JP5531363B2 - Method for separating 1,5-D-anhydroglucitol - Google Patents
Method for separating 1,5-D-anhydroglucitol Download PDFInfo
- Publication number
- JP5531363B2 JP5531363B2 JP2010141648A JP2010141648A JP5531363B2 JP 5531363 B2 JP5531363 B2 JP 5531363B2 JP 2010141648 A JP2010141648 A JP 2010141648A JP 2010141648 A JP2010141648 A JP 2010141648A JP 5531363 B2 JP5531363 B2 JP 5531363B2
- Authority
- JP
- Japan
- Prior art keywords
- anhydroglucitol
- stock solution
- sugar
- fraction
- eluent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 26
- 239000011550 stock solution Substances 0.000 claims description 38
- 235000000346 sugar Nutrition 0.000 claims description 29
- 239000003480 eluent Substances 0.000 claims description 23
- 238000013375 chromatographic separation Methods 0.000 claims description 18
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 12
- 239000003456 ion exchange resin Substances 0.000 claims description 12
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 12
- 230000002378 acidificating effect Effects 0.000 claims description 10
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 9
- 239000000243 solution Substances 0.000 claims description 9
- 238000011084 recovery Methods 0.000 claims description 7
- 238000001179 sorption measurement Methods 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 238000003786 synthesis reaction Methods 0.000 claims description 5
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 2
- 239000003729 cation exchange resin Substances 0.000 claims description 2
- 238000003795 desorption Methods 0.000 claims description 2
- 238000006911 enzymatic reaction Methods 0.000 claims description 2
- 238000000855 fermentation Methods 0.000 claims description 2
- 230000004151 fermentation Effects 0.000 claims description 2
- 238000012856 packing Methods 0.000 claims description 2
- 150000008163 sugars Chemical class 0.000 claims description 2
- 108010093096 Immobilized Enzymes Proteins 0.000 description 8
- 238000000926 separation method Methods 0.000 description 8
- 239000011575 calcium Substances 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000003463 adsorbent Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 150000002772 monosaccharides Chemical class 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000011033 desalting Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 150000005846 sugar alcohols Chemical class 0.000 description 2
- JNYAEWCLZODPBN-KVTDHHQDSA-N (2r,3r,4r)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@@H](O)[C@H]1O JNYAEWCLZODPBN-KVTDHHQDSA-N 0.000 description 1
- CHRJZRDFSQHIFI-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;styrene Chemical compound C=CC1=CC=CC=C1.C=CC1=CC=CC=C1C=C CHRJZRDFSQHIFI-UHFFFAOYSA-N 0.000 description 1
- OCLOLUFOLJIQDC-UHFFFAOYSA-N 1,5-AF Natural products OCC1OCC(=O)C(O)C1O OCLOLUFOLJIQDC-UHFFFAOYSA-N 0.000 description 1
- MPCAJMNYNOGXPB-UHFFFAOYSA-N 1,5-Anhydro-mannit Natural products OCC1OCC(O)C(O)C1O MPCAJMNYNOGXPB-UHFFFAOYSA-N 0.000 description 1
- MPCAJMNYNOGXPB-KVTDHHQDSA-N 1,5-anhydro-D-mannitol Chemical compound OC[C@H]1OC[C@@H](O)[C@@H](O)[C@@H]1O MPCAJMNYNOGXPB-KVTDHHQDSA-N 0.000 description 1
- WQZGKKKJIJFFOK-IVMDWMLBSA-N D-allopyranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@H](O)[C@@H]1O WQZGKKKJIJFFOK-IVMDWMLBSA-N 0.000 description 1
- 125000002353 D-glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- BJHIKXHVCXFQLS-PUFIMZNGSA-N D-psicose Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)C(=O)CO BJHIKXHVCXFQLS-PUFIMZNGSA-N 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 108700040099 Xylose isomerases Proteins 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000010352 biotechnological method Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 229920001429 chelating resin Polymers 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 108010003007 mannose isomerase Proteins 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
Description
本発明は、1,5-D-アンヒドログルシトール(本明細書では「1,5-AG」と略す場合がある)の分離方法に関する。さらに詳しくは、擬似移動層式のクロマト分離により、1,5-AGと他の糖を含む溶液から1,5-AGを高純度、高回収率で分離する方法に関する。 The present invention relates to a method for separating 1,5-D-anhydroglucitol (sometimes abbreviated as “1,5-AG” in the present specification). More specifically, the present invention relates to a method for separating 1,5-AG with high purity and high recovery rate from a solution containing 1,5-AG and other sugars by simulated moving bed type chromatographic separation.
1,5-AGは、D-グルコースの1位が還元された非還元糖であることから、還元糖に比べて反応性が低く、酸性、アルカリ性、高温等の条件下において化学的に安定である。また、1,5-AGは、体内においてD-グルコースに次いで多く存在する糖であり、生体適合性が高く、安全性に問題がなく、かつ、生体内に蓄積性がないという優れた特性を有する。従って、その利用が注目されている。 1,5-AG is a non-reducing sugar in which the 1-position of D-glucose is reduced. Therefore, 1,5-AG is less reactive than reducing sugar and is chemically stable under conditions such as acidic, alkaline, and high temperature. is there. In addition, 1,5-AG is the sugar that is present in the body next to D-glucose, and has excellent characteristics such as high biocompatibility, no safety problems, and no accumulation in the living body. Have. Therefore, its use is drawing attention.
1,5-AGの製造方法としては、例えば、1,5-AGの水溶液から1,5-AG結晶を析出させる方法(特許文献1参照)、グルコースを出発原料とした有機合成方法(非特許文献1参照)、1,5-D-アンヒドロフルクトースのパラジウム触媒を用いた接触還元方法(非特許文献2参照)等が挙げられる。 As a method for producing 1,5-AG, for example, a method of precipitating 1,5-AG crystals from an aqueous solution of 1,5-AG (see Patent Document 1), an organic synthesis method using glucose as a starting material (non-patent) And a catalytic reduction method using a palladium catalyst of 1,5-D-anhydrofructose (see Non-Patent Document 2).
一方、従来、炭水化物原料混合溶液から単糖類を分離除去する技術として、結晶化方法やイオン交換樹脂、ゼオライトによる吸着分離方法等が知られている。例えば、特許文献2では、2種の糖アルコールを含む原液から、イオン交換樹脂が充填されたカラムを用いて擬似移動層方式により糖アルコールそれぞれの画分にクロマト分離する方法が開示されている。また、異性化を触媒する酵素の作用でD-プシコースから精製D-アロースへ変換し、得られる原液を擬似移動層により連続的に目的画分としてクロマト分離することを特徴とする精製希少糖の大量生産方法が開示されている(特許文献3参照)。
On the other hand, conventionally, as a technique for separating and removing monosaccharides from a carbohydrate raw material mixed solution, a crystallization method, an ion exchange resin, an adsorption separation method using zeolite, and the like are known. For example,
1,5-AGを合成するには、有機合成、バイオ的手法いずれの方法においても精製工程を要する。しかしながら、従来の方法は、実験室レベルでの製造方法や精製方法であるために、例えば、原料や生成副生物である、構造及び物理化学的性質の近いD-グルコースや1,5-D-アンヒドロマンニトールを分離して、1,5-AGを大量に製造するのは困難である。 In order to synthesize 1,5-AG, a purification step is required for both organic synthesis and biotechnological methods. However, since the conventional method is a production method or purification method at the laboratory level, for example, D-glucose or 1,5-D- It is difficult to produce 1,5-AG in large quantities by separating anhydromannitol.
本発明の課題は、1,5-AGを高純度、高回収率で分離回収することができる1,5-AGの分離方法を提供することにある。 An object of the present invention is to provide a method for separating 1,5-AG, which can separate and recover 1,5-AG with high purity and high recovery rate.
本発明は、クロマト分離装置を用いて、水を溶離液として、1,5-D-アンヒドログルシトールを含む糖を含有する原液から1,5-D-アンヒドログルシトールを分離する方法であって、
前記原液における糖濃度が20重量%以上であり、かつ、前記クロマト分離装置が、強酸性イオン交換樹脂が充填された複数の充填塔が直列かつ無端に連結されて形成された循環系と、該循環系への原液の供給部及び溶離液の供給部と、該循環系からの1,5-D-アンヒドログルシトール画分の排出部及び1,5-D-アンヒドログルシトール以外の糖画分の排出部とを有するものであり、前記循環系において、各供給部と各排出部を溶離液の供給部、1,5-D-アンヒドログルシトール画分の排出部、原液の供給部、及び1,5-D-アンヒドログルシトール以外の糖画分の排出部の順に設け、それらの位置関係を保ちつつ、一定方向に順次移動させることで循環系に形成される4つの帯域を移動させながら分離することを特徴とする方法、に関する。
The present invention separates 1,5-D-anhydroglucitol from a stock solution containing a sugar containing 1,5-D-anhydroglucitol using water as an eluent using a chromatographic separation apparatus. A method,
Sugar concentration in the stock solution is not less 20% by weight or more, and said chromatographic separation apparatus, the circulatory system in which a plurality of packing bed strongly acidic ion-exchange resins are filled is formed are connected in series and endless, Stock solution supply section and eluent supply section to the circulation system, discharge section of 1,5-D-anhydroglucitol fraction from the circulation system, and 1,5-D-anhydroglucitol In the circulatory system, each supply unit and each discharge unit is an eluent supply unit, a 1,5-D-anhydroglucitol fraction discharge unit. In this order, the stock solution supply section and the sugar fraction discharge section other than 1,5-D-anhydroglucitol are provided in this order, and the circulatory system is formed by sequentially moving them in a certain direction while maintaining their positional relationship. It is related with the method characterized by isolate | separating while moving the four zone | bands to be moved.
本発明の1,5-AGの分離方法は、1,5-AGを高純度、高回収率で分離回収することができるという優れた効果を奏するものである。その結果、1,5-AGの大量生産が可能となって生産性の向上に繋がり、ひいては、1,5-AGを含有する飲食品、化粧品、飼料等を安価に提供することが可能となる。 The method for separating 1,5-AG of the present invention has an excellent effect that 1,5-AG can be separated and recovered with high purity and high recovery rate. As a result, mass production of 1,5-AG becomes possible, leading to an improvement in productivity, and it becomes possible to provide food, food, cosmetics, feed, etc. containing 1,5-AG at low cost. .
本発明の1,5-AGの分離方法は、クロマト分離装置を用いて、水を溶離液として、1,5-AGを含む糖を含有する原液から1,5-AGを分離する方法であって、前記原液における糖濃度が20重量%以上であり、かつ、前記クロマト分離装置が、強酸性イオン交換樹脂又は固定化酵素が充填された複数の充填塔が直列かつ無端に連結されて形成された循環系と、該循環系への原液の供給部及び溶離液の供給部と、該循環系からの1,5-D-アンヒドログルシトール画分の排出部及び1,5-D-アンヒドログルシトール以外の糖(非1,5-AG)画分の排出部とを有するものであり、前記循環系において、各供給部と各排出部を溶離液の供給部、1,5-D-アンヒドログルシトール画分の排出部、原液の供給部、及び1,5-D-アンヒドログルシトール以外の糖画分の排出部の順に設け、それらの位置関係を保ちつつ、一定方向に順次移動させることで循環系に形成される4つの帯域を移動させながら分離することを特徴とする。なお、本明細書において、供給部とは物質を供給又は導入するところ、排出部とは物質を排出又は抜出するところを意味する。 The method for separating 1,5-AG of the present invention is a method for separating 1,5-AG from a stock solution containing sugar containing 1,5-AG, using water as an eluent, using a chromatographic separation apparatus. The sugar concentration in the stock solution is 20% by weight or more, and the chromatographic separation device is formed by connecting a plurality of packed columns packed with a strongly acidic ion exchange resin or an immobilized enzyme in series and endlessly. Circulatory system, stock solution supply section and eluent supply section to the circulation system, discharge section of 1,5-D-anhydroglucitol fraction from the circulation system and 1,5-D- And a discharge part of sugar (non-1,5-AG) fraction other than anhydroglucitol. In the circulation system, each supply part and each discharge part are connected to an eluent supply part, 1,5 -D-anhydroglucitol fraction discharge part, stock solution supply part, and sugar fraction other than 1,5-D-anhydroglucitol discharge part in order, While maintaining these positional relationship, and separating by moving the four bands are formed into the circulatory system by sequentially moving in a certain direction. In the present specification, the supply section means a place where a substance is supplied or introduced, and the discharge section means a place where the substance is discharged or extracted.
本発明で用いるクロマト分離装置について、図1を用いて説明する。 A chromatographic separation apparatus used in the present invention will be described with reference to FIG.
本発明におけるクロマト分離装置は、複数の充填塔が直列かつ無端に連結されて形成された循環系と、該循環系への原液の供給部及び溶離液の供給部と、該循環系からの1,5-AG画分の排出部及び非1,5-AG画分の排出部とを有する。 The chromatographic separation apparatus according to the present invention comprises a circulation system formed by connecting a plurality of packed towers in series and endlessly, a stock solution supply unit and an eluent supply unit to the circulation system, and 1 from the circulation system. , A discharge section for the 5-AG fraction and a discharge section for the non-1,5-AG fraction.
充填塔は、強酸性イオン交換樹脂又は固定化酵素が充填されており、好ましくは4〜16個、より好ましくは4〜8個が連結されている。また、各充填塔は、その出口から隣接する充填塔の入口へと連結されて全体として直列に連結されており、かつ、例えば、一番前に位置する充填塔を最前部、一番後ろに位置する充填塔を最後部とすると、最後部の出口は最前部の入口へと連結されるため、全ての充填塔が無端になるように連結されている。よって、このように全ての充填塔が連結された系は、溶離液等の流体が循環可能な循環系として形成されている。 The packed column is packed with a strongly acidic ion exchange resin or an immobilized enzyme, and preferably 4 to 16, more preferably 4 to 8 are connected. In addition, each packed tower is connected from the outlet to the inlet of the adjacent packed tower and connected in series as a whole, and, for example, the packed tower located at the forefront is the frontmost part and the rearmost part. Assuming that the packed tower located at the rear is the last part, the outlet at the rear part is connected to the inlet at the front part, so that all the packed towers are connected to be endless. Therefore, the system in which all the packed towers are connected in this way is formed as a circulation system in which a fluid such as an eluent can be circulated.
強酸性イオン交換樹脂としては、原液中に含まれる1,5-AGと非1,5-AGに対して、選択的吸着能力を発揮する吸着剤、即ち、1,5-AGに対して高い吸着能力を発揮するが非1,5-AGに対しては実質的に非吸着性である吸着剤、またはその逆の吸着特性を有する吸着剤が挙げられる。具体的には、陽イオン交換樹脂、例えば、スルホン酸基が結合したスチレン−ジビニルベンゼン架橋重合体を基材とした樹脂のナトリウム型(Na+型)、カリウム型(K+型)、カルシウム型(Ca2+型)、マグネシウム型(Mg2+型)が例示され、なかでもカルシウム型(Ca2+型)が好ましい。これらの樹脂は、単独で又は2種以上組み合わせて用いてもよく、充填塔に充填される樹脂は全て同一でも異なっていてもよいが、本発明においては、複数の充填塔全てに同一の樹脂が充填されることが好ましい。 Strongly acidic ion exchange resin is an adsorbent that exhibits selective adsorption capacity for 1,5-AG and non-1,5-AG contained in the stock solution, that is, high for 1,5-AG Examples include adsorbents that exhibit adsorption capability but are substantially non-adsorbable for non-1,5-AG, and vice versa. Specifically, a cation exchange resin, for example, a sodium type (Na + type), a potassium type (K + type), a calcium type resin based on a styrene-divinylbenzene crosslinked polymer having a sulfonic acid group bonded thereto. (Ca 2+ type) and magnesium type (Mg 2+ type) are exemplified, and among them, the calcium type (Ca 2+ type) is preferable. These resins may be used singly or in combination of two or more, and the resins filled in the packed tower may be the same or different, but in the present invention, the same resin is used in all the packed towers. Is preferably filled.
強酸性イオン交換樹脂は、公知の方法に従って合成したものを用いてもよく、市販品を用いてもよい。好適な市販品としては、ローム&ハース社製「アンバーライト CR-1310」、ダウケミカル社製「モノスフィアー 88」、三菱化学社製「ダイヤイオン UBK555」等が挙げられる。 As the strongly acidic ion exchange resin, one synthesized according to a known method may be used, or a commercially available product may be used. Suitable commercial products include “Amberlite CR-1310” manufactured by Rohm & Haas, “Monosphere 88” manufactured by Dow Chemical, “Diaion UBK555” manufactured by Mitsubishi Chemical, and the like.
固定化酵素は、1,5-AGと非1,5-AGのどちらかに親和性を持つものが挙げられる。具体的にはキシロース・イソメラーゼやマンノース・イソメラーゼなどが挙げられる。 Examples of the immobilized enzyme include those having affinity for either 1,5-AG or non-1,5-AG. Specific examples include xylose isomerase and mannose isomerase.
固定化酵素は、公知の方法に従って合成したものを用いてもよく、市販品を用いてもよい。市販品は、ノボ社製の「スイートザイムT」や長瀬産業株式会社製の「ナガセザイム」等の固定化酵素剤を好適に用いることができる。 As the immobilized enzyme, one synthesized according to a known method may be used, or a commercially available product may be used. Commercially available products can be preferably used immobilized enzyme agents such as “Sweetzyme T” manufactured by Novo and “Nagasezyme” manufactured by Nagase Sangyo Co., Ltd.
なお、本発明では、強酸性イオン交換樹脂が充填された充填塔を単独で用いてもよいし、固定化酵素が充填された充填塔を単独で用いてもよいし、あるいは、強酸性イオン交換樹脂が充填された充填塔と固定化酵素が充填された充填塔とを組み合わせて用いてもよく、特に限定されない。 In the present invention, a packed tower filled with a strong acid ion exchange resin may be used alone, a packed tower filled with an immobilized enzyme may be used alone, or a strong acid ion exchange may be used. A packed column filled with a resin and a packed column packed with an immobilized enzyme may be used in combination, and are not particularly limited.
本発明では、かかる強酸性イオン交換樹脂又は固定化酵素の吸着性に起因して、1,5-AGを多く含む画分(1,5-AG画分)と非1,5-AGを多く含む画分(非1,5-AG画分)を連続的にそれぞれ排出するために、吸着剤を循環流とは反対の方向に相対的に移動させる。この相対的な移動は、実際に吸着剤を逆行させることでも達成できる。しかし、本発明では、例えば無端に連結したカラムに原液の供給部及び溶離液の供給部と、1,5-AG画分の排出部及び非1,5-AG画分の排出部が、溶離液の供給部、1,5-AG画分の排出部、原液の供給部、及び非1,5-AG画分の排出部の順になるよう設け、かつ、それらの位置関係を保ちつつ一定方向に溶離液を供給することで順次移動させる。このように配置することで循環系には4つの帯域、具体的には、溶離液の供給部と1,5-AG画分の排出部までの1,5-AGの脱着帯域、1,5-AG画分の排出部から原液の供給部までの1,5-AGの濃縮帯域、原液の供給部と非1,5-AG画分の排出部までの1,5-AGの吸着帯域、非1,5-AG画分の排出部から溶離液の供給部までの非1,5-AGの回収帯域が形成されて、該帯域を移動させながら分離することが可能となる。このようなクロマト分離のことを擬似移動層式クロマト分離ともいう。 In the present invention, due to the adsorptivity of such strongly acidic ion exchange resin or immobilized enzyme, a fraction containing a large amount of 1,5-AG (1,5-AG fraction) and a non-1,5-AG In order to continuously discharge each containing fraction (non-1,5-AG fraction), the adsorbent is moved relatively in the direction opposite to the circulating flow. This relative movement can also be achieved by actually reversing the adsorbent. However, in the present invention, for example, a column supply endlessly connected to an undiluted solution supply unit and an eluent supply unit, and a 1,5-AG fraction discharge unit and a non-1,5-AG fraction discharge unit are eluted. A liquid supply unit, a 1,5-AG fraction discharge unit, a stock solution supply unit, and a non-1,5-AG fraction discharge unit are arranged in this order, and a fixed direction is maintained while maintaining their positional relationship. It moves sequentially by supplying the eluent. With this arrangement, the circulation system has four zones, specifically, the 1,5-AG desorption zone to the eluent supply unit and the 1,5-AG fraction discharge unit, 1,5 -1,5-AG concentration zone from the discharge portion of the AG fraction to the supply portion of the stock solution, 1,5-AG adsorption zone from the supply portion of the stock solution to the discharge portion of the non-1,5-AG fraction, A non-1,5-AG recovery zone from the non-1,5-AG fraction discharge section to the eluent supply section is formed, and separation can be performed while moving the zone. Such chromatographic separation is also referred to as simulated moving bed chromatographic separation.
原液の供給部、溶離液の供給部、1,5-AG画分の排出部、及び非1,5-AG画分の排出部は、前記擬似移動層を形成できるよう、一定の位置関係を保ちながら順に循環系の下流方向にそれぞれ移動するのであれば、特に限定はない。例えば、各充填塔に原液の供給部、溶離液の供給部、1,5-AG画分の排出部、及び非1,5-AG画分の排出部が弁(バルブ)を介してそれぞれ設けられている場合、該弁の開閉の組み合わせを選択することで、これらの供給部及び排出部が順に循環系の下流方向にそれぞれ移動するようにしてもよい。この場合、原液の供給部、溶離液の供給部、1,5-AG画分の排出部、及び非1,5-AG画分の排出部は、充填塔と同じ個数ずつ存在する。 The stock solution supply unit, eluent supply unit, 1,5-AG fraction discharge unit, and non-1,5-AG fraction discharge unit have a certain positional relationship so that the pseudo moving layer can be formed. There is no particular limitation as long as it moves in the downstream direction of the circulation system in order while maintaining. For example, each packed column is provided with a raw solution supply unit, an eluent supply unit, a 1,5-AG fraction discharge unit, and a non-1,5-AG fraction discharge unit via valves. In this case, by selecting a combination of opening and closing of the valve, the supply unit and the discharge unit may sequentially move in the downstream direction of the circulation system. In this case, there are as many stock solution supply units, eluent supply units, 1,5-AG fraction discharge units, and non-1,5-AG fraction discharge units as the packed tower.
かかるクロマト分離装置に供する原液としては、1,5-AGと非1,5-AGを含む糖を含有する液が挙げられる。 Examples of the stock solution used for such a chromatographic separation apparatus include a liquid containing a sugar containing 1,5-AG and non-1,5-AG.
原液に含まれる糖は、強酸性イオン交換樹脂の選択的吸着能力を発揮する観点から、2種類が好ましく、1,5-AGと他の1種類の単糖が挙げられる。具体的には、1,5-D-アンヒドロマンニトール又はD-グルコースが例示される。かかる原液としては、例えば、1,5-AGを発酵・酵素反応や有機合成を利用して製造する際に得られる糖溶液が例示される。 The sugar contained in the stock solution is preferably two types from the viewpoint of exhibiting the selective adsorption ability of the strongly acidic ion exchange resin, and examples thereof include 1,5-AG and one other type of monosaccharide. Specifically, 1,5-D-anhydromannitol or D-glucose is exemplified. Examples of such stock solutions include sugar solutions obtained when 1,5-AG is produced using fermentation / enzymatic reaction or organic synthesis.
原液における糖濃度は、20重量%以上、好ましくは30重量%以上である。本発明においては、前記濃度になるよう、原液の糖濃度を公知の方法(例えば、濃縮)に従って調整してもよい。なお、本明細書において、原液における糖濃度とは、原液中の1,5-AGと他の1種類の単糖を合わせた濃度(総濃度)を意味する。 The sugar concentration in the stock solution is 20% by weight or more, preferably 30% by weight or more. In the present invention, the sugar concentration of the stock solution may be adjusted according to a known method (for example, concentration) so as to obtain the above concentration. In the present specification, the sugar concentration in the stock solution means the concentration (total concentration) of 1,5-AG in the stock solution combined with one other type of monosaccharide.
分離条件としては、溶離液として水を用いる他に、特に限定はなく適宜設定することができる。例えば、カラム温度は、好ましくは50℃以上、より好ましくは50〜70℃である。 Separation conditions are not particularly limited and can be set as appropriate, other than using water as an eluent. For example, the column temperature is preferably 50 ° C. or higher, more preferably 50 to 70 ° C.
かくして、1,5-AGと他の1種類の単糖を含有する原液から、1,5-AGを高純度、かつ、高収率で連続的に回収することが可能となる。 Thus, 1,5-AG can be continuously recovered with high purity and high yield from a stock solution containing 1,5-AG and one other type of monosaccharide.
以下、本発明を実施例に基づいて説明するが、本発明はこれらの実施例等によりなんら限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited at all by these Examples.
実施例1 1,5-AGと1,5-D-アンヒドロマンニトールの分離
糖合成反応で得られた糖含有液を、活性炭処理・卓上脱塩装置(サンアクティス社製、S-3型)を用いて脱色、脱塩後に、ロータリーエバポレーター(柴田科学機械工業社製)を用いて、糖濃度を約30重量%となるまで濃縮して原液を調製し、分析を行った。クロマト分離装置は8塔型で、充填塔にそれぞれローム&ハース社製「CR-1310」(Ca2+型)を充填し、カラム温度を60℃に保温した。クロマト分離条件は、原液供給量6.5mL/分、溶離液(水)供給量35mL/分、1,5-AG抜出量17.5mL/分、1,5-D-アンヒドロマンニトール抜出量24mL/分、ステップ時間10分とした。なお、原液の組成(重量比)は1,5-AGと1,5-アンヒドロマンニトールが87:13であった。
Example 1 Separation of 1,5-AG and 1,5-D-anhydromannitol The sugar-containing liquid obtained by the sugar synthesis reaction was treated with activated carbon and a tabletop desalting apparatus (manufactured by Sanactis, Model S-3) After decoloring and desalting using, a stock solution was prepared by concentration to a sugar concentration of about 30% by weight using a rotary evaporator (manufactured by Shibata Kagaku Kogyo Co., Ltd.) and analyzed. The chromatographic separation apparatus was an 8-column type, and each packed column was packed with “CR-1310” (Ca 2+ type) manufactured by Rohm & Haas, and the column temperature was kept at 60 ° C. Chromatographic separation conditions are: stock solution supply volume 6.5 mL / min, eluent (water) supply volume 35 mL / min, 1,5-AG withdrawal rate 17.5 mL / min, 1,5-D-anhydromannitol withdrawal rate 24 mL / Minute, step time was 10 minutes. The composition (weight ratio) of the stock solution was 87:13 for 1,5-AG and 1,5-anhydromannitol.
以上の条件で、原液2Lについて分離処理を行った。結果、1,5-AGを含む溶液を5.5L回収した。次に、該溶液を減圧濃縮により、糖濃度が80重量%以上になるまで濃縮したところ、結晶が析出し始め、約100gの白色結晶が得られた。なお、クロマト分離での回収率(原液に含まれる1,5-AG固形分重量に対する収量)及びHPLC純度(以下に示す条件により測定)は100%であった。
<HPLC条件>
カラム:Hitachi GL-611
検出器:RI
溶離液:10-5M NaOH
カラム槽温度:60℃
Under the above conditions, the separation process was performed on the stock solution 2L. As a result, 5.5 L of a solution containing 1,5-AG was recovered. Next, when the solution was concentrated by vacuum concentration until the sugar concentration reached 80% by weight or more, crystals started to precipitate, and about 100 g of white crystals were obtained. The recovery rate (yield based on the weight of 1,5-AG solid content contained in the stock solution) and HPLC purity (measured under the conditions shown below) in the chromatographic separation were 100%.
<HPLC conditions>
Column: Hitachi GL-611
Detector: RI
Eluent: 10 -5 M NaOH
Column bath temperature: 60 ° C
実施例2 1,5-AGとD-グルコースの分離
1,5-AGとD-グルコースからなる糖含有液を、実施例1と同様のクロマト分離装置で分析した。クロマト分離条件は、原液供給量8mL/分、溶離液(水)供給量20mL/分、1,5-AG抜出量14mL/分、D-グルコース抜出量14mL/分、ステップ時間8分とした。
Example 2 Separation of 1,5-AG and D-glucose
A sugar-containing liquid composed of 1,5-AG and D-glucose was analyzed by the same chromatographic separation apparatus as in Example 1. The chromatographic separation conditions were as follows: undiluted
以上の条件で、原液2Lについて分離処理を行った。結果、1,5-AGを含む溶液を4L回収し、実施例1と同様にして結晶を回収した(50g)。回収率(原液に含まれる1,5-AG固形分重量に対する収量)は85%、HPLC純度(以下に示す条件により測定)は98%であった。 Under the above conditions, the separation process was performed on the stock solution 2L. As a result, 4 L of a solution containing 1,5-AG was recovered, and crystals were recovered in the same manner as in Example 1 (50 g). The recovery rate (yield based on the weight of 1,5-AG solid content in the stock solution) was 85%, and the HPLC purity (measured under the conditions shown below) was 98%.
本発明の1,5-AGの分離方法は、1,5-AGを高純度、高収率で分離回収することができるため、1,5-AGを生産性よく大量に提供することができる。 The method for separating 1,5-AG according to the present invention can separate and recover 1,5-AG with high purity and high yield, and thus can provide 1,5-AG in large quantities with high productivity. .
Claims (5)
前記原液における糖濃度が20重量%以上であり、かつ、前記クロマト分離装置が、強酸性イオン交換樹脂が充填された複数の充填塔が直列かつ無端に連結されて形成された循環系と、該循環系への原液の供給部及び溶離液の供給部と、該循環系からの1,5-D-アンヒドログルシトール画分の排出部及び1,5-D-アンヒドログルシトール以外の糖画分の排出部とを有するものであり、前記循環系において、各供給部と各排出部を溶離液の供給部、1,5-D-アンヒドログルシトール画分の排出部、原液の供給部、及び1,5-D-アンヒドログルシトール以外の糖画分の排出部の順に設け、それらの位置関係を保ちつつ、一定方向に順次移動させることで循環系に形成される4つの帯域を移動させながら分離することを特徴とする方法。 A method for separating 1,5-D-anhydroglucitol from a stock solution containing a sugar containing 1,5-D-anhydroglucitol using water as an eluent using a chromatographic separator. ,
Sugar concentration in the stock solution is not less 20% by weight or more, and said chromatographic separation apparatus, the circulatory system in which a plurality of packing bed strongly acidic ion-exchange resins are filled is formed are connected in series and endless, Stock solution supply section and eluent supply section to the circulation system, discharge section of 1,5-D-anhydroglucitol fraction from the circulation system, and 1,5-D-anhydroglucitol In the circulatory system, each supply unit and each discharge unit is an eluent supply unit, a 1,5-D-anhydroglucitol fraction discharge unit. In this order, the stock solution supply section and the sugar fraction discharge section other than 1,5-D-anhydroglucitol are provided in this order, and the circulatory system is formed by sequentially moving them in a certain direction while maintaining their positional relationship. A method characterized by separating the four bands to be moved.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010141648A JP5531363B2 (en) | 2010-06-22 | 2010-06-22 | Method for separating 1,5-D-anhydroglucitol |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010141648A JP5531363B2 (en) | 2010-06-22 | 2010-06-22 | Method for separating 1,5-D-anhydroglucitol |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012007907A JP2012007907A (en) | 2012-01-12 |
JP5531363B2 true JP5531363B2 (en) | 2014-06-25 |
Family
ID=45538645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010141648A Active JP5531363B2 (en) | 2010-06-22 | 2010-06-22 | Method for separating 1,5-D-anhydroglucitol |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5531363B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110368716B (en) * | 2019-07-31 | 2023-11-14 | 赛普特环保技术(厦门)有限公司 | Sugar and inorganic salt separation system and method |
CN114231579A (en) * | 2022-01-13 | 2022-03-25 | 福州大学 | Method for continuously and circularly preparing D-psicose |
-
2010
- 2010-06-22 JP JP2010141648A patent/JP5531363B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012007907A (en) | 2012-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4516566A (en) | Separation of arabinose by selective adsorption on zeolitic molecular sieves | |
EP0115631B1 (en) | Separation of mannose by selective adsorption on zeolitic molecular sieves | |
US8802843B2 (en) | Tagatose production using simulated moving bed separation | |
KR102004941B1 (en) | Method of producing psicose efficiently | |
US4482761A (en) | Bulk separation of inositol and sorbitol by selective adsorption on zeolitic molecular sieves | |
JPH0262239B2 (en) | ||
JP2981257B2 (en) | New xylose production method | |
US9163050B2 (en) | Mannose production from palm kernel meal using simulated moving bed separation | |
ES2524893T3 (en) | Process for manufacturing high-purity sorbitol syrups from sucrose and uses | |
JP5531363B2 (en) | Method for separating 1,5-D-anhydroglucitol | |
Kuhn et al. | Evaluation of fructooligosaccharides separation using a fixed-bed column packed with activated charcoal | |
EP1162205B1 (en) | Process for producing 2-O-Alpha-D-Glucopyranosyl-L-ascorbic acid in high content | |
JP5615584B2 (en) | Method for producing high purity epilactose | |
JP5184768B2 (en) | Method for recovering sugar solution with high trehalose content and method for producing crystalline trehalose | |
WO2014158558A1 (en) | L-glucose production from l-glucose/l-mannose mixtures using simulated moving bed separation | |
US4591388A (en) | Separation of arabinose by selective adsorption on zeolitic molecular sieves | |
US4880920A (en) | Process for separating ketoses from alkaline-or pyridine-catalyzed isomerization products | |
US4544778A (en) | Bulk separation of sorbitol by selective adsorption on zeolitic molecular sieves | |
USRE33105E (en) | Separation of mannose by selective adsorption on zeolitic molecular sieves | |
JPH02124895A (en) | Separation of lactulose | |
JP2834807B2 (en) | Production method of refined lactulose | |
Saari | Industrial scale chromatographic separation of valuable compounds from biomass hydrolysates and side streams | |
WO2024086623A1 (en) | Salt and sugar separation process | |
JPH01199583A (en) | Separation and recovery of erythritol from erythritol-containing culture fluid | |
JPS6365054B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130527 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140117 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140122 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140218 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140310 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140404 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5531363 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |