JPH0154040B2 - - Google Patents

Info

Publication number
JPH0154040B2
JPH0154040B2 JP60046661A JP4666185A JPH0154040B2 JP H0154040 B2 JPH0154040 B2 JP H0154040B2 JP 60046661 A JP60046661 A JP 60046661A JP 4666185 A JP4666185 A JP 4666185A JP H0154040 B2 JPH0154040 B2 JP H0154040B2
Authority
JP
Japan
Prior art keywords
branched
starch
amylase
linear
saccharification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60046661A
Other languages
Japanese (ja)
Other versions
JPS61205494A (en
Inventor
Tsukasa Yoshida
Yoshio Ishige
Masaki Matsudaira
Tadashi Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANMATSU KOGYO CO
Original Assignee
SANMATSU KOGYO CO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANMATSU KOGYO CO filed Critical SANMATSU KOGYO CO
Priority to JP4666185A priority Critical patent/JPS61205494A/en
Publication of JPS61205494A publication Critical patent/JPS61205494A/en
Publication of JPH0154040B2 publication Critical patent/JPH0154040B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、澱粉から分枝デキストリン類及び直
鎖オリゴ糖類を選択分別してそれぞれを製造する
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for selectively fractionating branched dextrins and linear oligosaccharides from starch and producing them.

従来の技術的背景 先に、本発明者らは、液化澱粉にβ−アミラー
ゼを作用させて主としてマルトースとβ−リミツ
トデキストリンから成る糖化液を生成させ、該糖
化液をOH型アニオン交換樹脂に接触させること
によつて高純度のマルトースとβ−リミツトデキ
ストリンを分別して製造する方法(特許第
1033249号)を確立した。
Conventional Technical Background First, the present inventors caused β-amylase to act on liquefied starch to generate a saccharified solution mainly consisting of maltose and β-limitodextrin, and converted the saccharified solution into an OH-type anion exchange resin. A method for separating and producing high-purity maltose and β-limited dextrin by contacting them (Patent No.
1033249) was established.

マルトースはD−グルコース2分子がα−1,
4結合した二糖類であつて、蔗糖及びグルコース
と比較して低甘味であるため、食品加工面では現
在減甘素材として広く利用されている。また一
方、β−リミツトデキストリンは分岐構造をもつ
巨大分子であつて分枝デキストリンと称せられる
ものであるが、その分子構造に起因した性質とし
て巨大分子であるにもかかわらず水に易溶であ
り、粘性が大きくしかも安定しており老化するこ
とがない。したがつて、食品加工面では弾性を賦
与し、保水性が良好であるなど食品素材として大
きく注目を浴びている。
Maltose consists of two molecules of D-glucose, α-1,
Since it is a 4-linked disaccharide and has a lower sweetness than sucrose and glucose, it is currently widely used as a sweetening material in food processing. On the other hand, β-limit dextrin is a macromolecule with a branched structure and is called a branched dextrin, but due to its molecular structure, it is easily soluble in water despite being a macromolecule. It has a high viscosity, is stable, and does not age. Therefore, in food processing, it is attracting a lot of attention as a food material that imparts elasticity and has good water retention properties.

しかしながら、最近の市場動向としては、マル
トースよりさらに低甘味が要求されており、また
分枝デキストリンについてはβ−リミツトデキス
トリンよりさらに低分子化したものへの物性に期
待が寄せられている。
However, recent market trends are demanding lower sweetness than maltose, and there are expectations for the physical properties of branched dextrins with even lower molecular weight than β-limited dextrins.

澱粉は、D−グルコースがα−1,4結合で重
合した直鎖構造のアミロースと、主体がα−1,
4結合で重合し、各所でα−1,6結合でもつて
枝分かれをした樹枝状構造をもつてアミロペクチ
ンから構成されている。このような構造をもつ澱
粉の液化液にβ−アミラーゼを作用させれば、直
鎖構造のアミロースと樹枝状構造のアミロペクチ
ンの外側の枝のみが攻撃を受け、内部構造が破壊
されないため前記特許のように、マルトースと巨
大分子の分枝デキストリンが得られるが、しかし
澱粉にα−アミラーゼを作用させれば、アミロー
スのみならずアミロペクチンの内部構造のα−
1,4結合が任意に切断され、α−1,6結合は
攻撃されないため、マルトースより重合度の高い
いわゆる直鎖オリゴ糖類とβ−リミツトデキスト
リンより低分子化した分枝デキストリン類の糖化
液が得られることになる。
Starch consists of amylose, which has a linear structure in which D-glucose is polymerized with α-1,4 bonds, and mainly α-1,
It is composed of amylopectin, which is polymerized with 4 bonds and has a dendritic structure with α-1,6 bonds in various places. When β-amylase is applied to a liquefied starch having such a structure, only the outer branches of amylose, which has a linear structure, and amylopectin, which has a dendritic structure, are attacked, and the internal structure is not destroyed. As shown, maltose and macromolecular branched dextrin are obtained, but if α-amylase is applied to starch, not only amylose but also α- of the internal structure of amylopectin can be obtained.
Since 1,4 bonds are arbitrarily cleaved and α-1,6 bonds are not attacked, this is a saccharified solution of so-called linear oligosaccharides, which have a higher degree of polymerization than maltose, and branched dextrins, which have a lower molecular weight than β-limit dextrin. will be obtained.

本発明者はらは、この点に着眼して上述した市
場要求を同時に満足させるためには、つまりマル
トースより重合度の高い直鎖オリゴ糖類とβ−リ
ミツトデキストリンよりさらに低分子化した分枝
デキストリン類から成る澱粉糖化液からそれぞれ
を選択分別し得る方法を提供することができれば
該市場要求に対応することが可能となり、したが
つて食品への応用範囲が飛躍的に拡大するものと
の見地に立つて検討を進めた結果、本発明をなす
に至つた。
The present inventors focused on this point, and in order to simultaneously satisfy the above-mentioned market demands, we developed a combination of a linear oligosaccharide with a higher degree of polymerization than maltose and a branched dextrin with a lower molecular weight than β-limited dextrin. If we can provide a method that can selectively separate starch saccharified liquids consisting of several types, it will be possible to meet the market demands, and the scope of application to food products will therefore be dramatically expanded. As a result of further investigation, we have arrived at the present invention.

而して、前記特許においては、澱粉のβ−アミ
ラーゼによるマルトースと巨大分子のβ−リミツ
トデキストリンの糖化液からOH型アニオン交換
樹脂に対するマルトースの吸着性を利用して効果
的に双方を分離し得たのであるが、澱粉のα−ア
ミラーゼによつて低分子化した分枝デキストリン
と直鎖オリゴ糖類との糖化液については、OH型
アニオン交換樹脂に対してもはや吸着性に差がな
くなり、OH型アニオン交換樹脂によつては効果
的に分別することが不可能である事がわかつた。
すなわち、上記分枝デキストリンと直鎖オリゴ糖
類とから成る糖化液からそれぞれを分別すること
が問題となる。
In the above patent, maltose produced by β-amylase of starch and β-limited dextrin, which is a macromolecule, are effectively separated from a saccharified solution by utilizing the adsorption properties of maltose to an OH-type anion exchange resin. However, for the saccharified solution of branched dextrin and linear oligosaccharide, which have been reduced in molecular weight by starch α-amylase, there is no longer any difference in adsorption to OH type anion exchange resin, and OH It was found that effective separation was not possible depending on the type of anion exchange resin.
That is, the problem is to separate the branched dextrin and linear oligosaccharide from the saccharified liquid.

発明が解決しようとする問題点 本発明者らは、α−アミラーゼによる澱粉分解
物(糖化液)から分枝デキストリン類と直鎖オリ
ゴ糖類との分別法について鋭意研究した結果、こ
れら澱粉分解物が分枝構造を有しているか、直鎖
構造であるかの構造の違いによつてゲル濾過剤に
対する内部浸入あるいは表面でのすべり速度に差
異ができる事を発見し、その差異を利用する事に
よつて分枝デキストリン類と直鎖オリゴ糖類の糖
化液からそれぞれの成分に効果的に分別すること
に成功した。したがつて、本発明は、澱粉にα−
アミラーゼを作用させて得られる主として分枝デ
キストリン類と直鎖オリゴ糖類とから成る糖化液
から、それらを有効に選択分別し得る方法を提供
することを目的とする。
Problems to be Solved by the Invention As a result of intensive research into a method for separating branched dextrins and linear oligosaccharides from starch decomposition products (saccharified liquid) using α-amylase, the present inventors found that these starch decomposition products We discovered that there are differences in the internal penetration of gel filtration agents and the sliding speed on the surface depending on the structure, whether it has a branched structure or a linear structure, and we decided to take advantage of this difference. As a result, we succeeded in effectively separating branched dextrins and linear oligosaccharides into their respective components from the saccharified liquid. Therefore, the present invention provides starch with α-
The object of the present invention is to provide a method that can effectively selectively separate branched dextrins and linear oligosaccharides from a saccharified solution obtained by the action of amylase.

以下本発明について詳しく説明する。 The present invention will be explained in detail below.

発明の構成 本発明の特徴は、澱粉にα−アミラーゼを作用
させて主として分枝デキストリン類と直鎖オリゴ
糖類とから成る糖化液を生成させ、ついで得られ
る糖化液をゲル型濾過剤に接触させることによつ
て該糖化液中の分枝デキストリン類と直鎖オリゴ
糖類を選択分別することにある。
Structure of the Invention The present invention is characterized in that a saccharified solution consisting mainly of branched dextrins and linear oligosaccharides is produced by causing α-amylase to act on starch, and then the resulting saccharified solution is brought into contact with a gel-type filtering agent. Particularly, the objective is to selectively separate branched dextrins and linear oligosaccharides in the saccharified liquid.

本発明においては、澱粉にα−アミラーゼを作
用させて分枝デキストリン類と直鎖オリゴ糖類か
ら成る糖化液を調製するのであるが、この際澱粉
はα−アミラーゼによつて澱粉を構成するアミロ
ースとアミロペクチンのα−1,4結合のみが任
意に攻撃を受けてα−1,6結合を含むいわゆる
分枝デキストリンとα−1,4結合のみからなる
直鎖オリゴ糖類から成る糖化液が得られる。
In the present invention, starch is treated with α-amylase to prepare a saccharified solution consisting of branched dextrins and linear oligosaccharides. Only the α-1,4 linkages of amylopectin are optionally attacked to obtain a saccharified solution consisting of so-called branched dextrins containing α-1,6 linkages and linear oligosaccharides consisting only of α-1,4 linkages.

α−アミラーゼによる分解が進行するにつれ
て、それぞれの成分は更に低分子化されるが、α
−アミラーゼによる限界分解においては、α−リ
ミツトデキストリンと称される重合度5〜10の分
枝デキストリンとα−1,4結合のみからなる主
として重合度2〜6の直鎖オリゴ糖類からなる糖
化液が得られる。
As decomposition by α-amylase progresses, each component becomes lower in molecular weight, but α
- In limit decomposition by amylase, saccharification consists of a branched dextrin with a degree of polymerization of 5 to 10, called α-limit dextrin, and a linear oligosaccharide with a degree of polymerization of 2 to 6, consisting only of α-1,4 bonds. A liquid is obtained.

問題点を解決するための手段 本発明においては、目的とする物性に対応して
各分解段階の糖化液を、ゲル濾過剤として例えば
イオン交換樹脂を充填したカラムに上部から流下
させ、引き続き水などに置き換えるなどして、イ
オン交換樹脂に接触させれば糖化液中の分枝デキ
ストリンと直鎖オリゴ糖の流れに差が生じて、流
出液の初流に分枝デキストリンが検出され、その
後、直鎖オリゴ糖類の流出区分が得られる。
Means for Solving the Problems In the present invention, the saccharified solution at each decomposition stage is allowed to flow down from the top into a column filled with, for example, ion exchange resin as a gel filtration agent, and then water etc. If the branched dextrin and the linear oligosaccharide in the saccharification solution are brought into contact with an ion exchange resin, a difference will occur in the flow of the branched dextrin and the linear oligosaccharide, and the branched dextrin will be detected in the initial flow of the effluent, and then directly An effluent section of chain oligosaccharides is obtained.

本発明において、分枝デキストリン類と直鎖オ
リゴ糖類から成る糖化液を調製するには、まずα
−アミラーゼによる澱粉の糖化を行なう。
In the present invention, in order to prepare a saccharification solution consisting of branched dextrins and linear oligosaccharides, first
- Carry out saccharification of starch by amylase.

澱粉原料としては、一般の澱粉糖製造の原料と
なるコーンスターチ、ばれいしよ澱粉、甘薯澱
粉、タピオカ澱粉及びそれらのα化澱粉、餅澱粉
など広範囲のものが使用可能である。
A wide range of starch raw materials can be used, including corn starch, potato starch, sweet potato starch, tapioca starch, their pregelatinized starches, and rice cake starch, which are common raw materials for producing starch sugar.

澱粉の糖化には、加熱を伴なう機械液化法によ
る液化に引き続きα−アミラーゼを作用させる
か、または澱粉乳にα−アミラーゼを添加して直
接加熱して直接糖化を進める方法があり、又目的
によつてはβ−アミラーゼを共存させて糖化を進
める事もできる。
Starch can be saccharified by mechanical liquefaction that involves heating, followed by the action of α-amylase, or by adding α-amylase to starch milk and directly heating it to proceed with saccharification. Depending on the purpose, saccharification can be carried out by allowing β-amylase to coexist.

一般に上記糖化段階における澱粉の分解程度
は、目的とする製品の粘度及び甘味度などの物性
に応じて決定されるものであるが、その後の分別
処理の難易度を考慮してDE10〜35の範囲が適当
である。
Generally, the degree of decomposition of starch in the above saccharification stage is determined according to the physical properties of the target product, such as viscosity and sweetness, but it is determined within the range of DE10 to DE35, taking into consideration the difficulty of subsequent separation processing. is appropriate.

α−アミラーゼによる澱粉の糖化温度はα−ア
ミラーゼの耐熱温度を上限として行なわれるが、
高温液化後、温度を下げて糖化を進めることも可
能であり、又β−アミラーゼを共存させて糖化反
応を進める場合もあり得ることなどを考慮に入れ
れば、実質的に45℃〜110℃の温度範囲、又PHは
4.5〜7.0の酵素の作用範囲が本発明の実施可能範
囲となる。
The saccharification temperature of starch by α-amylase is carried out with the upper limit of the heat resistance temperature of α-amylase.
After high-temperature liquefaction, it is possible to proceed with saccharification by lowering the temperature, and if we also take into account that the saccharification reaction may proceed with β-amylase coexisting, it is practically possible to proceed with saccharification at temperatures between 45℃ and 110℃. Temperature range or PH is
The action range of the enzyme of 4.5 to 7.0 is the practical range of the present invention.

分解程度の制御は、添加する酵素量、作用温
度、作用時間によつて行なわれるが、反応途次で
目的の分解点で加熱或いは酸を添加するなどして
酵素を失活させることにより糖化反応を停止する
ことができる。
The degree of decomposition is controlled by the amount of enzyme added, the action temperature, and the action time, but the saccharification reaction can be carried out by inactivating the enzyme by heating or adding acid at the desired decomposition point during the reaction. can be stopped.

上述のようにして得られる糖化液中の分枝デキ
ストリンの含量は、澱粉の種類及び分解程度によ
つて異なるが、一般に固形分中の約25〜50%の範
囲にあり、残余が直鎖オリゴ糖となる。
The content of branched dextrin in the saccharified solution obtained as described above varies depending on the type of starch and the degree of decomposition, but it is generally in the range of about 25 to 50% of the solid content, with the remainder being linear oligos. It becomes sugar.

次に上述のようにして得られた糖化液を、通常
濾過して原料に含まれる糖質以外の夾雑物を除去
し、必要とあればこの段階で脱色精製し、又濃縮
するなどして次工程の分別に有効と思われる前処
理を糖化液に施すことも本発明の範囲に包含され
るものであることを理解すべきである。
Next, the saccharified liquid obtained as described above is usually filtered to remove impurities other than carbohydrates contained in the raw materials, and if necessary, decolorized and purified at this stage, concentrated, etc. It should be understood that it is also within the scope of the present invention to subject the saccharified liquid to a pretreatment that is considered effective for step separation.

本発明において、糖化液中の分枝デキストリン
類と直鎖オリゴ糖類の分別に使用されるゲル濾過
剤としては、一般に使用されているデキストラ
ン、寒天、澱粉などを母体としたものやポリスチ
レンを母体としたイオン交換樹脂などがあり、イ
オン交換樹脂については特に架橋度4〜8の範囲
のものが実用的である。
In the present invention, the gel filtration agent used to separate branched dextrins and linear oligosaccharides in the saccharification solution may be one based on commonly used dextran, agar, starch, etc., or one based on polystyrene. Among them, ion exchange resins having a degree of crosslinking of 4 to 8 are particularly practical.

又粒径としては40〜80メツシユの範囲にあつて
均一であることが、圧損の関係から必要であり、
またイオン交換樹脂は塩型で使用する。
In addition, it is necessary for the particle size to be uniform in the range of 40 to 80 mesh from the viewpoint of pressure loss.
In addition, the ion exchange resin is used in the salt form.

本発明において、糖化液をゲル濾過剤に接触さ
せるには、カラムに充填したゲル濾過剤の固定層
に糖化液を下降または上昇させて通液する動的な
処理方法によつて達成され、固定層は各種ゲル濾
過剤の混合系で形成することも可能である。
In the present invention, bringing the saccharified solution into contact with the gel filtration agent is achieved by a dynamic treatment method in which the saccharified solution is passed through a fixed bed of gel filtration agents filled in a column by descending or rising. The layer can also be formed from a mixed system of various gel filtration agents.

本発明によつて工業的生産を行なうには、ゲル
濾過剤を充填したカラムを多段に連結した擬似移
動床方式による連続通液が好適である。擬似移動
床の段数は4〜段を採用し、各段には糖化原液及
び水の注入口と分枝デキストリン及び直鎖オリゴ
糖の排出口が設けられ、又全段にわたつて液移動
を行なう循環系路が設けられている。
For industrial production according to the present invention, continuous flow using a simulated moving bed system in which columns packed with gel filtration agents are connected in multiple stages is suitable. The number of stages of the pseudo moving bed is 4 or more, and each stage is provided with an inlet for the saccharification stock solution and water, and an outlet for branched dextrin and linear oligosaccharide, and liquid movement is performed across all stages. A circulation system is provided.

全段にわたつて糖化液を通液後、分離パターン
に対応した各段について流量制御による糖化液の
出入が行なわれるが、糖化液中の分枝デキストリ
ンと直鎖オリゴ糖の組成比に応じて排出の流量を
配分すればほぼ完全に分枝デキストリン類と直鎖
オリゴ糖類とに選択分別することができることも
本発明の特長である。
After passing the saccharification solution through all the stages, the saccharification solution is taken in and out of each stage corresponding to the separation pattern by controlling the flow rate. Another feature of the present invention is that it is possible to almost completely selectively separate branched dextrins and linear oligosaccharides by distributing the discharge flow rate.

本発明で用いる糖化原液の濃度は、可及的に高
いほうが経済的に好ましいが、カラム中の圧損を
考慮して40%程度とすることが現実的であり、ま
たカラム中の圧損は通液温度とも関係し、又カラ
ム中の発酵を防止するという意味で約60℃とする
のが良い。溶出用水としては、一般に使用する水
又は蒸留水、あるいは純度の高いイオン交換水を
用い、用水温度は通液温度と同温にして用いる。
Although it is economically preferable for the concentration of the saccharification stock solution used in the present invention to be as high as possible, it is realistic to set the concentration to about 40% in consideration of the pressure drop in the column. It is also related to temperature, and from the viewpoint of preventing fermentation in the column, it is preferable to set the temperature to about 60°C. As the elution water, commonly used water, distilled water, or highly purified ion-exchanged water is used, and the temperature of the water is set to be the same as the liquid passage temperature.

本発明によつて分別された分枝デキストリン類
は、通常の方法によつて精製濃縮して製品とする
か、あるいは噴霧乾燥して製品とし、又直鎖オリ
ゴ糖類も同様にして濃縮して製品とするか噴霧乾
燥して製品とすることができる。
The branched dextrins separated according to the present invention can be purified and concentrated using conventional methods or spray-dried to produce products. Straight chain oligosaccharides can also be concentrated in the same way to produce products. It can be made into a product by drying or spray drying.

以下に実施例を示して本発明を更に具体的に説
明する。
EXAMPLES The present invention will be explained in more detail with reference to Examples below.

実施例 1 水分13.5%のコーンスターチを水に懸濁して
20゜ボーメとなし、PH6.2に調整後、対澱粉0.1%の
α−アミラーゼ(商品名ターマミルノボインダス
トリー社製)を添加して105℃に10分間加熱処理
して得た澱粉液化液を65℃に冷却し、更にα−ア
ミラーゼを0.1%添加して4時間保持して糖化を
進めた。
Example 1 Cornstarch with a moisture content of 13.5% was suspended in water.
After adjusting the pH to 20° Baume and pH 6.2, add 0.1% starch α-amylase (trade name: Terma Milnovo Industries Co., Ltd.) and heat it to 105°C for 10 minutes. The mixture was cooled to 65°C, 0.1% α-amylase was added, and the mixture was maintained for 4 hours to advance saccharification.

酸添加による反応停止後のDEは22.7であつた。
次いで、得られた糖化液について活性炭およびイ
オン交換樹脂による通常の脱色精製を行ない40%
の濃度になるまで濃縮した。
DE after reaction termination by acid addition was 22.7.
Next, the obtained saccharified liquid is subjected to normal decolorization and purification using activated carbon and ion exchange resin to reduce the amount to 40%.
It was concentrated to a concentration of .

該糖化液の糖組成は、グルコース2%、マルト
ース5%、マルトトリオース15%、マルトテトラ
オース6%、マルトペンタオース12%、マルトヘ
キサオース20%、分枝デキストリン40%であつ
た。
The sugar composition of the saccharified solution was 2% glucose, 5% maltose, 15% maltotriose, 6% maltotetraose, 12% maltopentaose, 20% maltohexaose, and 40% branched dextrin.

一方直径と高さの比が1:2の1リツトル容カ
ラム4基から構成された擬似移動床方式装置の各
カラムにゲル型強酸性カチオン交換樹脂を充填し
た。
On the other hand, a gel type strongly acidic cation exchange resin was packed into each column of a simulated moving bed system consisting of four 1 liter columns with a diameter to height ratio of 1:2.

該イオン交換樹脂は架橋度が4であり60メツシ
ユの粒径をもち、ナトリウム型として用いた。
The ion exchange resin had a degree of crosslinking of 4, a particle size of 60 mesh, and was used in the sodium form.

各カラムの内部上面には分散管が設けられ、定
量ポンプを経由して糖化原液および水の注入口と
分枝デキストリンおよび直鎖オリゴ糖の分画液の
排出口が接続されており、又各液の出入口には電
磁弁が設けられてタイマーによる開閉の制御が行
なわれ、定量ポンプを経由して全段の液移動を行
なう循環系路が設けられている。
A dispersion tube is installed on the internal upper surface of each column, and the inlet for the saccharification stock solution and water is connected to the outlet for the fractionated solution of branched dextrin and linear oligosaccharide via a metering pump. A solenoid valve is provided at the inlet/outlet of the liquid, and its opening/closing is controlled by a timer, and a circulation system path is provided to move the liquid through all stages via a metering pump.

本装置を用いた分別操作の通液条件は次のとお
りであつた。
The liquid passage conditions for the fractionation operation using this device were as follows.

今仮に液の流れの方向に向かつて各カラムに番
号を付し、No.1,No.2,No.3,No.4、とした場合
No.1のカラムに40%分枝デキストリンを含む40%
濃度の糖化原液100ミリリツトル、No.3のカラム
に水150ミリリツトルを正確に10分間にわたつて
同時に通液し、その間No.2とNo.4のカラムからは
糖化原液の成分比に従つて流量制御比を4:6と
して糖液の排出を行なつた。分枝デキストリン液
についてはNo.2から排出され、直鎖オリゴ糖液に
ついてはNo.4のカラムから排出された。
Now, suppose we number each column in the direction of liquid flow and call it No. 1, No. 2, No. 3, No. 4.
40% containing 40% branched dextrin in No. 1 column
100 ml of concentrated saccharification stock solution and 150 ml of water were simultaneously passed through the No. 3 column for exactly 10 minutes, during which time the flow rate from the No. 2 and No. 4 columns was adjusted according to the component ratio of the saccharification stock solution. The sugar solution was discharged at a control ratio of 4:6. The branched dextrin solution was discharged from the No. 2 column, and the linear oligosaccharide solution was discharged from the No. 4 column.

ついで、正確に30分間にわたつて循環径路によ
つて630ミリリツトルの液移動を行ない、各カラ
ム内の分離パターンを1ステツプ前進させた後、
前回と同様に液の出入を1ステツプ前進した各カ
ラムの位置で操作し、引き続き循環操作を行なう
などの繰り返しを連続して行なつた。
Then, after moving 630 milliliters of liquid through the circulation path for exactly 30 minutes to advance the separation pattern in each column by one step,
As in the previous case, the liquid was introduced and removed at each column position moved forward by one step, and the circulation operation was subsequently repeated.

通液温度および用水温度は60℃に保ち、分別集
液については、それぞれを精製し、濃縮してシラ
ツプとなし、又一部は噴霧乾燥した。
The liquid passing temperature and the water temperature were maintained at 60°C, and each of the separated liquids was purified and concentrated to form syrup, and a portion was spray-dried.

分析の結果、分画分枝デキストリンの糖組成は
分枝デキストリン89%、マルトヘキサオース3
%、マルトペンタオース2%、マルトテトラオー
ス1%、マルトトリオース2%、マルトース2%
であつた。
As a result of analysis, the sugar composition of the fractionated branched dextrin was 89% branched dextrin and 3% maltohexaose.
%, maltopentaose 2%, maltotetraose 1%, maltotriose 2%, maltose 2%
It was hot.

分枝デキストリン部分の平均分子量はG.P.C.法
による測定で25000であつた。
The average molecular weight of the branched dextrin moiety was 25,000 as determined by GPC method.

一方、直鎖オリゴ糖の糖組成は、グルコース3
%、マルトース7%、マルトトリオース25%、マ
ルトテトラオース10%、マルトペンタオース20
%、マルトヘキサオース33%、分枝デキストリン
2%、であつた。
On the other hand, the sugar composition of linear oligosaccharides is glucose 3
%, maltose 7%, maltotriose 25%, maltotetraose 10%, maltopentaose 20
%, maltohexaose 33%, and branched dextrin 2%.

実施例 2 実施例1と同様にして得た澱粉糖化液に対澱粉
1%のα−アミラーゼを添加し、65℃で10時間糖
化した。
Example 2 A starch saccharification solution obtained in the same manner as in Example 1 was added with 1% α-amylase based on starch, and saccharified at 65°C for 10 hours.

糖化後のDEは34.5を示し、糖組成はグルコー
ス7%、マルトース12%、マルトトリオース21
%、マルトテトラオース8%、マルトペンタオー
ス27%、分枝デキストリン25%、であつた。
The DE after saccharification is 34.5, and the sugar composition is 7% glucose, 12% maltose, and 21% maltotriose.
%, maltotetraose 8%, maltopentaose 27%, and branched dextrin 25%.

次いで糖液の分別に当つては実施例1と同様に
操作した。
Next, the same procedure as in Example 1 was carried out for fractionating the sugar solution.

糖化原液中の分枝デキストリン含量は25%であ
つたので、糖液の組成比に従い、糖液の排出比を
25:75になるように制御した以外は実施例1と同
様であつた。
Since the content of branched dextrin in the saccharification stock solution was 25%, the discharge ratio of the sugar solution was adjusted according to the composition ratio of the sugar solution.
The process was the same as in Example 1 except that the time was controlled to be 25:75.

分別した集液については精製濃縮してシラツプ
とし、分枝デキストリンは噴霧乾燥した。
The separated collected liquid was purified and concentrated to obtain syrup, and the branched dextrin was spray-dried.

分析の結果分画分枝デキストリンの糖組成は分
枝デキストリン85%、マルトペンタオース10%、
マルトトリオース3%、マルトース2%であつ
た。
As a result of the analysis, the sugar composition of the fractionated branched dextrin was 85% branched dextrin, 10% maltopentaose,
It contained 3% maltotriose and 2% maltose.

一方直鎖オリゴ糖の糖組成はグルコース9%、
マルトース15%、マルトトリオース27%、マルト
テトラオース11%、マルトペンタオース33%、分
枝デキストリン5%であつた。
On the other hand, the sugar composition of linear oligosaccharides is glucose 9%,
The contents were 15% maltose, 27% maltotriose, 11% maltotetraose, 33% maltopentaose, and 5% branched dextrin.

分枝デキストリン部分の平均分子量はG.P.C.法
による測定で10000であつた。
The average molecular weight of the branched dextrin moiety was 10,000 as determined by GPC method.

Claims (1)

【特許請求の範囲】 1 澱粉にα−アミラーゼを作用させて主として
分枝デキストリン類と直鎖オリゴ糖類とから成る
糖化液を生成させ、ついで得られる糖化液をゲル
型濾過剤に接触させることによつて該糖化液中の
分枝デキストリン類と直鎖オリゴ糖類を選択分別
することを特徴とする分枝デキストリン類及び直
鎖オリゴ糖類の製造方法。 2 α−アミラーゼによる澱粉の分解率DEを10
〜35の範囲とする特許請求の範囲第1項記載の製
造方法。 3 ゲル型濾過剤としてイオン交換樹脂の架橋度
を4〜8の範囲としたものを用いる特許請求の範
囲第1項記載の製造方法。 4 分枝デキストリン類と直鎖オリゴ糖類の選択
分別を擬似移動床方式により行なう特許請求の範
囲第1項記載の製造方法。 5 擬似移動床方式による分別に当つて分別流量
比を分枝デキストリン含量に対応して決定する特
許請求の範囲第4項記載の製造方法。
[Scope of Claims] 1. A method of producing a saccharified liquid mainly consisting of branched dextrins and linear oligosaccharides by causing α-amylase to act on starch, and then bringing the obtained saccharified liquid into contact with a gel-type filter agent. Therefore, a method for producing branched dextrins and linear oligosaccharides, which comprises selectively separating branched dextrins and linear oligosaccharides in the saccharified liquid. 2 Starch degradation rate DE by α-amylase is 10
35. The manufacturing method according to claim 1, which ranges from 1 to 35. 3. The manufacturing method according to claim 1, in which an ion exchange resin having a crosslinking degree of 4 to 8 is used as the gel type filter agent. 4. The production method according to claim 1, wherein the selective fractionation of branched dextrins and linear oligosaccharides is carried out by a simulated moving bed method. 5. The manufacturing method according to claim 4, wherein the fractionation flow rate ratio is determined in accordance with the branched dextrin content in the fractionation using the simulated moving bed method.
JP4666185A 1985-03-11 1985-03-11 Production of branched dextrin and straight-chain oligosaccharide Granted JPS61205494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4666185A JPS61205494A (en) 1985-03-11 1985-03-11 Production of branched dextrin and straight-chain oligosaccharide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4666185A JPS61205494A (en) 1985-03-11 1985-03-11 Production of branched dextrin and straight-chain oligosaccharide

Publications (2)

Publication Number Publication Date
JPS61205494A JPS61205494A (en) 1986-09-11
JPH0154040B2 true JPH0154040B2 (en) 1989-11-16

Family

ID=12753516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4666185A Granted JPS61205494A (en) 1985-03-11 1985-03-11 Production of branched dextrin and straight-chain oligosaccharide

Country Status (1)

Country Link
JP (1) JPS61205494A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022146107A1 (en) * 2020-12-31 2022-07-07 주식회사 삼양사 Dextrin with improved turbidity, and method for producing same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63254966A (en) * 1987-04-10 1988-10-21 Ueno Seiyaku Oyo Kenkyusho:Kk Preparation of 'kamaboko' (boiled fish paste)
JPS6427452A (en) * 1987-04-24 1989-01-30 Ueno Seiyaku Oyo Kenkyujo Kk Additive for frozen ground fish
JPS6456705A (en) * 1987-08-27 1989-03-03 Sanmatsu Kogyo Co Production of non-reducible branched dextrin and non-reducible straight chain oligosaccharide
WO1989010970A1 (en) * 1988-05-02 1989-11-16 Inglett George E Enzymatic production of maltohexaose-rich compositions
KR101158297B1 (en) 2002-12-26 2012-06-26 닛산 가가쿠 고교 가부시키 가이샤 Alkali-Soluble Gap Filling Material Forming Composition For Lithography
TWI360726B (en) 2003-10-30 2012-03-21 Nissan Chemical Ind Ltd Sublayer coating-forming composition containing de
JP5005880B2 (en) * 2004-03-26 2012-08-22 昭和産業株式会社 Saccharide and sugar composition and foods containing these
JP4933041B2 (en) * 2004-12-06 2012-05-16 佐々木商事有限会社 Process for producing branched dextrin with improved efficiency
US8993039B2 (en) 2006-01-25 2015-03-31 Tate & Lyle Ingredients Americas Llc Fiber-containing carbohydrate composition
JP5164340B2 (en) * 2006-05-10 2013-03-21 フタムラ化学株式会社 Easily gelled starch partial degradation product
WO2009137839A1 (en) 2008-05-09 2009-11-12 Cargill, Incorporated Low-viscosity reduced-sugar syrup, methods of making, and applications thereof
EP2983514A4 (en) 2013-03-15 2017-03-15 Cargill, Incorporated Carbohydrate compositions
US11540549B2 (en) 2019-11-28 2023-01-03 Tate & Lyle Solutions Usa Llc High-fiber, low-sugar soluble dietary fibers, products including them and methods for using them

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788910A (en) * 1972-01-17 1974-01-29 Labatt Breweries Canada Ltd Extraction and purification of maltotriose and maltotetrose
JPS5823799A (en) * 1981-08-03 1983-02-12 株式会社林原生物化学研究所 Production of high purity maltose
JPS59148794A (en) * 1983-02-10 1984-08-25 Hayashibara Biochem Lab Inc Production of high-purity glucooligosaccharide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788910A (en) * 1972-01-17 1974-01-29 Labatt Breweries Canada Ltd Extraction and purification of maltotriose and maltotetrose
JPS5823799A (en) * 1981-08-03 1983-02-12 株式会社林原生物化学研究所 Production of high purity maltose
JPS59148794A (en) * 1983-02-10 1984-08-25 Hayashibara Biochem Lab Inc Production of high-purity glucooligosaccharide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022146107A1 (en) * 2020-12-31 2022-07-07 주식회사 삼양사 Dextrin with improved turbidity, and method for producing same

Also Published As

Publication number Publication date
JPS61205494A (en) 1986-09-11

Similar Documents

Publication Publication Date Title
JPH0154040B2 (en)
US4840807A (en) Branched dextrin production and compositions containing same
CA2236558C (en) Method for the production of isomalto-oligosaccharide rich syrups
US4511654A (en) Production of high sugar syrups
JPH06209800A (en) Low-caloric, soluble glucose polymer and adjustment thereof
US5837060A (en) Process for the manufacture of a starch hydrolysate of low polymolecularity index, obtention and use of novel starch hydrolysate in peritoneal dialysis
KR100485358B1 (en) Reduced malto-oligosaccharides
JPS609524B2 (en) Cyclodextrin recovery method
JPH04211388A (en) Production of inulooligosaccharide product small in content of glucose, fructose and sucrose
US4595418A (en) Production of powdery maltose
US4294623A (en) Method of producing high purity maltose
EP0495407B1 (en) Column carbon treatment of polysaccharides
JP2003144187A (en) Method for producing liquid state branched dextrin
EP3615213B1 (en) Treatment of sugar solutions
US5194094A (en) Fractionating starch hydrolysates
US3804716A (en) Starch conversion products and processes for preparing same
JP3072433B2 (en) Method for producing high-purity maltose
JPH01285195A (en) Production of difructose-cyanhydride
JPH07102144B2 (en) Continuous production method of branched oligosaccharide syrup
KR20000048454A (en) Immobilised maltogenic α-amylase and its use in the manutacture of a maltose-rich syrup
KR0139262B1 (en) Preparation method of branched dextrins and oligosaccharides
JPS643480B2 (en)
JP2571199B2 (en) Method for producing highly soluble cyclodextrin
JPH057999B2 (en)
WO1992001805A1 (en) Process for producing sugar and transfusion

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term