JP2006160849A - Method for producing branched dextrin at improved efficiency - Google Patents

Method for producing branched dextrin at improved efficiency Download PDF

Info

Publication number
JP2006160849A
JP2006160849A JP2004352667A JP2004352667A JP2006160849A JP 2006160849 A JP2006160849 A JP 2006160849A JP 2004352667 A JP2004352667 A JP 2004352667A JP 2004352667 A JP2004352667 A JP 2004352667A JP 2006160849 A JP2006160849 A JP 2006160849A
Authority
JP
Japan
Prior art keywords
membrane
dextrin
branched dextrin
separation
starch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004352667A
Other languages
Japanese (ja)
Other versions
JP4933041B2 (en
Inventor
Kyuichi Yokoyama
久一 横山
Masaki Matsudaira
昌樹 松平
Yoshio Ishige
義勇 石毛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SASAKI SHOJI KK
Original Assignee
SASAKI SHOJI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SASAKI SHOJI KK filed Critical SASAKI SHOJI KK
Priority to JP2004352667A priority Critical patent/JP4933041B2/en
Publication of JP2006160849A publication Critical patent/JP2006160849A/en
Application granted granted Critical
Publication of JP4933041B2 publication Critical patent/JP4933041B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To decrease the amount of eluant water used in chromatographically separating a starch hydrolyzate into an oligosaccharide and branched dextrin and collecting the branched dextrin. <P>SOLUTION: A method is provided which comprises partially removing an oligosaccharide from a starch hydrolyzate with an ultrafiltration membrane and chromatographically separating the remaining oligosaccharide and the branched dextrin is provided. An eluate of a high branched dextrin concentration is obtained by markedly decreasing the amount of purifying water used in elution from the chromatographic column. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は効率的な分枝デキストリンの製造法に関する。   The present invention relates to an efficient method for producing branched dextrins.

分枝デキストリンは、天然の澱粉を原料とし、化学的な処理を全く行わず、澱粉加水分解物より低分子成分を除去することにより製造される高分子のデキストリンで、低甘味度で全く老化性の無いデキストリンである。
食品工業が発展し、各種の加工食品が工場において、大量に生産されるようになると、製品の長距離・長時間の輸送が不可欠なものとなり、冷凍、冷蔵、乾燥等の食品保存方法が開発された。長期間の保存の間にも食品の部分的な乾燥、離水、変質等の品質の変化をできるだけ抑制するために、加工食品には種々の糖質が利用されている。
最も多用される、通常のデキストリンは、澱粉を酸あるいは酵素によってある程度分解し、澱粉の粘度を低下させて、水に溶けやすくした製品である。
澱粉は分解の程度によって、性質を徐々に変えるので、デキストリン、粉飴、水飴、ぶどう糖等の多彩な製品が澱粉から生産されている。
澱粉の分解の程度と分解物の性質を示すと次の表のようになり、分解の進行に従い、分解物の性質は連続的に変化する。
Branched dextrin is a high molecular weight dextrin produced by removing low molecular weight components from starch hydrolyzate, using natural starch as a raw material, without any chemical treatment. Dextrin without any.
As the food industry develops and various processed foods are produced in large quantities in factories, long-distance and long-term transport of products becomes indispensable, and food preservation methods such as freezing, refrigeration and drying are developed. It was done. Various sugars are used in processed foods in order to suppress as much as possible changes in quality such as partial drying, water separation, and alteration of foods even during long-term storage.
Ordinary dextrin, which is most frequently used, is a product in which starch is decomposed to some extent by an acid or an enzyme to reduce the viscosity of the starch and make it easily soluble in water.
Since starch gradually changes its properties depending on the degree of decomposition, a variety of products such as dextrin, powder koji, starch syrup, and glucose are produced from starch.
The degree of starch degradation and the properties of the degradation products are shown in the following table, and as the degradation progresses, the properties of the degradation products change continuously.

デキストリンは、食品の安定性向上のために使用される物質であるから、食品の保存中にデキストリンが老化して、この結果食品の品質が変化することがあれば、これは容認し難い問題である。
しかし、表1に見られるように、デキストリンは分解度が低ければ老化しやすく、分解度が進めば老化性は無くなるが、甘く、粘度の低い性質を持つことになる。
分解を進めることで老化性が無くなっても、甘味が強い、低分子量の糖質は、食品に添加することにより、少量でも食品の味を変えてしまうので、十分な量を使うことはできない。従って、食品の安定性向上に使用するデキストリンは、甘味が少なく、老化性が無いという、矛盾する性質を要求されることになる。
Dextrin is a substance used to improve the stability of food, so if dextrin ages during food storage and this results in changes in food quality, this is an unacceptable problem. is there.
However, as can be seen in Table 1, dextrins tend to age if the degree of degradation is low, and if the degree of degradation progresses, the aging properties disappear, but they are sweet and have a low viscosity property.
Even if the aging property disappears by proceeding with the decomposition, a sugar having a high sweetness and a low molecular weight can be used in a small amount because it can change the taste of the food even when added in a small amount. Therefore, the dextrin used for improving the stability of food is required to have contradictory properties such as low sweetness and no aging property.

このような問題を解決するために、種々の方法が提案されている。
例えば、特許文献1は、酸化澱粉をα―アミラーゼで分解するものであり、特許文献2は、澱粉に、α―アミラーゼを2段階に作用させることで、解決を図っている。しかし、これらの方法では多少とも前記の性質が改善はされても、完全に透明で前記の性質を有する低DEのデキストリンは得がたい。本発明者らは、これらの性質、特に老化性について注目し、分枝デキストリンの製造法(例えば、特許文献3及び4参照。)によって初めて老化性の無いデキストリンを得ることを見出した。
この製造方法は、澱粉を老化性が無くなるまでα―アミラーゼで分解し、その後これをクロマトグラフィーで分離して甘味成分である低分子のオリゴ糖を除去することにより、甘味がほとんど無く、老化性の無い分枝デキストリンを調製する方法であった。
In order to solve such a problem, various methods have been proposed.
For example, Patent Document 1 is for degrading oxidized starch with α-amylase, and Patent Document 2 attempts to solve the problem by causing α-amylase to act on starch in two stages. However, even if the above properties are improved to some extent by these methods, it is difficult to obtain a dextrin having a low DE having completely the above properties. The present inventors paid attention to these properties, particularly aging properties, and found that dextrins having no aging properties were obtained for the first time by a method for producing branched dextrins (see, for example, Patent Documents 3 and 4).
In this production method, starch is decomposed with α-amylase until it is no longer aged, and then it is separated by chromatography to remove low-molecular oligosaccharides that are sweetening components. This was a method for preparing a branched dextrin free from water.

本発明者らは、このような分枝デキストリンを上梓して20年になるが、この分枝デキストリン製品(商品名 BLD)のほとんど甘味が無く、しかも老化性が全く無いという性質が、広く食品業界に受け入れられ、現在では年間1万トンを生産するまでに発展した。
そして上梓後現在に至るまで、品質向上と、コストダウンに日々検討を加え、大幅に効率の良い分離法を開発し、本発明を完成するに至った。
The present inventors have promoted such a branched dextrin for 20 years. The branched dextrin product (trade name BLD) has almost no sweetness and no aging property. It has been accepted by the industry and has developed to produce 10,000 tons per year.
From the beginning to the present day, we have made daily studies on quality improvement and cost reduction, developed a highly efficient separation method, and completed the present invention.

次に、コーンスターチをα―アミラーゼで分解し、分解率と糖組成及び老化性を詳細に検討した。その結果を表2に示す。   Next, corn starch was decomposed with α-amylase, and the decomposition rate, sugar composition and aging properties were examined in detail. The results are shown in Table 2.

表2中のDEは分解物の還元力をぶどう糖に対する100分率で示した、分解の程度を示す指標であり、ぶどう糖の100に対し、水飴は約40、粉飴は20〜30、デキストリンは20以下を示すのが標準的である。
表2中の糖類の分解率の-は検出されないことを示す。また、老化性の+++は、全体が糊状、++は全体が白濁し、一部沈殿を生ずる、±は全体がわずかに白濁する、−は完全に透明な状態を示す。
DE in Table 2 is an index indicating the degree of degradation, showing the reducing power of the degradation product in terms of 100% of glucose, and for 100 of glucose, starch syrup is about 40, powdered rice is 20-30, dextrin is It is standard to show 20 or less.
In Table 2, the saccharide decomposition rate-indicates that it is not detected. Further, aging ++ is paste-like as a whole, ++ is white turbid and partly precipitates, ± is slightly turbid, and − is completely transparent.

表2に見るように、澱粉はα―アミラーゼで均一には分解されず、分解の進捗にかかわらず、分解物は分子量の大きなデキストリン部分と低分子のオリゴ糖部分からなり、中間の大きさの分子は存在しない。
DE25ぐらいまで分解しても、低分子成分にはほとんど分岐構造が含まれないことから、大分子のデキストリンの外側から、直鎖成分が少しずつ分解し、枝分かれの多い中心部が分解されずに大きなままで残ると想像される。
As shown in Table 2, starch is not uniformly degraded by α-amylase, and regardless of the progress of degradation, the degradation product consists of a high molecular weight dextrin part and a low molecular weight oligosaccharide part. There are no molecules.
Even if it decomposes to about DE25, the low molecular component contains almost no branched structure, so the linear component decomposes little by little from the outside of the large molecule dextrin, and the central part with many branches is not decomposed. It is imagined that it will remain big.

さらに、表2にみられるように、コーンスターチは、α―アミラーゼでDE25まで分解すると、老化性は全く無くなり、冷凍、冷蔵、濃縮によっても、白濁を生ずることが無い。この状態のDE25まで分解しても、デキストリンは26%残存し、このデキストリンは分子量約20,000の大きさである。
一方、低分子のオリゴ糖は大部分が10糖類以下であり、平均の分子量は800に過ぎない。分子量20,000の分枝デキストリンから平均分子量800のオリゴ糖を除去すれば、甘味が無く、老化性も無い、低粘度の分枝デキストリンが調製されることになる。
Furthermore, as can be seen in Table 2, corn starch loses aging at all when it is decomposed to α25 by α-amylase, and does not cause cloudiness even when frozen, refrigerated or concentrated. Even if it is decomposed to DE25 in this state, 26% of dextrin remains, and this dextrin has a molecular weight of about 20,000.
On the other hand, most low-molecular oligosaccharides have 10 or less saccharides, and the average molecular weight is only 800. By removing oligosaccharides having an average molecular weight of 800 from a branched dextrin having a molecular weight of 20,000, a low-viscosity branched dextrin having no sweetness and aging properties can be prepared.

クロマトグラフィー分離による分枝デキストリンの工業生産は本出願人らによって初めて行われたが、クロマトグラフィーは分離に大量の水を必要とする点で安価な製造法とは言えない。
このことを同じ糖質のぶどう糖・果糖のクロマトグラフィー分離と分離条件を比較した結果を表3に示す。
Although the industrial production of branched dextrins by chromatographic separation was first performed by the present applicants, chromatography is not an inexpensive production method in that it requires a large amount of water for separation.
Table 3 shows the result of comparison between chromatographic separation of glucose and fructose of the same carbohydrate and separation conditions.

この表から、分枝デキストリンの分離が、ぶどう糖・果糖分離に比べ3倍近い分離水を使用することが分かる。
分離の効率を考慮すれば、ぶどう糖・果糖分離のように供給液の濃度は極力上げるのが好ましいが、デキストリンは単糖類に比べ粘度が高く、高濃度液の分離は分離状態を著しく阻害する現象があり、効率低下の原因となっている。
From this table, it can be seen that the separation of branched dextrin uses separated water that is nearly three times as much as glucose / fructose separation.
Considering the efficiency of separation, it is preferable to increase the concentration of the feed solution as much as possible in the separation of glucose and fructose, but dextrin has a higher viscosity than monosaccharides, and the separation of the high concentration solution significantly inhibits the separation state. There is a cause of efficiency reduction.

一般的に用いられる分子量の違いによって溶液中の物質を分離する方法には、(ゲル浸透)クロマトグラフィーの他、UF膜分離がある。近年は、食品についても、ミルクや果汁、糖類溶液中の物質の分離にUF膜が広く使われている。
UF膜を利用した糖類の分離に関する報告は、1970年代から知られている。
Birchは1974年非特許文献1において各種UF膜を用いて水飴を分離し、低DEから高DEの糖質を調製できることを報告している。
Kearsleyは1976年、同様に非特許文献2においてUF膜および精密ろ過膜(RO膜)を用いて糖類の精密分離を試みて、狭い分子量範囲の試料が調製できることを報告している。
Sloanは1985年 Preparative BiochemistryにおいてUF膜を用いて低DEデキストリンの調製を報告している。
Tongは1999年特許文献5において排除限界4,000ダルトンのUF膜により低分子成分を除去し、エマルジョン性に優れたデキストリンが調製できることを主張している。
近年、性能の良いUF膜が製造されるようになり、食品製造、特に糖質やペプチドの分離精製に使用されるようになって来た。
Commonly used methods for separating substances in a solution based on differences in molecular weight include (gel permeation) chromatography and UF membrane separation. In recent years, UF membranes have been widely used for the separation of substances in milk, fruit juice, and sugar solutions for foods.
Reports on the separation of saccharides using UF membranes have been known since the 1970s.
Birch reported in 1974 in Non-Patent Document 1 that varicella can be separated using various UF membranes to prepare high DE carbohydrate from low DE.
In 1976, Kearsley also reported in Non-Patent Document 2 that a sample with a narrow molecular weight range can be prepared by attempting precision separation of saccharides using a UF membrane and a microfiltration membrane (RO membrane).
Sloan reported the preparation of low DE dextrin using UF membrane in 1985 Preparative Biochemistry.
Tong claims in 1999, Patent Document 5 that dextrins with excellent emulsion properties can be prepared by removing low-molecular components using a UF membrane with an exclusion limit of 4,000 daltons.
In recent years, high-performance UF membranes have been manufactured and used for food production, particularly for separation and purification of carbohydrates and peptides.

澱粉加水分解物を実際UF膜で分離を行うと、稼動初期にはろ過速度は高く、ろ液濃度も高く、効率よく低分子成分が除去される。しかし、低分子成分が減少すると水だけがろ過されて、ろ液濃度は低下し、その結果、循環液濃度が上昇し、ますますろ過速度を低下させることなる。
原液中のオリゴ糖濃度を更に下げるためには、水を加えて循環液濃度を下げ、濃度の薄いオリゴ糖をろ過することとなり、オリゴ糖を完全に除くことは、非常に効率が悪い。
When the starch hydrolyzate is actually separated by a UF membrane, the filtration rate is high at the beginning of operation, the filtrate concentration is high, and low molecular components are efficiently removed. However, if the low molecular weight component is reduced, only water is filtered, and the filtrate concentration is lowered. As a result, the circulating fluid concentration is increased and the filtration rate is further lowered.
In order to further reduce the oligosaccharide concentration in the stock solution, water is added to lower the circulating solution concentration, and the oligosaccharide having a low concentration is filtered, and it is very inefficient to completely remove the oligosaccharide.

オスモニクス社製GK膜(排除限界3,500)2.6m2を用いて原液70リットルを処理し、分枝デキストリンを調製した結果を図1に示す。
この操作は、2.6m2オスモニクスGK膜を用い、温度50℃、10kg/cm2の定圧運転で行った。
70リットルの精製原液を40リットルまで濃縮し、その後精製水を加えながら濃縮液を40リットルに保ち運転を継続する。ろ液を保存して、ろ液及び濃縮液を適宜分析した。
FIG. 1 shows the result of preparing a branched dextrin by treating 70 liters of a stock solution using 2.6 m 2 of an Osmonics GK membrane (exclusion limit 3,500).
This operation was performed in a constant pressure operation at a temperature of 50 ° C. and 10 kg / cm 2 using a 2.6 m 2 osmonics GK membrane.
Concentrate the 70 liters of the purified stock solution to 40 liters, then keep the concentrate at 40 liters while adding purified water and continue the operation. The filtrate was stored and the filtrate and concentrate were analyzed appropriately.

この図から分かるように、DE22.7の原液70リットルをUF膜(オスモニクス社製GK膜)で処理して、DE8.1の分枝デキストリン9.2kgを得た。この分枝デキストリンの収率は47.1%であった。
ろ液のオリゴ糖成分に分枝デキストリンはほとんど漏れておらず、分離は完全であった。
しかし、原液70リットルの分離に150リットルの精製水を必要とし、クロマトグラフィーによる分離と比較して、特に有利とは言えない。
米国特許第3,974,033号公報 米国特許第4,298,400号公報 日本特許第1,836,365号公報 米国特許第4,840,807号公報 米国特許第5,853,478号公報 Brich, G. G, and M. W. Kearsley, die starke26 (1974) 220. M. W. Kearsley, die starke 28 (1976) 138.
As can be seen from the figure, 70 liters of DE22.7 stock solution was treated with a UF membrane (GK membrane manufactured by Osmonics) to obtain 9.2 kg of branched dextrin of DE8.1. The yield of this branched dextrin was 47.1%.
There was almost no leakage of branched dextrin in the oligosaccharide component of the filtrate, and the separation was complete.
However, 150 liters of purified water is required to separate the stock solution of 70 liters, which is not particularly advantageous as compared to the chromatographic separation.
U.S. Pat.No. 3,974,033 U.S. Pat.No. 4,298,400 Japanese Patent No. 1,836,365 U.S. Pat.No. 4,840,807 US Patent No. 5,853,478 Brich, G. G, and MW Kearsley, die starke26 (1974) 220. MW Kearsley, die starke 28 (1976) 138.

本発明の課題は、このような多量の精製水を使用することなく、澱粉加水分解物から効率的にオリゴ糖成分を除き、分枝デキストリンを製造する方法を提供することにある。   An object of the present invention is to provide a method for producing a branched dextrin by efficiently removing an oligosaccharide component from a starch hydrolyzate without using such a large amount of purified water.

すなわち、本発明は次のとおりの分枝デキストリンの製造法である。
(1) 澱粉加水分解物を限外濾過膜(UF膜)によりオリゴ糖を部分除去し、その後クロマトグラフィーによりオリゴ糖を除去して分枝デキストリンを得ることを特徴とする分枝デキストリンの製造法。
(2) 分画分子量3,000〜10,000ダルトンのUF膜を用いる前記(1)記載の分枝デキストリンの製造法。
(3) 澱粉加水分解物が、澱粉をα‐アミラーゼによって老化性がなくなるまで分解したものである前記(1)または(2)に記載の分枝デキストリンの製造法。
(4) 澱粉加水分解物が、コーンスターチをDE22〜26まで加水分解したものである前記(1)または(2)に記載の分枝デキストリンの製造法。
That is, this invention is the manufacturing method of the branched dextrin as follows.
(1) A method for producing a branched dextrin, characterized in that the oligosaccharide is partially removed from the starch hydrolyzate by an ultrafiltration membrane (UF membrane), and then the oligosaccharide is removed by chromatography to obtain a branched dextrin. .
(2) The method for producing a branched dextrin according to (1) above, wherein an UF membrane having a molecular weight cut off of 3,000 to 10,000 daltons is used.
(3) The method for producing a branched dextrin according to the above (1) or (2), wherein the starch hydrolyzate is obtained by decomposing starch with α-amylase until it is no longer aging.
(4) The method for producing a branched dextrin according to (1) or (2) above, wherein the starch hydrolyzate is obtained by hydrolyzing corn starch to DE 22 to 26.

本発明では、前記のようにまず糖化液をUF膜で濃縮し、オリゴ糖を減少させ、この濃縮液をクロマトグラフィーにかけるので、供給液が減少することでクロマトグラフィーへの負荷量を低減し、粘度上昇による分離効率の低下を防ぎ、クロマトグラフィーの精製水使用量を著しく低減させて分枝デキストリンの採取量を増大させることができる。   In the present invention, as described above, the saccharified solution is first concentrated on the UF membrane, oligosaccharides are reduced, and this concentrated solution is subjected to chromatography. Thus, it is possible to prevent a decrease in separation efficiency due to an increase in viscosity and to significantly reduce the amount of purified water used for chromatography, thereby increasing the amount of branched dextrin collected.

本発明における澱粉加水分解物は、従来分枝デキストリンの製造に用いられている澱粉の加水分解物であればどのような方法で製造したものであってもよいが、コーンスターチの場合は、αーアミラーゼで分解してDE22〜26まで分解したものが望ましい。
コーンスターチは甘藷澱粉や馬鈴薯澱粉等の地下根茎澱粉に比べて液化が困難で、高い温度で分解を行う必要がある。
甘藷澱粉や馬鈴薯澱粉では、澱粉乳液を80〜85℃まで加熱すれば全体が糊となり、酵素によって容易に分解される。
The starch hydrolyzate in the present invention may be produced by any method as long as it is a starch hydrolyzate conventionally used in the production of branched dextrins. In the case of corn starch, α-amylase is used. It is desirable to decompose it to DE22-26.
Corn starch is difficult to liquefy compared to underground rhizome starch such as sweet potato starch and potato starch, and must be decomposed at a high temperature.
In sweet potato starch and potato starch, if the starch emulsion is heated to 80-85 ° C., the whole becomes glue and is easily decomposed by enzymes.

しかし、コーンスターチは85℃まで加熱しても、全体が糊化せずに酵素でも分解され難い部分が残存し、透明な液化液は得られ無い。
従って、コーンスターチの液化には耐熱性のαーアミラーゼ(Bacillus licheniformis あるいはBacillus stearothermophilus生産酵素)を使用し、ジェットクッカーで瞬間的に蒸気と混合し105℃まで昇温する。105℃に5〜10分間保ち、98℃まで冷却し、残存したαーアミラーゼによりDE23まで反応させることが望ましい。
この液化法により、清澄に濾過した液化液は50%まで濃縮し冷蔵庫に保存しても、白濁を生じることがなく、分離した分枝デキストリンも全く老化して白濁することが無い。
However, even when corn starch is heated to 85 ° C., the entire portion does not gelatinize and remains difficult to be decomposed by an enzyme, and a transparent liquefied liquid cannot be obtained.
Therefore, a heat-resistant α-amylase (Bacillus licheniformis or Bacillus stearothermophilus producing enzyme) is used for liquefaction of corn starch, and it is instantaneously mixed with steam by a jet cooker and heated to 105 ° C. It is desirable to keep at 105 ° C. for 5 to 10 minutes, cool to 98 ° C., and react to DE23 with the remaining α-amylase.
By this liquefaction method, even if the liquefied liquid that has been clearly filtered is concentrated to 50% and stored in the refrigerator, it does not cause white turbidity, and the separated branched dextrin does not age and become cloudy at all.

次いで、このようにして処理したものをUF膜処理してオリゴ糖の一部を除き、澱粉加水分解物を濃縮する。UF膜処理は、60℃において定流量運転で行うことが望ましい。
すなわち、初期10kg/cm2で処理開始し、時間経過と共に処理圧力は上昇し、20kg/cm2になった時点で処理を終了し、UF膜の洗浄を行う。
660m2のUF膜の分画分子量は3,500(オスモニクス社製GK8040-CZH膜)を220m2づつの3ステージに分け、常時2ステージを使用し、1ステージは洗浄後待機させる。
2ステージで30%溶液8m2/hrを供給し、濃度14%のオリゴ糖液2.8m3を濾過し39%まで濃縮される。
次いで、このようにUF膜処理した濃縮液をクロマトグラフィー分離装置にかけて溶出速度の差を利用して分枝デキストリンとオリゴ糖とに分離する。澱粉加水分解物をクロマトグラフィーにより分枝デキストリンとオリゴ糖とに分離すること自体はよく知られている。
しかし、UF膜処理とクロマトグラフィー分離とを組合せたものは新規である。
Subsequently, the thus treated product is subjected to UF membrane treatment to remove a part of the oligosaccharide, and the starch hydrolyzate is concentrated. The UF membrane treatment is desirably performed at 60 ° C. with a constant flow rate operation.
That is, the treatment starts at an initial 10 kg / cm 2 , the treatment pressure increases with time, and the treatment is terminated when the pressure reaches 20 kg / cm 2 , and the UF membrane is cleaned.
The molecular weight cutoff of the 660m 2 UF membrane is 3,500 (GK8040-CZH membrane manufactured by Osmonix) divided into 3 stages each of 220m 2 and 2 stages are always used.
In 2 stages, 30% solution 8m 2 / hr is supplied, and 2.8m 3 of oligosaccharide solution with a concentration of 14% is filtered and concentrated to 39%.
Subsequently, the concentrated solution treated with the UF membrane in this manner is applied to a chromatographic separation apparatus to separate branched dextrins and oligosaccharides using the difference in elution rate. It is well known to separate starch hydrolyzate into branched dextrin and oligosaccharide by chromatography.
However, the combination of UF membrane treatment and chromatographic separation is novel.

図2に本発明で使用するクロマトグラフィー分離装置の概念図(一例)を示す。
本発明では、澱粉加水分解物(サンプル)を充填剤を充填したクロマトグラフィー分離塔に入れる。そして、その外側を温水を循環させて加温し、精製水をポンプにより充填塔の上部から流し、下部から分枝デキストリンとオリゴ糖とを分離採取する。そのさい、分離塔下部に濃度計及び濃度記録計を設置し、得られる分枝デキストリン及びオリゴ糖の濃度を測定すると、分離点の確認に便利である。
本発明では、UF膜処理及びクロマトグラフィー処理を連結することでクロマトグラフィー処理のさいの精製水の使用量を著しく低減させ、濃度の高い分枝デキストリンを得ることができる。
FIG. 2 shows a conceptual diagram (example) of the chromatographic separation apparatus used in the present invention.
In the present invention, the starch hydrolyzate (sample) is placed in a chromatography separation column packed with a filler. Then, the outside is heated by circulating hot water, and purified water is poured from the upper part of the packed tower by a pump, and branched dextrin and oligosaccharide are separated and collected from the lower part. At that time, if a concentration meter and a concentration recorder are installed at the bottom of the separation tower and the concentration of the obtained branched dextrin and oligosaccharide is measured, it is convenient for confirming the separation point.
In the present invention, the amount of purified water used in the chromatography process can be significantly reduced by connecting the UF membrane process and the chromatography process, and a highly concentrated branched dextrin can be obtained.

表2にみられるように、澱粉加水分解物の大分子成分の分子量は約20,000ダルトン(以下、ダルトンを省略し、数値のみでいうことがある)、低分子成分の分子量は800であるから分子量20,000のデキストリンが通過できない大きさのUF膜であれば、孔の大きな膜の方が効率が良いと考えられるが、分子量10,000を阻止する膜でもデキストリンは多少とも漏れ出すので、UF膜としては分画分子量3,000〜10,000が適当であり、さらにデキストリンの漏れを完全に抑制するには、分画分子量3,000〜6,000のUF膜が最適である。
将来的に更に有効な膜が開発され、クロマトグラフィーによる分離よりも効果的な分離が行われる可能性はあるが、現時点ではUF膜だけで分枝デキストリンを製造することが経済的とは言えない。
しかし、UF膜の分離の状態を見ると、オリゴ糖の多い初期には、ろ液濃度が高いがオリゴ糖が少なくなると急激にろ液濃度が低下する現象が見られるが、初期の効率の高い部分をクロマトグラフィー分離の前処理として利用して、更に効率的な分離法が行われると考えられる。
As shown in Table 2, the molecular weight of the large molecular component of the starch hydrolyzate is about 20,000 daltons (hereinafter, dalton may be omitted and may be referred to only as a numerical value), and the molecular weight of the low molecular component is 800. If the UF membrane has a size that cannot pass 20,000 dextrins, a membrane with large pores is considered to be more efficient, but dextrin leaks even if the membrane has a molecular weight of 10,000. A molecular weight of 3,000 to 10,000 is appropriate, and a UF membrane with a molecular weight cutoff of 3,000 to 6,000 is optimal for completely suppressing dextrin leakage.
Although more effective membranes may be developed in the future, more effective separation than chromatographic separation may be possible, but at present, it is not economical to produce branched dextrins using only UF membranes. .
However, when looking at the state of separation of the UF membrane, there is a phenomenon in which the filtrate concentration is high in the early stage when there is a large amount of oligosaccharide, but the filtrate concentration decreases sharply as the oligosaccharide content decreases. It is thought that a more efficient separation method is performed by using the portion as a pretreatment for chromatographic separation.

本発明の方法によると澱粉加水分解物をクロマトグラフィー処理して分枝デキストリンを製造するさいにUF膜処理を行うことにより、クロマトグラフィー処理のさいの分離水の使用量を大巾に低減し、分枝デキストリン濃度の高い分離液を得ることができ、製造コストを大巾に削減できる。   According to the method of the present invention, the hydrolyzate of starch is chromatographed to produce branched dextrin, and the UF membrane is used to greatly reduce the amount of separated water used in the chromatographic treatment. A separation liquid having a high concentration of branched dextrin can be obtained, and the production cost can be greatly reduced.

次に本発明の具体的な実施方法を実施例で示すが本発明は実施例にのみ限定して解釈されるものではない。   Next, although the concrete implementation method of this invention is shown in an Example, this invention is limited to an Example and is not interpreted.

製造現場より精製糖化原液50Lを採取した.採取糖化液は濃度 29.8%、DE21.2 であった。
この精製糖化液を2.6m2UF膜試験装置を用いて、糖濃度35%、40%及び45%まで濃縮した。この30%精製糖化原液及び、35%、40%、45%UF膜濃縮液の糖組成及びDEを表4に示した。
50 L of purified saccharified stock solution was collected from the manufacturing site. The collected saccharified solution had a concentration of 29.8% and DE21.2.
This purified saccharified solution was concentrated to a sugar concentration of 35%, 40% and 45% using a 2.6 m 2 UF membrane test apparatus. Table 4 shows the sugar composition and DE of the 30% purified saccharified stock solution and 35%, 40%, and 45% UF membrane concentrates.

次に表4に示した糖化原液及びUF膜濃縮液30mlを図2に示したクロマトグラフィー分離装置(カラム内径25mm、長さ900mm、樹脂容量300ml;充填剤Na型カチオン交換樹脂ブローライトPCR450)にそれぞれ負荷し、カラム温度70℃で分離を行った。
30mlの試料 はカラム上部より樹脂上面に、樹脂面が乱れないようにまた樹脂上の水と混合しないように静かに添加し、比重の軽い精製水が試料と混合しないで、試料の上に乗るように設定した。
図2の充填剤上面に分枝デキストリン原液サンプル溶液を静かに加え、溶出水を補給しながらカラム下部から300ml/hrの速さで溶出し、溶出液を連続的に採取して濃度及び糖組成を分析すると、図3のように分子量の大きなデキストリンは速く溶出し、オリゴ糖は遅く2つの成分は分離する。
しかし、分離の程度はサンプル量が少ない程、濃度が薄い程良いが、一定の純度の分枝デキストリンを採取する場合には、採取量は最適な供給量、最適濃度が存在する。
図3の場合は、回収率は35%が最適であるが、1番採取量の多いのは40%であることが分かる。
また、オリゴ糖が全て溶出するまでの液量が分離用水量であるから、30%で250ml、45%でも265mlで用水量はあまり変わらない。
Next, 30 ml of the saccharification stock solution and UF membrane concentrate shown in Table 4 were applied to the chromatographic separation apparatus shown in FIG. 2 (column inner diameter 25 mm, length 900 mm, resin capacity 300 ml; filler Na-type cation exchange resin blow light PCR450). Each was loaded, and separation was performed at a column temperature of 70 ° C.
Gently add 30 ml of sample from the top of the column to the top of the resin so that the surface of the resin is not disturbed and not mixed with water on the resin. Was set as follows.
Gently add the branched dextrin stock solution to the top of the packing material in Fig. 2 and elute at a rate of 300 ml / hr from the bottom of the column while replenishing the elution water. Concentrate and sugar composition by continuously collecting the eluate As shown in FIG. 3, a dextrin having a large molecular weight elutes quickly, and an oligosaccharide is slow and the two components are separated.
However, the smaller the sample amount and the lower the concentration, the better the degree of separation. However, when a branched dextrin having a certain purity is collected, there are an optimum supply amount and an optimum concentration.
In the case of FIG. 3, the recovery rate is optimally 35%, but it can be seen that the most collected amount is 40%.
Further, since the amount of liquid until all oligosaccharides are eluted is the amount of water for separation, the amount of water used is not much changed at 250% at 30% and 265 ml at 45%.

各濃度における試料供給量と採取量を表5に示した。
表5に見られるように、試料を濃縮することによってクロマトグラフィーへの負荷量を多くすると,濃縮による粘度上昇で分離自体は悪くなり,濃度上昇による採取量の増加は限定されたものになる。
しかし、あらかじめUF膜による濃縮を行ってオリゴ糖を減少させると回収率は上昇する。
このように、試料の濃縮による粘度の上昇と、UF膜によるオリゴ糖の減少という2つの作用が相殺され、UF膜により40%まで濃縮してもデキストリンの採取量は8.4gに増加し、溶出水使用量は増加しないので、デキストリン分離効率は大きく改善された。
Table 5 shows the amount of sample supplied and the amount collected at each concentration.
As can be seen in Table 5, when the amount of chromatographic load is increased by concentrating the sample, the separation itself becomes worse due to the increase in viscosity due to concentration, and the increase in the amount collected due to the increase in concentration becomes limited.
However, the recovery rate increases when oligosaccharides are reduced by prior concentration with a UF membrane.
In this way, the two effects of viscosity increase due to sample concentration and oligosaccharide decrease due to UF membrane are offset, and even when concentrated to 40% with UF membrane, the amount of dextrin collected increases to 8.4 g, and elution occurs. Since the amount of water used does not increase, the dextrin separation efficiency is greatly improved.

図4に、3ステージ650m2UF膜(GK8040-CZH(Osmonics社))装置の概念図を示す。このUF膜装置の仕様は以下のようである。
UF膜 GK8040-CZH(Osmotics社)
フラクス 9.3 L/hr (20kg/m2)
分画分子量 3,500 ダルトン
stage数 3 stage 4vessel/stage
vessel数 12vessel 24module
膜面積 650m2
操作圧 10〜20kg/cm2
最高操作温度 60℃
FIG. 4 shows a conceptual diagram of a three-stage 650 m 2 UF membrane (GK8040-CZH (Osmonics)) apparatus. The specifications of this UF membrane device are as follows.
UF membrane GK8040-CZH (Osmotics)
Flux 9.3 L / hr (20kg / m 2 )
Molecular weight cut-off 3,500 Dalton
Number of stages 3 stage 4vessel / stage
Number of vessels 12vessel 24module
Membrane area 650m 2
Operating pressure 10-20kg / cm 2
Maximum operating temperature 60 ℃

図5−2に実施例2によるマテリアルバランスを示す。
実施例1で得られた30%精製糖化原液(糖濃度30%、容量180、DS 60t)を前記3ステージ650m2UF膜に入れ前記条件で運転し、濃縮液を4塔式擬似移動床カラムクロマトグラフィー分離装置によって分離した。この時の分離水は224m3を使用し、濃度15.8%の分枝デキストリン24t、及び濃度15%のオリゴ糖36tを得た。
なお、従来の4塔式擬似移動床カラムクロマトグラフィーのみによる分離を
図5−1に示す。実施例2と同量の原液を分離するために360mの分離水を必要とし、分枝デキストリンの濃度は9.6%、オリゴ糖濃度は11.5%であった。
このように、分枝デキストリンの製造において、クロマトグラフィー分離の前処理としてUF膜を使用すると、分枝デキストリン溶液は同じ生産量であっても、分枝デキストリン濃度が高く、しかも分離水の使用量を大きく節減することができ経済的に有用である。
FIG. 5-2 shows the material balance according to the second embodiment.
The 30% purified saccharified stock solution obtained in Example 1 (sugar concentration 30%, volume 180, DS 60t) was placed in the three-stage 650m 2 UF membrane and operated under the above conditions, and the concentrated solution was subjected to a 4-column simulated moving bed column Separated by chromatographic separator. The separation water used at this time was 224 m 3 to obtain 24 t of branched dextrin having a concentration of 15.8% and 36 t of oligosaccharide having a concentration of 15%.
In addition, the separation only by the conventional 4 tower type simulated moving bed column chromatography is shown in FIG. In order to separate the same amount of stock solution as in Example 2, 360 m 3 of water was required, the concentration of branched dextrin was 9.6%, and the oligosaccharide concentration was 11.5%.
In this way, in the production of branched dextrin, when a UF membrane is used as a pretreatment for chromatographic separation, even if the branched dextrin solution has the same production amount, the concentration of branched dextrin is high and the amount of separated water used This is economically useful.

70L 糖質分解液(原液)を2.6m2UF膜実験装置において、4段階に精製水を添加しながらオリゴ糖を濾過し、分枝デキストリンを製造した実験結果を示す。70L shows the experimental results of producing a branched dextrin by filtering oligosaccharides in a 2.6 m 2 UF membrane experimental apparatus while adding purified water to 4 stages in a 2.6 m 2 UF membrane experimental device. 実験用クロマトグラフィー分離装置の概念図を示す。A conceptual diagram of an experimental chromatographic separation apparatus is shown. 実施例1の糖質分解液をUF膜濃縮した後、クロマトグラフィー分離したときの分離状況を示す。 横軸は溶出量(ml)を、縦軸は溶質の濃度(w/v%)The separation state when the carbohydrate decomposition solution of Example 1 was chromatographed after concentration on a UF membrane is shown. The horizontal axis is the elution volume (ml), and the vertical axis is the solute concentration (w / v%). 実施例2の3ステージUF膜装置の概念図を示す。The conceptual diagram of the 3 stage UF membrane apparatus of Example 2 is shown. 5−1 UF膜導入前のクロマトグラフィー分離のみによる分離マテリアルバランスを示す。 5−2 実施例2のUF膜導入後のシステムによるマテリアルバランスを示す。5-1 The separation material balance only by the chromatographic separation before UF membrane introduction is shown. 5-2 The material balance by the system after UF membrane introduction of Example 2 is shown.

符号の説明Explanation of symbols

Conc :糖質濃度(%)
Vol :容積(L)
DS :溶質(kg)
Dex :デキストリン含有量(w/w%)
Oligo :オリゴ糖含有量(w/w%)
DE :レーン・エイノン法による糖質の還元力
Conc: Carbohydrate concentration (%)
Vol: Volume (L)
DS: Solute (kg)
Dex: Dextrin content (w / w%)
Oligo: Oligosaccharide content (w / w%)
DE: Reducing power of carbohydrates by Lane Einon method

Claims (4)

澱粉加水分解物を限外ろ過膜(UF膜)によりオリゴ糖を部分除去し、その後クロマトグラフィーによりオリゴ糖を除去して分枝デキストリンを得ることを特徴とする分枝デキストリンの製造法。   A method for producing a branched dextrin characterized in that the oligosaccharide is partially removed from a starch hydrolyzate by an ultrafiltration membrane (UF membrane), and then the oligosaccharide is removed by chromatography to obtain a branched dextrin. 分画分子量3,000〜10,000ダルトンのUF膜を用いる請求項1に記載の分枝デキストリンの製造法。   2. The method for producing a branched dextrin according to claim 1, wherein a UF membrane having a molecular weight cutoff of 3,000 to 10,000 dalton is used. 澱粉加水分解物が、澱粉をα‐アミラーゼによって老化性がなくなるまで分解したものである請求項1または2に記載の分枝デキストリンの製造法。   The method for producing a branched dextrin according to claim 1 or 2, wherein the starch hydrolyzate is obtained by decomposing starch by α-amylase until it is no longer aging. 澱粉加水分解物が、コーンスターチをDE22〜26まで加水分解したものである請求項1または2に記載の分枝デキストリンの製造法。   The method for producing a branched dextrin according to claim 1 or 2, wherein the starch hydrolyzate is obtained by hydrolyzing corn starch to DE22-26.
JP2004352667A 2004-12-06 2004-12-06 Process for producing branched dextrin with improved efficiency Expired - Fee Related JP4933041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004352667A JP4933041B2 (en) 2004-12-06 2004-12-06 Process for producing branched dextrin with improved efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004352667A JP4933041B2 (en) 2004-12-06 2004-12-06 Process for producing branched dextrin with improved efficiency

Publications (2)

Publication Number Publication Date
JP2006160849A true JP2006160849A (en) 2006-06-22
JP4933041B2 JP4933041B2 (en) 2012-05-16

Family

ID=36663237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004352667A Expired - Fee Related JP4933041B2 (en) 2004-12-06 2004-12-06 Process for producing branched dextrin with improved efficiency

Country Status (1)

Country Link
JP (1) JP4933041B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101683131B (en) * 2008-09-24 2012-01-04 郸城财鑫糖业有限责任公司 Method for simultaneously preparing oligomeric maltose and maltodextrin using starch

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205494A (en) * 1985-03-11 1986-09-11 Sanmatsu Kogyo Kk Production of branched dextrin and straight-chain oligosaccharide
JPS6248701A (en) * 1985-06-22 1987-03-03 エム・エル・ラボラトリーズ・ピーエルシー Glucose polymer
JPH067200A (en) * 1992-02-07 1994-01-18 Natl Starch & Chem Investment Holding Corp Refining of polysaccharide
JPH0614741A (en) * 1992-03-19 1994-01-25 Roquette Freres Composition containing low caries inducible hydrogenated saccharide and its preparation and application field
JPH06209784A (en) * 1992-10-28 1994-08-02 Enzyme Bio Syst Ltd Method of cleaving starch nonrandomly and low d.e. inverted product produced by said method
JPH10120704A (en) * 1996-10-14 1998-05-12 Kirin Brewery Co Ltd Composition of water-soluble polysaccharides derived from barley malt, its production and use thereof
JP2000001502A (en) * 1998-04-27 2000-01-07 Roquette Freres Production of low-de starch hydrolyzate by nano- filtration fractionation, product obtained thereby, and use of such product
JP2001011101A (en) * 1999-07-01 2001-01-16 Sanmatsu Kogyo Ltd Highly branched dextrin and its production
JP2003144187A (en) * 2001-11-15 2003-05-20 Sanmatsu Kogyo Ltd Method for producing liquid state branched dextrin
JP2004242641A (en) * 2003-02-17 2004-09-02 Sanmatsu Kogyo Ltd Beverage and food inhibiting blood sugar level from rising and method for producing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205494A (en) * 1985-03-11 1986-09-11 Sanmatsu Kogyo Kk Production of branched dextrin and straight-chain oligosaccharide
JPS6248701A (en) * 1985-06-22 1987-03-03 エム・エル・ラボラトリーズ・ピーエルシー Glucose polymer
JPH067200A (en) * 1992-02-07 1994-01-18 Natl Starch & Chem Investment Holding Corp Refining of polysaccharide
JPH0614741A (en) * 1992-03-19 1994-01-25 Roquette Freres Composition containing low caries inducible hydrogenated saccharide and its preparation and application field
JPH06209784A (en) * 1992-10-28 1994-08-02 Enzyme Bio Syst Ltd Method of cleaving starch nonrandomly and low d.e. inverted product produced by said method
JPH10120704A (en) * 1996-10-14 1998-05-12 Kirin Brewery Co Ltd Composition of water-soluble polysaccharides derived from barley malt, its production and use thereof
JP2000001502A (en) * 1998-04-27 2000-01-07 Roquette Freres Production of low-de starch hydrolyzate by nano- filtration fractionation, product obtained thereby, and use of such product
JP2001011101A (en) * 1999-07-01 2001-01-16 Sanmatsu Kogyo Ltd Highly branched dextrin and its production
JP2003144187A (en) * 2001-11-15 2003-05-20 Sanmatsu Kogyo Ltd Method for producing liquid state branched dextrin
JP2004242641A (en) * 2003-02-17 2004-09-02 Sanmatsu Kogyo Ltd Beverage and food inhibiting blood sugar level from rising and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101683131B (en) * 2008-09-24 2012-01-04 郸城财鑫糖业有限责任公司 Method for simultaneously preparing oligomeric maltose and maltodextrin using starch

Also Published As

Publication number Publication date
JP4933041B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP4916600B2 (en) Preparation of inulin products
KR20090116770A (en) Method and equipment for producing fruit sugar syrups having high fructose content
MXPA97000916A (en) Preparation of inul products
KR100317862B1 (en) How to make starch sugar
CN104131051B (en) A kind of preparation method of oligoisomaltose
WO2006081530A1 (en) Juice processing
ZA200603333B (en) Production of invert syrup from sugarcane juice using immobilized invertase
EP2425723B1 (en) Process and plant for producing sugar products from grapes
CN107058428B (en) Fructose and maltose online production process
US4664918A (en) Process for reducing alcohol in fermented beverages by means of dialysis
KR101445432B1 (en) Process for the preparation of isomaltooligosaccharide-hydrogenated
CN107325205A (en) A kind of inulin and FOS syrup co-production
US5510125A (en) Process for selective removal of sugar from beverages
JP4933041B2 (en) Process for producing branched dextrin with improved efficiency
RU2046134C1 (en) Process for selectively removing non-volatile substances from non-alcoholic or alcoholic beverage or sugar-containing solution
CN107722082B (en) Production method of stevioside
JP3983522B2 (en) Method for producing branched dextrin liquid
CN108503506A (en) A kind of new process producing high pure sorbitol using chromatographic separation technology
CN107287263B (en) Preparation method for high-purity maltose and co-production of beta-limit dextrin
Cherevko et al. Application of membrane technologies in modern conditions of juice production
CN1289531C (en) Process of euphoria polysaccharide
Belleville et al. Nanofiltration in the food industry
CN107840782A (en) The production method and device of sorbierite
CN114107041A (en) System and method for preparing erythritol and polydextrose by using corn starch
CN103122039A (en) Process for extracting pectin from acid discharge liquor generated in canned citrus production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110125

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120216

R150 Certificate of patent or registration of utility model

Ref document number: 4933041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees