーゼによる澱粉分解物(糖化
液)から分枝デキストリン類と直鎖オリゴ糖類との分別
法について鋭意研究した結果、これら澱粉分解物が分枝
構造を有しているか、直鎖構造であるかの構造の違いに
よってゲル濾過剤に対する内部浸入あるいは表面でのす
べり速度に差異ができる事を発見し、その差異を利用す
る事によって分枝デキストリン類と直鎖オリゴ糖類の糖
化液からそれぞれの成分に効果的に分別することに成功
した。したがって、本発明は、澱粉にα−アミラーゼを
作用させて得られる主として分枝デキストリン類と直鎖
オリゴ糖類とから成る糖化液から、それらを有効に選択
分別し得る方法を提供することを目的とする。
Trying to find something. As a result of intensive research into a method for separating branched dextrins and linear oligosaccharides from starch decomposition products (saccharified liquid) using α-amylase, the inventors of the present invention discovered that these starch decomposition products have a branched structure. We discovered that there are differences in the internal penetration and surface sliding speed of gel filtration agents depending on the structure, whether it is a straight-chain structure or a straight-chain structure. We succeeded in effectively separating each component from the saccharified liquid. Therefore, an object of the present invention is to provide a method for effectively selectively fractionating starch from a saccharified solution mainly consisting of branched dextrins and linear oligosaccharides obtained by the action of α-amylase. do.

以下本発明について詳しく説明する。The present invention will be explained in detail below.

皇皿■盪底 本発明の特徴は、澱粉にα−アミラーゼを作用させて主
として分枝デキストリン類と直鎖オリゴ糖類とから成る
糖化液を生成させ、ついで得られる糖化液をゲル型濾過
剤に接触させることによって該糖化液中の分枝デキスト
リン類と直鎖オリゴ糖類を選択分別することにある。
A feature of the present invention is that a saccharified solution consisting mainly of branched dextrins and linear oligosaccharides is produced by allowing α-amylase to act on starch, and then the resulting saccharified solution is brought into contact with a gel-type filtration agent. By doing so, branched dextrins and linear oligosaccharides in the saccharified liquid are selectively separated.

本発明においては、澱粉にα−アミラーゼを作用させて
分枝デキストリン類と直鎖オリゴtJi類から成る糖化
液を調製するのであるが、この際澱粉はα−アミラーゼ
によって澱粉を構成するアミロースとアミロペクチンの
α−1,4結合のみが任意に攻撃を受けてα−1,6結
合を含むいわゆる分枝デキストリンとα−1,4結合の
みからなる直鎖オリゴ糖類から成る糖化液が得られる。
In the present invention, starch is treated with α-amylase to prepare a saccharification solution consisting of branched dextrins and linear oligo-tJi. By arbitrarily attacking only the α-1,4 bonds, a saccharified solution consisting of a so-called branched dextrin containing α-1,6 bonds and a linear oligosaccharide consisting only of α-1,4 bonds is obtained.

α−アミラーゼによる分解が進行するにつれて、それぞ
れの成分は更に低分子化されるが、α−アミラーゼによ
る限界分解においては、α−リミットデキストリンと称
される重合度5〜10の分枝デキストリンとα−1,4
結合のみからなる主として重合度2〜6の直鎖オリゴI
!類からなる糖化液が得られる。
As decomposition by α-amylase progresses, each component is further reduced in molecular weight, but in the limit decomposition by α-amylase, branched dextrin with a degree of polymerization of 5 to 10, called α-limit dextrin, and α -1,4
Linear oligo I consisting mainly of bonds with a degree of polymerization of 2 to 6
! A saccharified solution consisting of

。 占を”ンするための 本発明においては、目的とする物性に対応して各分解段
階の糖化液を、ゲル濾過剤として例えばイオン交換樹脂
を充填したカラムに上部から流下させ、引き続き水など
に置き換えるなどして、イオン交換樹脂に接触させれば
糖化液中の分枝デキストリンと直鎖オリゴ糖の流れに差
が生して、流出液の初流に分枝デキストリンが検出され
、その後、直鎖オリゴ糖類の流出区分が得られる。
. In the present invention, the saccharified solution at each decomposition stage is flowed down from the top into a column filled with, for example, ion exchange resin as a gel filtration agent, depending on the desired physical properties, and then poured into water or the like. If the branched dextrin and linear oligosaccharide in the saccharification solution are brought into contact with an ion exchange resin by An effluent section of chain oligosaccharides is obtained.

本発明において、分枝デキストリン類と直鎖オリゴ糖類
から成る糖化液を調製するには、まずα−アミラーゼに
よる澱粉の糖化を行なう。
In the present invention, in order to prepare a saccharification solution consisting of branched dextrins and linear oligosaccharides, starch is first saccharified using α-amylase.

澱粉原料としては、一般の殻粉糖製造の原料となるコー
ンスターチ、ばれいしょ澱粉、せ薯澱粉、タピオカ澱粉
及びそれらのα化澱粉、餅澱粉など広範囲のものが使用
可能である。
A wide range of starch raw materials can be used, such as corn starch, potato starch, sesame starch, tapioca starch, their pregelatinized starches, and rice cake starch, which are common raw materials for producing powdered shell sugar.

澱粉の糖化には、加熱を伴なう機械液化法による液化に
引き続きα−アミラーゼを作用させるか、または澱粉乳
にα−アミラーゼを添加して直接加熱して直接糖化を進
める方法があり、又目的によってはβ−アミラーゼを共
存させて糖化を進める事もできる。
Starch can be saccharified by mechanical liquefaction that involves heating, followed by the action of α-amylase, or by adding α-amylase to starch milk and directly heating it to proceed with saccharification. Depending on the purpose, saccharification can be carried out by allowing β-amylase to coexist.

一般に上記糖化段階における澱粉の分解程度は、目的と
する製品の粘度及び甘味度などの物性に応じて決定され
るものであるが、その後の分別処理の難易度を考慮して
oEio〜35の範囲が適当である。
Generally, the degree of decomposition of starch in the above saccharification stage is determined according to the physical properties such as viscosity and sweetness of the target product, but it is determined in the range of oEio ~ 35, taking into consideration the difficulty of subsequent separation processing. is appropriate.

α−アミラーゼによる澱粉の糖化温度はα−アミラーゼ
の耐熱温度を上限として行なわれるが、高温液化後、温
度を下げて糖化を進めることも可能であり、又β−アミ
ラーゼを共存させて糖化反応を進める場合もあり得るこ
となどを考慮に入れれば、実質的に45℃〜1)0℃の
温度範囲、又piは4.5〜7.0の酵素の作用範囲が
本発明の実施可能範囲となる。
The saccharification temperature of starch by α-amylase is carried out with the upper limit of the heat resistance temperature of α-amylase, but after high-temperature liquefaction, it is possible to proceed with saccharification by lowering the temperature, or it is possible to proceed with the saccharification reaction by coexisting β-amylase. Taking into account that there may be cases where the process is further advanced, the practical range of the present invention is substantially a temperature range of 45°C to 1) 0°C, and an enzyme action range of pi of 4.5 to 7.0. Become.

分解程度の制御は、添加する酵素量、作用温度、作用時
間によって行なわれるが、反応途次で目的の分解点で加
熱或いは酸を添加するなどして酵素を失活させることに
より糖化反応を停止することができる。
The degree of decomposition is controlled by the amount of enzyme added, action temperature, and action time, but the saccharification reaction can be stopped by inactivating the enzyme by heating or adding acid at the desired decomposition point during the reaction. can do.

上述のようにして得られる糖化液中の分枝デ、キストリ
ンの含量は、澱粉の種類及び分解程度によって異なるが
、一般に固形分中の約25〜50%の範囲にあり、残余
が直鎖オリゴ糖となる。
The content of branched de- and kistrin in the saccharified solution obtained as described above varies depending on the type of starch and the degree of decomposition, but is generally in the range of about 25-50% of the solid content, with the remainder being linear oligos. It becomes sugar.

次に上述のようにして得られた糖化液を、通常濾過して
原料に含まれる糖質以外の夾雑物を除去し、必要とあれ
ばこの段階で脱色精製し、又濃縮するなどして次工程の
分別に有効と思われる前処理を糖化液に施すことも本発
明の範囲に包含されるものであることを理解すべきであ
る。
Next, the saccharified liquid obtained as described above is usually filtered to remove impurities other than carbohydrates contained in the raw materials, and if necessary, decolorized and purified at this stage, concentrated, etc. It should be understood that it is also within the scope of the present invention to subject the saccharified liquid to a pretreatment that is considered effective for step separation.

本発明において、糖化液中の分枝デキストリン類と直鎖
オリゴ糖類の分別に使用されるゲル濾過剤としては、一
般に使用されているデキストラン、寒天、澱粉などを母
体としたものやポリスチレンを母体としたイオン交換樹
脂などがあり、イオン交換樹脂については特に架橋度4
〜8の範囲のものが実用的である。
In the present invention, the gel filtration agent used to separate branched dextrins and linear oligosaccharides in the saccharification solution may be one based on commonly used dextran, agar, starch, etc., or one based on polystyrene. There are ion exchange resins with a crosslinking degree of 4.
A range of 8 to 8 is practical.

又粒径としては40〜80メツシユの範囲にあって均一
であることが、圧損の関係から必要であり、またイオン
交換樹脂は塩型で使用する。
In addition, it is necessary that the particle size be uniform in the range of 40 to 80 mesh from the viewpoint of pressure loss, and the ion exchange resin is used in the salt form.

本発明において、糖化液をゲル濾過剤に接触させるには
、カラムに充填したゲル濾過剤の固定層に糖化液を下降
または上昇させて通液する動的な処理方法によって達成
され、固定層は各種ゲル濾過剤の混合系で形成すること
も可能である。
In the present invention, bringing the saccharified solution into contact with the gel filtration agent is achieved by a dynamic treatment method in which the saccharified solution is passed down or up through a fixed bed of gel filtration agents filled in a column, and the fixed bed is It is also possible to form a mixed system of various gel filtration agents.

本発明によって工業的生産を行なうには、ゲル濾過剤を
充填したカラムを多段に連結した擬像移動床方式による
連続通液が好適である。擬似移動床の段数は4〜6段を
採用し、各段には糖化原液及び水の注入口と分枝デキス
トリン及沙直鎖オリゴ糖の排出口が設けられ、又全段に
わたって液移動を行なう循環系路が設けられている。
For industrial production according to the present invention, continuous liquid flow using a pseudo-image moving bed system in which columns packed with gel filtration agents are connected in multiple stages is suitable. The number of stages of the pseudo moving bed is 4 to 6, and each stage is provided with an inlet for saccharification stock solution and water, and an outlet for branched dextrin and linear oligosaccharide, and liquid movement is performed across all stages. A circulation system is provided.

全段にわたって糖化液を通液後、分離パターンに対応し
た各段について流量制御による糖化液の出入が行なわれ
るが、糖化液中の分枝デキストリンと直鎖オリゴ糖の組
成比に応じて排出の流量を配分すればほぼ完全に分枝デ
キストリン類と直鎖オリゴ糖類とに選択分別することが
できることも本発明の特長である。
After passing the saccharification solution through all the stages, the saccharification solution is taken in and out of each stage corresponding to the separation pattern by controlling the flow rate. Another feature of the present invention is that by distributing the flow rate, selective fractionation into branched dextrins and linear oligosaccharides can be achieved almost completely.

本発明で用いる糖化原液の濃度は、可及的に高いほうが
経済的に好ましいが、カラム中の圧損を考慮して40%
程度とすることが現実的であり、またカラム中の圧損は
通液温度とも関係し、又カラム中の発酵を防止するとい
う意味で約60℃とするのが良い。溶出用水としては、
一般に使用する水又は蒸留水、あるいは純度の高いイオ
ン交換水を用い、用水温度は通液温度と同温にして用い
る。
It is economically preferable for the concentration of the saccharification stock solution used in the present invention to be as high as possible;
It is practical to set the temperature at about 60° C., since the pressure drop in the column is also related to the temperature at which the liquid passes through the column, and in order to prevent fermentation in the column. As elution water,
Commonly used water, distilled water, or highly purified ion-exchanged water is used, and the water temperature is set to the same temperature as the liquid flow temperature.

本発明によって分別された分枝デキストリン類は、通常
の方法によって精製濃縮して製品とするか、あるいは噴
霧乾燥して製品とし、又直鎖オリゴ糖類も同様にして濃
縮して製品とするか噴霧乾燥して製品とすることができ
る。
The branched dextrins separated by the present invention can be purified and concentrated using conventional methods or spray-dried to produce products. Straight-chain oligosaccharides can also be concentrated in the same way and produced by spraying. It can be dried and made into a product.

以下に実施例を示して本発明を更に具体的に説明する。EXAMPLES The present invention will be explained in more detail with reference to Examples below.

大墨輿上 水分13.5%のコーンスターチを水に懸濁して20”
ボーメとなし、pH6,2に調整後、対澱粉0.1%の
α−アミラーゼ(商品名ターマミル ノボインダストリ
ー社製)を添加して105℃に10分間加熱処理して得
た澱粉液化液を65℃に冷却し、更にα−アミラーゼを
0.1%添加して4時間保持して糖化を進めた。
Suspend cornstarch with a moisture content of 13.5% in water and make 20"
After adjusting the pH to 6.2, add 0.1% α-amylase to starch (trade name: Termamyl, manufactured by Novo Industries) and heat-process at 105°C for 10 minutes. The mixture was cooled to 0.degree. C., 0.1% α-amylase was added, and the mixture was maintained for 4 hours to advance saccharification.

酸添加による反応停止後のDEは22.7であった。DE after reaction termination by acid addition was 22.7.

次いで、得られた糖化液について活性炭およびイオン交
換樹脂による通常の脱色精製を行ない40%の濃度にな
るまで濃縮した。
Next, the obtained saccharified liquid was subjected to conventional decolorization and purification using activated carbon and an ion exchange resin, and concentrated to a concentration of 40%.

該糖化液の糖組成は、グルコース2%、マルトース5%
、マルトトリオース15%、マルトテトラオース6%、
マルトペンタオース12%、マルトヘキサオース20%
、分枝デキストリン40%であった。
The sugar composition of the saccharified liquid is 2% glucose and 5% maltose.
, maltotriose 15%, maltotetraose 6%,
Maltopentaose 12%, maltohexaose 20%
, 40% branched dextrin.

一方直径と高さの比が1:2の1リツトル容カラム4基
から構成された擬似移動床方式装置の各カラムにゲル型
強酸性カチオン交換樹脂を充填した。
On the other hand, a gel type strongly acidic cation exchange resin was packed into each column of a simulated moving bed system consisting of four 1 liter columns with a diameter to height ratio of 1:2.

該イオン交換樹脂は架橋度が4であり60メツシユの粒
径をもち、ナトリウム型として用いた。
The ion exchange resin had a degree of crosslinking of 4, a particle size of 60 mesh, and was used in the sodium form.

各カラムの内部上面には分散管が設けられ、定量ポンプ
を経由して糖化原液および水の注入口と分枝デキストリ
ンおよび直鎖オリゴ糖の分画液の排出口が接続されてお
り、又各液の出入口には電磁弁が設けられてタイマーに
よる開閉の制御が行なわれ、定量ポンプを経由して全段
の液移動を行なう循環系路が設けられている。
A dispersion tube is installed on the internal upper surface of each column, and the inlet for the saccharification stock solution and water is connected to the outlet for the fractionated solution of branched dextrin and linear oligosaccharide via a metering pump. A solenoid valve is provided at the inlet/outlet of the liquid, and its opening/closing is controlled by a timer, and a circulation system path is provided to move the liquid through all stages via a metering pump.

本装置を用いた分別操作の通液条件は次のとおりであっ
た。
The liquid passage conditions for the fractionation operation using this device were as follows.

今仮に液の流れの方向に向かって各カラムに番号を付し
、Na1.m2.N13.l’h4.とした場合隘1の
カラムに40%分技分枝ストリンを含む40%濃度の糖
化原液100ミリリツトル、1lh3のカラムに水15
0ミリリットルを正確に10分間にわたって同時に通液
し、その間阻2と磁4のカラムからは糖化原液の成分比
に従って流量制御比を4:6として糖液の排出を行なっ
た。分枝デキストリン液についてはl1h2から排出さ
れ、直鎖オリゴ糖液については磁4のカラムから排出さ
れた。
Let us now temporarily number each column in the direction of liquid flow, Na1. m2. N13. l'h4. In this case, 100 ml of a 40% concentrated saccharification stock solution containing 40% branched string is placed in the 1st column, and 15ml of water is placed in the 1lh3 column.
0 ml of the solution was passed simultaneously for exactly 10 minutes, and the sugar solution was discharged from the columns of barrier 2 and magnetic 4 at a flow rate control ratio of 4:6 according to the component ratio of the saccharification stock solution. The branched dextrin solution was discharged from l1h2, and the linear oligosaccharide solution was discharged from the magnetic 4 column.

ついで、正確に30分間にわたって循環径路によって6
30ミリリツトルの液移動を行ない、各カラム内の分離
パターンを1ステツプ前進させた後、前回と同様に液の
出入を1ステツプ前進した各カラムの位置で操作し、引
き続き循環操作を行なうなどの繰り返しを連続して行な
った。
6 by the circulation path for exactly 30 minutes.
After moving 30 milliliters of liquid and advancing the separation pattern in each column one step, repeat the same steps as before, such as operating the liquid in and out at the position of each column that has moved one step forward, and continuing to perform circulation operations. was performed continuously.

通液温度および用水温度は60℃に保ち、分別集液につ
いては、それぞれを精製し、濃縮してシラツブとなし、
又一部は端圧乾燥した。
The liquid passing temperature and the water temperature are maintained at 60°C, and each of the separated liquids is purified and concentrated to make sillage.
A portion was also pressure dried.

分析の結果、分画分枝デキストリンの糖組成は分枝デキ
ストリン89%、マルトヘキサオ一ス3%、マルトペン
タオース2%、マルトテトラオース1%、マルトトリオ
ース2%、マルトース2%であった。
As a result of the analysis, the sugar composition of the fractionated branched dextrin was 89% branched dextrin, 3% maltohexaose, 2% maltopentaose, 1% maltotetraose, 2% maltotriose, and 2% maltose.

分枝デキストリンの平均分子量は浸透法により250.
000であった。
The average molecular weight of the branched dextrin was determined to be 250.
It was 000.

一方、直鎖オリゴ糖の糖組成は、グルコース3%、マル
トース7%、マルトトリオース25%、マルトテトラオ
ース10%、マルトペンタオース20%、マルトヘキサ
オース33%、分枝デキストリン2%、であった。
On the other hand, the sugar composition of the linear oligosaccharide is 3% glucose, 7% maltose, 25% maltotriose, 10% maltotetraose, 20% maltopentaose, 33% maltohexaose, and 2% branched dextrin. there were.

実施例2 実施例1と同様にして得た殿粉糖化液に対澱粉1%のα
−アミラーゼを添加し、65℃で10時間塘糖化た。
Example 2 1% α to starch was added to the starch saccharified solution obtained in the same manner as in Example 1.
-Amylase was added and saccharification was carried out at 65°C for 10 hours.

糖化後のDEは34.5を示し、糖組成はグルコース7
%、マルトース12%、マルトトリオース21%、マル
トテトラオース8%、マルトペンタオース27%、分枝
デキストリン25%、であった。
DE after saccharification shows 34.5, sugar composition is glucose 7
%, maltose 12%, maltotriose 21%, maltotetraose 8%, maltopentaose 27%, and branched dextrin 25%.

次いで糖液の分別に当っては実施例1と同様に操作した
Next, the same procedure as in Example 1 was carried out for fractionating the sugar solution.

糖化原液中の分枝デキストリン含量は25%であったの
で、糖液の組成比に従い、糖液の排出比を25775に
なるように制御した以外は実施例1と同様であった。
Since the content of branched dextrin in the saccharification stock solution was 25%, the procedure was the same as in Example 1 except that the discharge ratio of the sugar solution was controlled to be 25,775 in accordance with the composition ratio of the sugar solution.

分別した集液については精製濃縮してシラツブとし、分
枝デキストリンは噴霧乾燥した。
The separated collected liquid was purified and concentrated to obtain a slag, and the branched dextrin was spray-dried.

分析の結果分画分枝デキストリンの糖組成は分枝デキス
トリン85%、マルトペンタオース10%、マルトトリ
オース3%、マルトース2%であった。
As a result of the analysis, the sugar composition of the fractionated branched dextrin was 85% branched dextrin, 10% maltopentaose, 3% maltotriose, and 2% maltose.

一方直鎖オリゴ糖の糖組成はグルコース9%、マルトー
ス15%、マルトトリオース27%、マルトテトラオー
ス1)%、マルトペンタオース33%、分枝デキストリ
ン5%、であった。
On the other hand, the sugar composition of the linear oligosaccharide was 9% glucose, 15% maltose, 27% maltotriose, 1% maltotetraose, 33% maltopentaose, and 5% branched dextrin.

分子デキストリンの平均分子量は浸透圧法により2,5
00であった。
The average molecular weight of molecular dextrin was determined by osmotic pressure method to be 2,5
It was 00.

Claims (5)

【特許請求の範囲】[Claims] (1)澱粉にα−アミラーゼを作用させて主として分枝
デキストリン類と直鎖オリゴ糖類とから成る糖化液を生
成させ、ついで得られる糖化液をゲル型濾過剤に接触さ
せることによつて該糖化液中の分枝デキストリン類と直
鎖オリゴ糖類を選択分別することを特徴とする分枝デキ
ストリン類及び直鎖オリゴ糖類の製造方法。
(1) The saccharification is carried out by allowing α-amylase to act on starch to produce a saccharified solution mainly consisting of branched dextrins and linear oligosaccharides, and then bringing the obtained saccharification solution into contact with a gel-type filter agent. A method for producing branched dextrins and linear oligosaccharides, which comprises selectively separating branched dextrins and linear oligosaccharides in a liquid.
(2)α−アミラーゼによる澱粉の分解率DEを10〜
35の範囲とする特許請求の範囲第(1)項記載の製造
方法。
(2) Degradation rate DE of starch by α-amylase from 10 to
35. The manufacturing method according to claim (1).
(3)ゲル型濾過剤としてイオン交換樹脂の架橋度を4
〜8の範囲としたものを用いる特許請求の範囲第(1)
項記載の製造方法。
(3) The degree of crosslinking of the ion exchange resin as a gel type filter agent is 4.
Claim No. (1) using the range of ~8
Manufacturing method described in section.
(4)分枝デキストリン類と直鎖オリゴ糖類の選択分別
を擬似移動床方式により行なう特許請求の範囲第(1)
項記載の製造方法。
(4) Claim No. 1 in which the selective fractionation of branched dextrins and linear oligosaccharides is carried out by a simulated moving bed system.
Manufacturing method described in section.
(5)擬似移動床方式による分別に当つて分別流量比を
分枝デキストリン含量に対応して決定する特許請求の範
囲第(4)項記載の製造方法。
(5) The production method according to claim (4), wherein the fractionation flow rate ratio is determined in accordance with the branched dextrin content in the fractionation using the simulated moving bed method.
JP4666185A 1985-03-11 1985-03-11 Production of branched dextrin and straight-chain oligosaccharide Granted JPS61205494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4666185A JPS61205494A (en) 1985-03-11 1985-03-11 Production of branched dextrin and straight-chain oligosaccharide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4666185A JPS61205494A (en) 1985-03-11 1985-03-11 Production of branched dextrin and straight-chain oligosaccharide

Publications (2)

Publication Number Publication Date
JPS61205494A true JPS61205494A (en) 1986-09-11
JPH0154040B2 JPH0154040B2 (en) 1989-11-16

Family

ID=12753516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4666185A Granted JPS61205494A (en) 1985-03-11 1985-03-11 Production of branched dextrin and straight-chain oligosaccharide

Country Status (1)

Country Link
JP (1) JPS61205494A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63254966A (en) * 1987-04-10 1988-10-21 Ueno Seiyaku Oyo Kenkyusho:Kk Preparation of 'kamaboko' (boiled fish paste)
JPS6427452A (en) * 1987-04-24 1989-01-30 Ueno Seiyaku Oyo Kenkyujo Kk Additive for frozen ground fish
JPS6456705A (en) * 1987-08-27 1989-03-03 Sanmatsu Kogyo Co Production of non-reducible branched dextrin and non-reducible straight chain oligosaccharide
EP0374197A1 (en) * 1988-05-02 1990-06-27 INGLETT, George E. Enzymatic production of maltohexaose-rich compositions
WO2004061526A1 (en) 2002-12-26 2004-07-22 Nissan Chemical Industries, Ltd. Alkali-soluble gap filling material forming composition for lithography
JP2005272747A (en) * 2004-03-26 2005-10-06 Showa Sangyo Co Ltd Carbohydrate and sugar composition, and foodstuff composed of these
JP2006160849A (en) * 2004-12-06 2006-06-22 Sasaki Shoji Kk Method for producing branched dextrin at improved efficiency
JP2007302767A (en) * 2006-05-10 2007-11-22 Futamura Chemical Co Ltd Readily gelled starch partial hydrolyzate
EP2288714A1 (en) 2008-05-09 2011-03-02 Cargill, Incorporated Low-viscosity reduced-sugar syrup, methods of making, and applications thereof
US8916327B2 (en) 2003-10-30 2014-12-23 Nissan Chemical Industries, Ltd. Underlayer coating forming composition containing dextrin ester compound
US8993039B2 (en) 2006-01-25 2015-03-31 Tate & Lyle Ingredients Americas Llc Fiber-containing carbohydrate composition
US11291222B2 (en) 2013-03-15 2022-04-05 Cargill, Incorporated Carbohydrate compositions
US11540549B2 (en) 2019-11-28 2023-01-03 Tate & Lyle Solutions Usa Llc High-fiber, low-sugar soluble dietary fibers, products including them and methods for using them

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022146107A1 (en) * 2020-12-31 2022-07-07 주식회사 삼양사 Dextrin with improved turbidity, and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788910A (en) * 1972-01-17 1974-01-29 Labatt Breweries Canada Ltd Extraction and purification of maltotriose and maltotetrose
JPS5823799A (en) * 1981-08-03 1983-02-12 株式会社林原生物化学研究所 Production of high purity maltose
JPS59148794A (en) * 1983-02-10 1984-08-25 Hayashibara Biochem Lab Inc Production of high-purity glucooligosaccharide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788910A (en) * 1972-01-17 1974-01-29 Labatt Breweries Canada Ltd Extraction and purification of maltotriose and maltotetrose
JPS5823799A (en) * 1981-08-03 1983-02-12 株式会社林原生物化学研究所 Production of high purity maltose
JPS59148794A (en) * 1983-02-10 1984-08-25 Hayashibara Biochem Lab Inc Production of high-purity glucooligosaccharide

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63254966A (en) * 1987-04-10 1988-10-21 Ueno Seiyaku Oyo Kenkyusho:Kk Preparation of 'kamaboko' (boiled fish paste)
JPS6427452A (en) * 1987-04-24 1989-01-30 Ueno Seiyaku Oyo Kenkyujo Kk Additive for frozen ground fish
JPS6456705A (en) * 1987-08-27 1989-03-03 Sanmatsu Kogyo Co Production of non-reducible branched dextrin and non-reducible straight chain oligosaccharide
EP0374197A1 (en) * 1988-05-02 1990-06-27 INGLETT, George E. Enzymatic production of maltohexaose-rich compositions
EP0374197A4 (en) * 1988-05-02 1991-10-02 George E. Inglett Enzymatic production of maltohexaose-rich compositions
WO2004061526A1 (en) 2002-12-26 2004-07-22 Nissan Chemical Industries, Ltd. Alkali-soluble gap filling material forming composition for lithography
US7361718B2 (en) 2002-12-26 2008-04-22 Nissan Chemical Industries, Ltd. Alkali-soluble gap fill material forming composition for lithography
US8916327B2 (en) 2003-10-30 2014-12-23 Nissan Chemical Industries, Ltd. Underlayer coating forming composition containing dextrin ester compound
JP2005272747A (en) * 2004-03-26 2005-10-06 Showa Sangyo Co Ltd Carbohydrate and sugar composition, and foodstuff composed of these
JP2006160849A (en) * 2004-12-06 2006-06-22 Sasaki Shoji Kk Method for producing branched dextrin at improved efficiency
US9957537B2 (en) 2006-01-25 2018-05-01 Tate & Lyle Ingredients Americas Llc Fiber-containing carbohydrate composition
US8993039B2 (en) 2006-01-25 2015-03-31 Tate & Lyle Ingredients Americas Llc Fiber-containing carbohydrate composition
US9868969B2 (en) 2006-01-25 2018-01-16 Tate & Lyle Ingredients Americas Llc Fiber-containing carbohydrate composition
US9963726B2 (en) 2006-01-25 2018-05-08 Tate & Lyle Ingredients Americas Llc Fiber-containing carbohydrate composition
US10344308B2 (en) 2006-01-25 2019-07-09 Tate & Lyle Ingredients Americas Llc Fiber-containing carbohydrate composition
JP2007302767A (en) * 2006-05-10 2007-11-22 Futamura Chemical Co Ltd Readily gelled starch partial hydrolyzate
EP2288714A4 (en) * 2008-05-09 2014-12-03 Cargill Inc Low-viscosity reduced-sugar syrup, methods of making, and applications thereof
EP2288714A1 (en) 2008-05-09 2011-03-02 Cargill, Incorporated Low-viscosity reduced-sugar syrup, methods of making, and applications thereof
US11291222B2 (en) 2013-03-15 2022-04-05 Cargill, Incorporated Carbohydrate compositions
US11540549B2 (en) 2019-11-28 2023-01-03 Tate & Lyle Solutions Usa Llc High-fiber, low-sugar soluble dietary fibers, products including them and methods for using them

Also Published As

Publication number Publication date
JPH0154040B2 (en) 1989-11-16

Similar Documents

Publication Publication Date Title
JPS61205494A (en) Production of branched dextrin and straight-chain oligosaccharide
US4840807A (en) Branched dextrin production and compositions containing same
US3804715A (en) Process for preparing sugar containing maltose of high purity
JPS6026482B2 (en) Method for producing cyclodextrin
US5462864A (en) Manufacturing method of high purity maltose and its reduced product
JPS609524B2 (en) Cyclodextrin recovery method
JP3070890B2 (en) Method for producing starch sugar
US4595418A (en) Production of powdery maltose
US4294623A (en) Method of producing high purity maltose
US3832285A (en) Method of producing maltose of high purity
EP0553126B1 (en) Process for producing glucose and fructose from sucrose
JP2003144187A (en) Method for producing liquid state branched dextrin
JPH0320121B2 (en)
US5194094A (en) Fractionating starch hydrolysates
JP3072433B2 (en) Method for producing high-purity maltose
JPS59148794A (en) Production of high-purity glucooligosaccharide
JPH0466559B2 (en)
JPH01285195A (en) Production of difructose-cyanhydride
JPS632595B2 (en)
KR20000048454A (en) Immobilised maltogenic α-amylase and its use in the manutacture of a maltose-rich syrup
JP2571199B2 (en) Method for producing highly soluble cyclodextrin
JPH0193597A (en) Production of multitol
JPS62171693A (en) Production of branched oligosaccharide
KR0139262B1 (en) Preparation method of branched dextrins and oligosaccharides
WO1992001805A1 (en) Process for producing sugar and transfusion

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term