JPH04340504A - Gaseous argon laser mirror - Google Patents

Gaseous argon laser mirror

Info

Publication number
JPH04340504A
JPH04340504A JP11202291A JP11202291A JPH04340504A JP H04340504 A JPH04340504 A JP H04340504A JP 11202291 A JP11202291 A JP 11202291A JP 11202291 A JP11202291 A JP 11202291A JP H04340504 A JPH04340504 A JP H04340504A
Authority
JP
Japan
Prior art keywords
refractive index
layer
layer consisting
index material
laser mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11202291A
Other languages
Japanese (ja)
Other versions
JP3084784B2 (en
Inventor
Keiji Yamada
山田 圭二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP03112022A priority Critical patent/JP3084784B2/en
Publication of JPH04340504A publication Critical patent/JPH04340504A/en
Application granted granted Critical
Publication of JP3084784B2 publication Critical patent/JP3084784B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)

Abstract

PURPOSE:To decrease the number of laminations of multilayered films and to decrease the stresses in the films by forming the film of the high refractive index material having a multilayered film structure formed of respective materials having a low refractive index, middle refractive index and high refractive index on a glass plate and having a film thickness of integer times lambda/4 to the wavelength desired to be oscillated on a substrate side. CONSTITUTION:This laser mirror consists of 25 layers in total successively laminated on the optical glass plate (1.52 refractive index) 1 with the 1st layer consisting of the high- refractive index material (TiO2, 7lambda/4, 2.35 refractive index), the 2nd layer consisting of the low-refractive index material (SiO2, 3lambda/4, 1.44 refractive index), the 3rd layer consisting of the high-refractive index material (ZrD2, 11lambda/4, 2.05 refractive index), the 4th layer consisting of the same material as the material of the 2nd layer, the 5th layer consisting of the intermediate refractive index material (Al2O3, lambda/4 1.67 refractive index), the 6th layer consisting of the same material as the material of the 7th layer, the 7th layer consisting of the same material as the material of the 5th layer ... and the outermost layer consisting of the intermediate refractive index material (Al2O3, lambda/4, 1.67 refractive index). The control of the transmittance of the wavelength necessary for the oscillation and the control of the transmittance of the wavelength desired to suppress the oscillation are executed if the mirror is formed in such a manner.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、アルゴンガスレーザミ
ラーに関し、特に単一の発振波長を取り出すために使用
する狭い波長帯域を有するアルゴンガスレーザミラーに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an argon gas laser mirror, and more particularly to an argon gas laser mirror having a narrow wavelength band used to extract a single oscillation wavelength.

【0002】0002

【従来の技術】従来のこの種レーザミラーは、たとえば
特開昭60−218601号公報に示されているような
多層膜ミラーがある。このミラーはガラス板上に光学的
膜厚が3λ/4の中間屈折率物質と(Al2 O3 )
と低屈折率物質(SiO2 )を交互に33層以上蒸着
によって積層したものであり、そのレーザミラーの膜の
断面模式図は図5のようになっている。
2. Description of the Related Art Conventional laser mirrors of this type include, for example, a multilayer mirror as disclosed in Japanese Patent Laid-Open No. 60-218601. This mirror is made of a medium refractive index material (Al2O3) with an optical thickness of 3λ/4 on a glass plate.
33 or more layers of a low refractive index material (SiO2) and a low refractive index material (SiO2) are alternately stacked by vapor deposition, and a schematic cross-sectional view of the film of the laser mirror is shown in FIG.

【0003】また、別の例としては、特開平1−286
476号公報に示されているもので、透過率設定部と平
坦化部とから成る構成としたもので、そのレーザミラー
の膜の断面模式図を図6に示した。
[0003] Another example is Japanese Patent Laid-Open No. 1-286
This laser mirror is disclosed in Japanese Patent No. 476 and has a structure consisting of a transmittance setting section and a flattening section, and a schematic cross-sectional view of the film of the laser mirror is shown in FIG.

【0004】0004

【発明が解決しようとする課題】以上示した従来の膜構
成によるレーザミラーは、いずれの構成においても初期
においては設計波長の透過率又は反射率を満足すること
は可能である。しかしながら前者の場合、中間屈折率物
質(Al3 O3 )と低屈折率物質(SiO2 )で
あるために積層数が多く膜厚も厚くなり、製造工数の増
大とストレスの増大に伴ない膜のクラックやダメージを
発生しやすいと云う問題があった。
[Problems to be Solved by the Invention] In any of the laser mirrors having the conventional film configurations shown above, it is possible to satisfy the transmittance or reflectance of the design wavelength in the initial stage. However, in the case of the former, since the material is an intermediate refractive index material (Al3O3) and a low refractive index material (SiO2), the number of laminated layers is large and the film thickness is thick, resulting in cracks in the film due to increased manufacturing man-hours and increased stress. There was a problem in that it was easy to cause damage.

【0005】また後者の場合においては、前者以上に積
層数が多く膜厚が厚くなるため製造工数やストレスが増
大し、レーザ装置の製造工程におけるフリットシールの
際にクラックを生じるばかりでなく最外層(空気側)に
TiO2 を用いているために、真空加熱処理の時にT
iO2 膜の変質によって、TiO(2−X) 膜に変
化し、吸収増等のロスの原因となり、レーザ出力の低下
をまねくと云う問題点があった。
In the latter case, the number of laminated layers is larger than the former, and the film thickness is thicker, which increases the number of manufacturing steps and stress, which not only causes cracks during frit sealing in the manufacturing process of the laser device, but also damages the outermost layer. Since TiO2 is used on the air side, T
There was a problem in that the iO2 film changed into a TiO(2-X) film due to deterioration, causing losses such as increased absorption, and resulting in a decrease in laser output.

【0006】[0006]

【課題を解決するための手段】本発明のレーザミラーは
、高屈折率物質と、低屈折率物質と中間屈折率物質の少
なくとも3つ以上の物質から形成される多層膜の構成と
し、発振に必要な波長の透過率又は反射率と発振を阻止
したい波長の透過率を有するようにしかつ、積層数及び
ストレスを少なくしたものである。
[Means for Solving the Problems] The laser mirror of the present invention has a multilayer film structure formed from at least three materials: a high refractive index material, a low refractive index material, and an intermediate refractive index material, and It has a transmittance or reflectance for a necessary wavelength and a transmittance for a wavelength whose oscillation is desired to be prevented, and the number of laminated layers and stress are reduced.

【0007】[0007]

【作用】一般のアルゴンガスレーザには、大出力を取り
出す水冷アルゴンガスレーザと、小・中出力を取り出す
内部ミラー形の空冷アルゴンレーザとがある。発明者ら
の実験結果によれば水冷アルゴンレーザ(放電電流30
A)の場合の488nmの透過率は4.5〜5.5%、
空冷アルゴンレーザ(放電電流8A)の場合488nm
の透過率は2〜3%が最適透過率であると云う結果であ
った。更に空冷アルゴンレーザの場合発振させたい波長
を488nmとし、その透過率を2〜3%、496.5
nmの透過率9〜13%に設定し、放電電流8Aとした
場合の出力は平均22mWであった。除々に放電電流を
上昇させ、12Aとした時の出力は波長488nmで平
均36mWであった。放電電流を12Aまで上昇させて
も、波長496.5nm(透過率9〜13%)の発振は
完全に阻止されることが明らかとなった。
[Operation] General argon gas lasers include water-cooled argon gas lasers that output high output, and internal mirror-type air-cooled argon lasers that output small to medium output. According to the inventors' experimental results, water-cooled argon laser (discharge current 30
In case A), the transmittance at 488 nm is 4.5 to 5.5%,
488nm for air-cooled argon laser (discharge current 8A)
The results showed that the optimum transmittance was 2 to 3%. Furthermore, in the case of an air-cooled argon laser, the wavelength to be oscillated is 488 nm, and the transmittance is 2 to 3%, 496.5 nm.
When the transmittance in nm was set to 9 to 13% and the discharge current was 8 A, the average output was 22 mW. When the discharge current was gradually increased to 12 A, the average output was 36 mW at a wavelength of 488 nm. It has become clear that even if the discharge current is increased to 12 A, oscillation at a wavelength of 496.5 nm (transmittance 9 to 13%) is completely blocked.

【0008】[0008]

【実施例】次に本発明について図面を参照して説明する
。図1は本発明の第1の実施例のレーザミラーの分光透
過率特性を示す図であり、図2は第1の実施例の膜構成
の断面模式図である。光学ガラス板1(BK−7,屈折
率1.52)上に第1層として高屈折率物質(TiO2
 7λ/4,屈折率2.35)、第2層として低屈折率
物質(SiO2 3λ/4,屈折率1.44)、第3層
として高屈折率物質(ZrD2 11λ/4,屈折率2
.05)、第4層は第2層と同じ、第5層として中間屈
折率物質(Al2 O3 λ/,、屈折率1.67)、
第6層は第2層と同じ第7層は第5層と同じ…順次積層
し、最外層(空気側)は中間屈折率(Al2 O3λ/
4屈折率1.67)とした合計25層の構成からなって
いる。なお、λ(基準波長)はいずれの膜も488nm
に設定してある。  図1から明らかなように、この構
成による透過率は、488nmでは2.07%、476
.5nmは20%以上、496.5nmでは10%以上
であることがわかる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be explained with reference to the drawings. FIG. 1 is a diagram showing the spectral transmittance characteristics of a laser mirror according to the first embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view of the film structure of the first embodiment. A high refractive index material (TiO2
7λ/4, refractive index 2.35), a low refractive index material (SiO2 3λ/4, refractive index 1.44) as the second layer, and a high refractive index material (ZrD2 11λ/4, refractive index 2) as the third layer.
.. 05), the fourth layer is the same as the second layer, the fifth layer is an intermediate refractive index material (Al2O3 λ/, refractive index 1.67),
The 6th layer is the same as the 2nd layer. The 7th layer is the same as the 5th layer... They are laminated in order, and the outermost layer (air side) has an intermediate refractive index (Al2O3λ/
It consists of a total of 25 layers with a refractive index of 1.67). In addition, λ (reference wavelength) is 488 nm for both films.
It is set to . As is clear from Figure 1, the transmittance with this configuration is 2.07% at 488 nm, 476 nm.
.. It can be seen that 5 nm is 20% or more, and 496.5 nm is 10% or more.

【0009】図3は、本発明の第2の実施例のレーザミ
ラーの分光透過率特性を示す図であり、図4は、第2の
実施例の膜構成の断面模式図である。第1の実施例同様
、λはいずれの膜も488nmに設定し、光学ガラス板
はBK−7である。ガラス側から第1層として高屈折率
物質(TiO2 7λ/4,屈折率2.35)、第2層
として低屈折率物質(SiO2 3λ/4,屈折率1.
44)、第3層として中間屈折率物質(Al2 O3 
3λ/4,屈折率1.67)、第4層は第2層と同じ、
第5層は第3層と同じ、…順次積層し合計27層の構成
である。図3から明らかなように、透過率は488nm
で2.3%、476.5nmでは20%以上、496.
5nmでは10%以上であることがわかる。
FIG. 3 is a diagram showing the spectral transmittance characteristics of a laser mirror according to a second embodiment of the present invention, and FIG. 4 is a schematic cross-sectional view of the film structure of the second embodiment. As in the first example, λ was set to 488 nm for both films, and the optical glass plate was BK-7. From the glass side, the first layer is a high refractive index material (TiO2 7λ/4, refractive index 2.35), and the second layer is a low refractive index material (SiO2 3λ/4, refractive index 1.
44), intermediate refractive index material (Al2O3
3λ/4, refractive index 1.67), the fourth layer is the same as the second layer,
The fifth layer is the same as the third layer, and has a structure of 27 layers in total, which are sequentially laminated. As is clear from Figure 3, the transmittance is 488 nm.
2.3% at 476.5 nm, more than 20% at 496.5 nm.
It can be seen that at 5 nm, it is 10% or more.

【0010】以上説明した2つの実施例は空冷アルゴン
ガスレーザを対象としたものであるが、本発明の構成は
、他のレーザ装置においても同様に応用できることは云
うまでもない。
Although the two embodiments described above are directed to air-cooled argon gas lasers, it goes without saying that the structure of the present invention can be similarly applied to other laser devices.

【0011】[0011]

【発明の効果】以上説明したように、本発明のレーザミ
ラーは高屈折率物質,中間屈折率物質,低屈折率物質の
少なくとも三つ以上の物質から形成された多層膜の膜構
成とすることで発振に必要な波長の透過率の制御と発振
を阻止したい波長の透過率の制御が出来、多層膜の積層
数を少なく出来るだけでなく、全膜厚を薄くすることに
よって、膜のストレスを軽減させレーザ装置の製造工程
でうける加熱処理の時のクラックやダメージ等の発生を
防止出来る。
[Effects of the Invention] As explained above, the laser mirror of the present invention has a multilayer film structure made of at least three materials: a high refractive index material, an intermediate refractive index material, and a low refractive index material. It is possible to control the transmittance of the wavelength necessary for oscillation and the transmittance of the wavelength you want to prevent oscillation, which not only reduces the number of layers in the multilayer film, but also reduces stress on the film by reducing the total film thickness. This can prevent the occurrence of cracks, damage, etc. during heat treatment during the manufacturing process of laser devices.

【0012】さらには、ミラー膜構成の最外層には安定
な膜とするため真空加熱処理による膜の変質並びに出力
低下を防止できるという効果を有する。さらに製造工数
の短縮に伴なう経済性,膜物質の選択や組合せ応用など
容易になる等その効果が大きい。
Furthermore, since the outermost layer of the mirror film structure is a stable film, it has the effect of preventing film deterioration and output reduction due to vacuum heat treatment. Furthermore, it has great effects, such as economical efficiency due to the reduction in manufacturing man-hours, and ease of selecting membrane materials and applying combinations.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の第1の実施例のレーザミラーの分光透
過率特性を示す図である。
FIG. 1 is a diagram showing spectral transmittance characteristics of a laser mirror according to a first embodiment of the present invention.

【図2】本発明の第1の実施例の膜の断面模式図である
FIG. 2 is a schematic cross-sectional view of a membrane of the first embodiment of the present invention.

【図3】本発明の第2の実施例のレーザミラーの分光透
過率特性を示す図である。
FIG. 3 is a diagram showing spectral transmittance characteristics of a laser mirror according to a second embodiment of the present invention.

【図4】本発明の第2の実施例の膜の断面模式図である
FIG. 4 is a schematic cross-sectional view of a membrane according to a second embodiment of the present invention.

【図5】従来のレーザミラーの断面模式図である。FIG. 5 is a schematic cross-sectional view of a conventional laser mirror.

【図6】従来の他のレーザミラーの断面模式図である。FIG. 6 is a schematic cross-sectional view of another conventional laser mirror.

【符号の説明】[Explanation of symbols]

1    ガラス板 1 Glass plate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  同時に複数の発振波長を有するアルゴ
ンガスレーザの発振させたい波長においては必要なだけ
の反射率を有し、同時に発振する不必要な発振波長につ
いては発振を阻止するのに必要な透過率を有するアルゴ
ンガスレーザミラーにおいて、該ミラーを構成する膜が
、1.3〜1.5の低屈折率物質から成る膜と、1.5
1〜1.9の中屈折率物質から成る膜と、1.91〜2
.3の高屈折率物質から成る膜から形成される多層膜の
構造を有し、且つ、複数の発振波長の中の発振させたい
波長λに対し、λ/4の整数倍の光学的膜厚を有する高
屈折率物質からなる膜を少なくとも一層以上基板側に形
成したことを特徴とするアルゴンガスレーザミラー。
Claim 1: An argon gas laser that has multiple oscillation wavelengths at the same time has the necessary reflectance at the desired wavelength to oscillate, and has the necessary transmission to prevent oscillation at unnecessary oscillation wavelengths that oscillate at the same time. In an argon gas laser mirror having a refractive index of
A film made of a medium refractive index material of 1 to 1.9, and 1.91 to 2
.. It has a multilayer film structure formed from a film made of a high refractive index material of No. 3, and has an optical film thickness that is an integer multiple of λ/4 for the wavelength λ that is desired to oscillate among multiple oscillation wavelengths. 1. An argon gas laser mirror characterized in that at least one layer of a film made of a high refractive index material is formed on a substrate side.
【請求項2】  高屈折率物質としてTiO2 又はZ
rO2 を用いる請求項1記載のアルゴンガスレーザミ
ラー。
Claim 2: TiO2 or Z as a high refractive index substance
The argon gas laser mirror according to claim 1, using rO2.
JP03112022A 1991-05-17 1991-05-17 Argon gas laser mirror Expired - Fee Related JP3084784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03112022A JP3084784B2 (en) 1991-05-17 1991-05-17 Argon gas laser mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03112022A JP3084784B2 (en) 1991-05-17 1991-05-17 Argon gas laser mirror

Publications (2)

Publication Number Publication Date
JPH04340504A true JPH04340504A (en) 1992-11-26
JP3084784B2 JP3084784B2 (en) 2000-09-04

Family

ID=14576030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03112022A Expired - Fee Related JP3084784B2 (en) 1991-05-17 1991-05-17 Argon gas laser mirror

Country Status (1)

Country Link
JP (1) JP3084784B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198935A (en) * 1993-12-28 1995-08-01 Koshin Kogaku:Kk Selecting method of temperature coefficient for wavelength shift of multilayer film filter and multilayer film filter having almost zero temperature coefficient of wavelength shift
US8174757B2 (en) 2002-01-04 2012-05-08 The Furukawa Electric Co., Ltd. Wavelength determining apparatus, method and program for thin film thickness monitoring light

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198935A (en) * 1993-12-28 1995-08-01 Koshin Kogaku:Kk Selecting method of temperature coefficient for wavelength shift of multilayer film filter and multilayer film filter having almost zero temperature coefficient of wavelength shift
US8174757B2 (en) 2002-01-04 2012-05-08 The Furukawa Electric Co., Ltd. Wavelength determining apparatus, method and program for thin film thickness monitoring light

Also Published As

Publication number Publication date
JP3084784B2 (en) 2000-09-04

Similar Documents

Publication Publication Date Title
US4615034A (en) Ultra-narrow bandwidth optical thin film interference coatings for single wavelength lasers
US5274661A (en) Thin film dielectric coating for laser resonator
JP3332879B2 (en) Dichroic mirror
JP3691544B2 (en) Manufacturing method of surface emitting laser
JP2754214B2 (en) Dielectric multilayer film capable of compensating frequency chirp of light pulse
JP5132902B2 (en) Antireflection film for passband of photonic band gap crystal
JPH02182447A (en) Dielectric multilayer reflecting film
JPH04340504A (en) Gaseous argon laser mirror
JPS61182288A (en) Gas laser
JP2004198778A (en) Two-wavelength reflection preventing film and forming method of the film
US5581395A (en) Non-linear optical crystal element
JPH0418784A (en) Protective film for semiconductor laser element
JPH10153705A (en) Dichroic mirror
JPH01286476A (en) Laser mirror having flat spectral characteristics in narrow wavelength band
US5312472A (en) Method for manufacturing resonant cavity for laser
JPH0784105A (en) Reflecting film
JP2001013304A (en) Optical parts
JPH0763907A (en) Reflection mirror for laser
JPH0461181A (en) Etalon
JPH07244202A (en) Dual wavelength anti-reflection film
JP2005221867A (en) Reflection type optical device
JPH05188203A (en) Antireflection film for caf2 substrate
JPH10232312A (en) Optical branching filter
JPH07154033A (en) Semiconductor laser pumped second harmonic generating solid state laser
JPH07244204A (en) Dual wavelength anti-reflection film

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000606

LAPS Cancellation because of no payment of annual fees