JPH05188203A - Antireflection film for caf2 substrate - Google Patents

Antireflection film for caf2 substrate

Info

Publication number
JPH05188203A
JPH05188203A JP4020665A JP2066592A JPH05188203A JP H05188203 A JPH05188203 A JP H05188203A JP 4020665 A JP4020665 A JP 4020665A JP 2066592 A JP2066592 A JP 2066592A JP H05188203 A JPH05188203 A JP H05188203A
Authority
JP
Japan
Prior art keywords
film
layer
substrate
optical
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4020665A
Other languages
Japanese (ja)
Inventor
Takashi Iwabuchi
俊 岩渕
Takeo Miyata
威男 宮田
Yuuji Hashidate
雄二 橋立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsushita Giken KK
Original Assignee
Matsushita Giken KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Giken KK filed Critical Matsushita Giken KK
Priority to JP4020665A priority Critical patent/JPH05188203A/en
Publication of JPH05188203A publication Critical patent/JPH05188203A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To provide the antireflection film for a CaF2-substrate which is usable for optical parts for large-output high-repetition excimer lasers, has the sufficient heat resistance to enable the use of the optical parts even in a high-temp. environment, is mild in the film thickness-controllability at the time of production and is small in the number of layers. CONSTITUTION:The antireflection film is formed of the two-layered structure constituted by successively forming an MgO film as a 1st layer and an SiO2 film as a 2nd layer on an optically polished CaF2 substrate and selecting the optical film thicknesses of the time respectively at 0.33 to 0.38lambda and 0.19 to 0.21lambda ranges (where lambda is a central wavelength). The antireflection film is otherwise formed of the three-layered structure constituted by successively forming an SiO2 film as a low-refractive index material for the 1st layer, an MgO film as a high-refractive index material for the 2nd layer and an SiO2 film as a low-refractive index material for the 3rd layer and setting the respective optical film thicknesses at 0.23 to O.27lambda, 0.35 to 0.40lambda and 0.18 to 0.20lambda ranges.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、大出力・高繰り返しエ
キシマレーザをはじめとする紫外用光学機器に使用され
る光学部品(ウインドウ、レンズ、ビームスプリッタ
等)の素材であるCaF2基板用の反射防止膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a CaF 2 substrate which is a material for optical components (windows, lenses, beam splitters, etc.) used in ultraviolet optical equipment such as high-power / high-repetition excimer lasers. The present invention relates to an antireflection film.

【0002】[0002]

【従来の技術】誘電体多層膜は、赤外および可視、紫外
の各種レーザ用光学部品等(全反射鏡、ビームスプリッ
タ、レンズ、窓材等)に用いられているが、目標とする
透過特性もしくは反射特性を得るために、光学基板表面
上に誘電体物質を真空蒸着法等で積層し、反射防止膜や
部分反射膜あるいは高反射膜を形成することは、一般技
術として知られているが(例えば、久保田他編「光学技
術ハンドブック」)、従来の可視用カメラレンズ等に用
いられている反射防止膜は、ほとんどの場合、紫外領域
において吸収があり、これらの反射防止膜用誘電体多層
膜材料をそのままエキシマレーザ等の紫外領域に適用す
ることはできない。使用する波長領域において光学特性
の良い誘電体多層膜材料を選出して使用する必要があ
る。
2. Description of the Related Art Dielectric multilayer films are used in various infrared, visible, and ultraviolet laser optical components (total reflection mirrors, beam splitters, lenses, window materials, etc.). Alternatively, it is known as a general technique to stack a dielectric substance on the surface of an optical substrate by a vacuum deposition method or the like to obtain a reflection characteristic and form an antireflection film, a partial reflection film or a high reflection film. (For example, Kubota et al. “Optical Technology Handbook”), conventional antireflection films used for visible camera lenses and the like have absorption in the ultraviolet region in most cases, and these dielectric multilayers for antireflection films are used. The film material cannot be directly applied to the ultraviolet region such as excimer laser. It is necessary to select and use a dielectric multilayer film material having good optical characteristics in the wavelength range to be used.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、高・低
屈折率物質として用いられる多くの酸化物は、抵抗加熱
法や電子ビーム蒸着法等の従来の蒸着方法や条件によっ
て熱分解が起こり低級酸化物に移行し、その結果、吸収
の増加をもたらし、さらに屈折率や密度等の光学および
物理定数が大きく変化する。また、紫外線領域から赤外
線領域までの広範囲にわたり光学的に透明であり製作が
容易な弗化マグネシウム(以下MgF2と記す)が、反射
防止膜用の低屈折率物質として多く用いられているが、
MgF2膜の吸湿性によりレーザ光照射に伴い吸収熱が増
大することで、照射部分のMgF2膜が劣化し、透過率が
大きく低下してしまうという課題を有していた。
However, many oxides used as high and low refractive index substances undergo thermal decomposition by conventional vapor deposition methods and conditions such as resistance heating and electron beam vapor deposition, and are lower oxides. , Which results in an increase in absorption, and further changes in optical and physical constants such as refractive index and density. Magnesium fluoride (hereinafter referred to as MgF 2 ) which is optically transparent and easy to manufacture in a wide range from the ultraviolet region to the infrared region is often used as a low refractive index material for an antireflection film.
Due to the hygroscopicity of the MgF 2 film, the absorbed heat increases with the irradiation of the laser beam, so that the MgF 2 film at the irradiated portion is deteriorated, and the transmittance is greatly reduced.

【0004】このように、従来の多層膜形成方法および
多層膜材料を用いて作製したレ−ザ用光学部品は耐光力
が低く、使用できるパワーレベルは、高々100W程度で
ある。また、破壊までに至らなくとも吸収光により発生
した熱により、膜の屈折率や密度が変わってスペクトル
が大きく変化するという課題を有していた。
As described above, the optical parts for laser produced by the conventional method of forming a multilayer film and the conventional multilayer film material have low light resistance, and the usable power level is about 100 W at most. Further, there is a problem that the heat generated by the absorbed light changes the refractive index and the density of the film and the spectrum largely changes even before the destruction.

【0005】さらに、紫外線領域の出力光を発生する代
表的なエキシマレーザの出力が2KW、繰り返し数が1KH
zともなると、使用する光学部品にとっては、パルスレ
ーザであるはずのエキシマレーザ光でも連続光と同様な
熱損傷を受ける。それに加えて、従来より1桁以上高い
レーザ光が照射されることにより、光学部品にとって僅
かな吸収でも発生する熱が問題となる。
Furthermore, the output of a typical excimer laser that generates output light in the ultraviolet region is 2 KW and the number of repetitions is 1 KH.
When it comes to z, the excimer laser light, which should be a pulse laser for the optical components used, is also subject to the same thermal damage as continuous light. In addition to this, the irradiation of the laser beam, which is higher than that of the conventional one by one digit or more, causes a problem that the heat generated by even a slight absorption is generated in the optical component.

【0006】特に、ビーム照射部位の温度上昇が激しく
なって局所加熱が発生する。その結果、最初に光学部品
を構成している中で、一番熱に弱い多層膜部分の破壊が
起こり、次に基板等の熱変形が発生し、最後には光学部
品そのものが破壊されるという課題も有していた。具体
的には、従来法で作製され多層膜は300℃加熱でスペク
トルが大幅に変化するという課題を有していた。
In particular, the temperature of the beam-irradiated portion increases sharply and local heating occurs. As a result, in the first part of the optical component, the multilayer film part, which is the most vulnerable to heat, is destroyed, then the substrate is thermally deformed, and finally the optical component itself is destroyed. It also had challenges. Specifically, the multilayer film produced by the conventional method had a problem that the spectrum was significantly changed by heating at 300 ° C.

【0007】本発明は、このような従来の技術の課題を
解決するために考えられたもので、大出力・高繰り返し
エキシマレーザ用光学部品に使用でき、かつ、光学部品
が高温に曝されるような環境の下でも使用できる十分な
耐熱性を有した、CaF2基板用の反射防止膜を提供する
ことを目的とするものである。
The present invention was devised in order to solve the problems of the prior art as described above, and can be used for an optical component for a high output / high repetition excimer laser, and the optical component is exposed to a high temperature. It is an object of the present invention to provide an antireflection film for a CaF 2 substrate which has sufficient heat resistance so that it can be used even under such an environment.

【0008】[0008]

【課題を解決するための手段】この目的を達成するため
に、本発明は、光学研磨された弗化カルシュウム(Ca
2)基板上に、低屈折率物質として二酸化珪素(SiO
2)膜、高屈折率物質として酸化マグネシュウム(Mg
O)膜を二層もしくは三層構造となるように、それぞれ
の膜を順次形成したものである。
In order to achieve this object, the present invention provides an optically polished calcium fluoride (Ca).
On the F 2 ) substrate, silicon dioxide (SiO 2 ) is used as a low refractive index substance.
2 ) Film, magnesium oxide (Mg
O) The respective films are sequentially formed so as to have a two-layer or three-layer structure.

【0009】[0009]

【作用】本発明は前記形成方法により、低級酸化物に移
行しやすい低屈折物質である二酸化珪素(SiO2)膜を
形成する場合のみスパッタリング用不活性ガスに酸素ガ
スを注入することにより、膜の低級酸化物化を抑制して
低吸収率化を図り、さらに高・低屈折率物質に吸湿性の
ない酸化物(高:MgO、低:SiO2)を用い、屈折率
や密度等の光学および物理定数を安定化することで、大
出力・高繰り返しエキシマレーザ用光学部品に使用で
き、かつ、光学部品が高温に曝されるような環境の下で
も使用できる十分な耐熱性を有するCaF2基板用反射防
止膜を得ることができる。
According to the present invention, an oxygen gas is injected into an inert gas for sputtering only when a silicon dioxide (SiO 2 ) film, which is a low-refractive substance that easily migrates to a lower oxide, is formed by the above-mentioned formation method. In order to achieve a low absorptivity by suppressing the formation of a low-grade oxide, a non-hygroscopic oxide (high: MgO, low: SiO 2 ) is used as a high / low refractive index substance, and By stabilizing the physical constants, a CaF 2 substrate that can be used as an optical component for a high-power, high-repetition excimer laser and has sufficient heat resistance that can be used even in an environment where the optical component is exposed to high temperatures The antireflection film for use can be obtained.

【0010】[0010]

【実施例】【Example】

(実施例1)本発明のCaF2基板用反射防止膜の第1実
施例について図面を参照しながら説明する。図1は本発
明の一実施例におけるCaF2基板の片面のみに三層反射
防止膜を形成した場合の断面図である。
(Embodiment 1) A first embodiment of the antireflection film for a CaF 2 substrate of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing a case where a three-layer antireflection film is formed on only one surface of a CaF 2 substrate in one embodiment of the present invention.

【0011】図1に示すように、光学研磨されたCaF2
基板1の片面に、この基板1に接する第1層目の低屈折
率物質としての二酸化珪素(SiO2)膜2を、光学的膜
厚(nd)が0.25λ(λが248nmのKrFの場合では6
2nm)となるように形成し、その上に、第2層目の高
屈折率物質としての酸化マグネシュウム(MgO)膜3
を、光学的膜厚(nd)が0.375λ(λが248nmのKr
Fの場合では93nm)となるように形成し、その上
に、、第3層目の低屈折率物質としての二酸化珪素(S
iO2)膜4を、光学的膜厚(nd)が0.19λ(λが248
nmのKrFの場合では47nm)となるように形成す
る。
As shown in FIG. 1, optically polished CaF 2
On one surface of the substrate 1, a silicon dioxide (SiO 2 ) film 2 as a first low-refractive index material which is in contact with the substrate 1 is provided, and an optical film thickness (nd) is 0.25λ (where λ is KrF of 248 nm). Then 6
2 nm), and a magnesium oxide (MgO) film 3 as a second layer having a high refractive index material is formed thereon.
With an optical film thickness (nd) of 0.375λ (where λ is Kr of 248 nm).
In the case of F, it is formed to have a thickness of 93 nm, and silicon dioxide (S
The iO 2) film 4, an optical film thickness (nd) is 0.19λ (λ 248
In the case of KrF of nm, it is formed to be 47 nm).

【0012】図3は、図1に示した反射防止膜の第1層
目の低屈折率物質としての二酸化珪素(SiO2)膜2に
ついてのみλが248nm(KrF用の場合)とした場合に
おける光学的膜厚(nd)62nmのみを±7%変化させ
た場合の分光反射率特性計算結果を示す。
FIG. 3 shows the case where λ is 248 nm (for KrF) only for the silicon dioxide (SiO 2 ) film 2 as the low refractive index material of the first layer of the antireflection film shown in FIG. The calculation result of the spectral reflectance characteristic when only the optical film thickness (nd) of 62 nm is changed by ± 7% is shown.

【0013】図4は、図1に示した反射防止膜の第2層
目の高屈折率物質としての酸化マグネシュウム(Mg
O)膜3についてのみλが248nm(KrF用の場合)と
した場合における光学的膜厚(nd)93nmのみを±7
%変化させた場合の分光反射率特性計算結果を示す。
FIG. 4 is a graph showing magnesium oxide (Mg) as a high refractive index material for the second layer of the antireflection film shown in FIG.
O) Only the film 3 has an optical film thickness (nd) of 93 nm when λ is 248 nm (for KrF) ± 7
The calculation result of the spectral reflectance characteristic when the percentage is changed is shown.

【0014】図5は、図1に示した反射防止膜の第3層
目の低屈折率物質としての二酸化珪素(SiO2)膜4に
ついてのみλが248nm(KrF用の場合)とした場合に
おける光学的膜厚(nd)47nmのみを±7%膜厚を変
化させた場合の分光反射率特性計算結果を示す。
FIG. 5 shows the case where λ is 248 nm (for KrF) only for the silicon dioxide (SiO 2 ) film 4 as the low refractive index material of the third layer of the antireflection film shown in FIG. The calculation result of the spectral reflectance characteristic when the optical film thickness (nd) 47 nm is changed by ± 7% is shown.

【0015】図6は、図1に示した反射防止膜の全ての
層についてλが248nm(KrF用の場合)とした場合に
おけるそれぞれの光学的膜厚(nd)を±7%変化させ
た場合の分光反射率特性計算結果を示す。
FIG. 6 shows the case where the optical thickness (nd) of each layer of the antireflection film shown in FIG. 1 is changed by ± 7% when λ is 248 nm (for KrF). The calculation result of the spectral reflectance characteristic of is shown.

【0016】マグネトロン・スパッタリング法を用い、
低屈折率物質であるSiO2膜の形成時のみアルゴンガス
に酸素ガスを10%注入しながら形成し、高屈折率物質
には吸湿性のない酸化マグネシュウム(MgO)膜を用
い、光学的膜厚を±7%変化させた場合でも、図3〜図
6の特性曲線より明らかなように、反射率が0.5%以下
の反射防止特性の優れた反射防止膜が得られ、しかも吸
収が少なく高耐熱性が期待できる。
Using the magnetron sputtering method,
Only when forming the SiO 2 film which is a low refractive index material, oxygen gas is injected into argon gas at a rate of 10%, and as the high refractive index material, a non-hygroscopic magnesium oxide (MgO) film is used. As can be seen from the characteristic curves of FIGS. 3 to 6, even when the value is changed by ± 7%, an antireflection film having an antireflection property with a reflectance of 0.5% or less can be obtained, and the absorption is small and the heat resistance is high. Can be expected.

【0017】(実施例2)本発明のCaF2基板用反射防
止膜の第2実施例について図面を参照しながら説明す
る。
(Embodiment 2) A second embodiment of the antireflection film for a CaF 2 substrate of the present invention will be described with reference to the drawings.

【0018】図2は、CaF2基板用2層反射防止膜1の
片面のみに膜形成した場合の断面を示した図であり、光
学研磨されたCaF2基板1の片面に、この基板1に接す
る第1層目の高屈折率物質としての酸化マグネシュウム
(MgO)膜5を、光学的膜厚(nd)が0.355λ(λが
248nmのKrFの場合では88nm)となるように形成
し、その上に、第2層目の低屈折率物質としての二酸化
珪素(SiO2)膜6を、光学的膜厚(nd)が0.20λ
(λが248nmのKrFの場合では50nm)となるように
形成する。
FIG. 2 is a view showing a cross section of a double-layer antireflection film 1 for a CaF 2 substrate when the film is formed on only one side of the CaF 2 substrate. The optical film thickness (nd) of the magnesium oxide (MgO) film 5 as the high refractive index material of the first layer is 0.355λ (where λ is
In the case of KrF of 248 nm, it is formed to have a thickness of 88 nm), and a silicon dioxide (SiO 2 ) film 6 as a second low-refractive index material is formed thereon to have an optical film thickness (nd) of 0.20λ.
(50 nm when λ is KrF of 248 nm).

【0019】図7は、図2に示した2層反射防止膜の第
1層目の高屈折率物質としての酸化マグネシュウム(M
gO)膜5についてのみλが248nm(KrF用の場合)
とした場合における光学的膜厚(nd)88nmのみを±
7%変化させた場合の分光反射率特性計算結果を示す。
FIG. 7 shows magnesium oxide (M) as the high refractive index material of the first layer of the two-layer antireflection film shown in FIG.
gO) Only for film 5 λ is 248 nm (for KrF)
If the optical thickness (nd) is 88 nm,
The calculation result of the spectral reflectance characteristic when changing by 7% is shown.

【0020】図8は、図2に示した反射防止膜の第2層
目の低屈折率物質としての二酸化珪素(SiO2)膜6に
ついてのみλが248nm(KrF用の場合)とした場合に
おける光学的膜厚(nd)50nmのみを±7%変化させ
た場合の分光反射率特性計算結果を示す。
FIG. 8 shows a case where λ is 248 nm (for KrF) only for the silicon dioxide (SiO 2 ) film 6 as the low refractive index material of the second layer of the antireflection film shown in FIG. The calculation result of the spectral reflectance characteristic when only the optical film thickness (nd) of 50 nm is changed by ± 7% is shown.

【0021】図9は、図2に示した2層反射防止膜の全
ての層5、6についてλが248nm(KrF用の場合)と
した場合におけるそれぞれの光学的膜厚(nd)を±7
%変化させた場合の分光反射率特性計算結果を示す。
FIG. 9 shows the optical film thickness (nd) of ± 7 for all layers 5 and 6 of the two-layer antireflection film shown in FIG. 2 when λ is 248 nm (for KrF).
The calculation result of the spectral reflectance characteristic when the percentage is changed is shown.

【0022】これらの図7〜図9の特性曲線より明らか
なように、光学的膜厚を±7%変化させても実施例1で
説明したものと同様な反射防止特性および吸収が少なく
高耐熱性を有していることは言うまでもない。
As is clear from the characteristic curves shown in FIGS. 7 to 9, even if the optical film thickness is changed by ± 7%, the same antireflection characteristics as those described in Example 1 and less absorption and high heat resistance are obtained. Needless to say, it has sex.

【0023】[0023]

【発明の効果】以上の実施例に基づく説明から明らかな
ように、本発明は、SiO2膜を形成する場合にのみ不活
性がスに酸素ガスを注入することにより、SiO2膜の低
級酸化物への移行を抑制し低吸収率化を図り、さらに吸
湿性がなく高融点酸化物であるMgO膜を高屈折率物質
に用い、夫々の光学的膜厚を±7%の範囲内に制御する
だけで希望の中心波長に対して0.5%以下の反射率が得
られ、しかも層数が少なく膜の屈折率や密度、ストレス
等の光学および物理定数を安定化することができ、その
結果、耐光力が向上し大出力・高繰り返しエキシマレー
ザ用光学部品に使用でき、かつ光学部品が高温に曝され
るような環境の下でも使用できる十分な耐熱性を有する
CaF2基板用反射防止膜を得ることができるので、その
効果は大である。
As it is apparent from the based on the above embodiments description, according to the present invention, the present invention is, by only the inert injects oxygen gas to the scan in the case of forming the SiO 2 film, a lower oxide of SiO 2 film Controls the optical absorption within ± 7% by using MgO film, which is a high melting point oxide with no hygroscopicity, as a high-refractive index material, while suppressing the migration to substances The reflectance of 0.5% or less with respect to the desired center wavelength can be obtained by simply doing it, and the number of layers is small, and the optical and physical constants such as the refractive index, density, and stress of the film can be stabilized. An antireflection film for a CaF 2 substrate that has improved light resistance and can be used for high-power, high-repetition excimer laser optical components, and has sufficient heat resistance to be used even in an environment where the optical components are exposed to high temperatures. As it can be obtained, its effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例における三層構造のCaF2
基板用反射防止膜を示す断面図、
FIG. 1 is a three-layer structure of CaF 2 according to a first embodiment of the present invention.
Sectional view showing an antireflection film for a substrate,

【図2】本発明の第2実施例における二層構造のCaF2
基板用反射防止膜を示す断面図、
FIG. 2 is a two-layer structure of CaF 2 according to a second embodiment of the present invention.
Sectional view showing an antireflection film for a substrate,

【図3】本発明の第1実施例における第1層目のSiO2
の光学的膜厚を7%増減した場合の反射率波長依存特性
の計算結果を示す図、
FIG. 3 is a first layer of SiO 2 according to the first embodiment of the present invention.
Showing the calculation result of the reflectance wavelength-dependent characteristics when the optical film thickness of is changed by 7%,

【図4】本発明の第1実施例における第2層目のMgO
の光学的膜厚を7%増減した場合の反射率波長依存特性
の計算結果を示す図、
FIG. 4 is a second layer of MgO according to the first embodiment of the present invention.
Showing the calculation result of the reflectance wavelength-dependent characteristics when the optical film thickness of is changed by 7%,

【図5】本発明の第1実施例における第3層目のSiO2
の光学的膜厚を7%増減した場合の反射率波長依存特性
の計算結果を示す図。
FIG. 5 is a third layer of SiO 2 according to the first embodiment of the present invention.
FIG. 6 is a diagram showing a calculation result of reflectance wavelength dependence characteristics when the optical film thickness of is changed by 7%.

【図6】本発明の第1実施例における3層のすべてを同
時に設定値より光学的膜厚を7%増減した場合の反射率
波長依存特性の計算結果を示す図、
FIG. 6 is a diagram showing calculation results of reflectance wavelength dependence characteristics when the optical film thickness of all three layers in the first embodiment of the present invention is increased or decreased by 7% from the set value at the same time;

【図7】本発明の第2実施例における第1層目のMgO
の光学的膜厚を7%増減した場合の反射率波長依存特性
の計算結果を示す図、
FIG. 7: MgO of the first layer in the second embodiment of the present invention
Showing the calculation result of the reflectance wavelength-dependent characteristics when the optical film thickness of is changed by 7%,

【図8】本発明の第2実施例における第2層目のSiO2
の光学的膜厚を7%増減した場合の反射率波長依存特性
の計算結果を示す図、
FIG. 8 is a second layer of SiO 2 in the second embodiment of the present invention.
Showing the calculation result of the reflectance wavelength-dependent characteristics when the optical film thickness of is changed by 7%,

【図9】本発明の第2実施例における2層を同時に設定
値より光学的膜厚を7%増減した場合の反射率波長依存
特性の計算結果を示す図である。
FIG. 9 is a diagram showing calculation results of reflectance wavelength dependence characteristics when the optical film thickness of the two layers in the second embodiment of the present invention is increased or decreased by 7% from the set value at the same time.

【符号の説明】[Explanation of symbols]

1 CaF2基板 3、5 MgO膜 2、4、6 SiO21 CaF 2 substrate 3, 5 MgO film 2, 4, 6 SiO 2 film

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 光学研磨された弗化カルシュウム(Ca
2)基板上の片面もしくは両面に、基板に接する第1
の層に高屈折率物質として酸化マグネシュウム(Mg
O)膜、第2の層に低屈折率物質として二酸化珪素(S
iO2)膜を順次形成したことを特徴とする二層構造のC
aF2基板用反射防止膜。
1. Optically polished calcium fluoride (Ca)
F 2 ) On one or both sides of the substrate, the first contact with the substrate
Oxide layer (MgOx)
O) film and the second layer include silicon dioxide (S
A two-layer structure C characterized by sequentially forming an iO 2 ) film
Anti-reflection film for aF 2 substrate.
【請求項2】 第1層目の酸化マグネシュウム(Mg
O)膜、第2層目の二酸化珪素(SiO2)膜の光学的膜
厚(nd)を、それぞれ0.33λ〜0.38λ、0.19λ〜0.21
λ(ただしλは設計中心波長)に選定したことを特徴と
する請求項1に記載のCaF2基板用反射防止膜。
2. The first layer of magnesium oxide (Mg
O) film and the second layer of silicon dioxide (SiO 2 ) film have optical thicknesses (nd) of 0.33λ to 0.38λ and 0.19λ to 0.21 respectively.
The antireflection film for a CaF 2 substrate according to claim 1, wherein λ (where λ is a design center wavelength) is selected.
【請求項3】 光学研磨された弗化カルシュウム(Ca
2)基板上の片面もしくは両面に、基板に接する第1
の層に低屈折率物質として二酸化珪素(SiO2)膜、第
2の層に高屈折率物質として酸化マグネシュウム(Mg
O)膜、第3の層に低屈折率物質として二酸化珪素(S
iO2)膜を順次形成したことを特徴とする三層構造のC
aF2 基板用反射防止膜。
3. Optically polished calcium fluoride (Ca)
F 2 ) On one or both sides of the substrate, the first contact with the substrate
Layer of silicon dioxide (SiO 2 ) as a low refractive index material, and the second layer of high refractive index material of magnesium oxide (Mg)
O) film and the third layer include silicon dioxide (S
C of a three-layer structure characterized by sequentially forming an iO 2 ) film
Anti-reflection film for aF2 substrate.
【請求項4】 第1層目の二酸化珪素(SiO2)膜、第
2層目の酸化マグネシュウム(MgO)膜および第3層
目の二酸化珪素(SiO2)膜の光学的膜厚(nd)の値
を、それぞれ0.23λ〜0.27λ、0.35λ〜0.40λおよび0.
18λ〜0.20λに選定したことを特徴とする請求項3に記
載のCaF2基板用反射防止膜。
4. An optical film thickness (nd) of a silicon dioxide (SiO 2 ) film of a first layer, a magnesium oxide (MgO) film of a second layer, and a silicon dioxide (SiO 2 ) film of a third layer. Values of 0.23λ to 0.27λ, 0.35λ to 0.40λ and 0.
The antireflection film for a CaF 2 substrate according to claim 3, wherein the thickness is selected from 18λ to 0.20λ.
【請求項5】 膜の形成方法がマグネトロン・スパッタ
リング法を用いたことを特徴とする請求項1および請求
項3に記載のCaF2基板用反射防止膜。
5. The antireflection film for a CaF 2 substrate according to claim 1, wherein the film forming method is a magnetron sputtering method.
【請求項6】 膜形成前の基板表面のクリーニングにお
いて、膜形成時のスパッタリング中の真空度より高真空
度下で不活性ガスを用いたイオンによるクリーニングを
行なうことを特徴とする請求項5に記載のCaF2基板用
反射防止膜。
6. The cleaning of a substrate surface before film formation is performed by ion cleaning using an inert gas under a vacuum degree higher than that during sputtering during film formation. An antireflection film for a CaF 2 substrate as described above.
JP4020665A 1992-01-10 1992-01-10 Antireflection film for caf2 substrate Pending JPH05188203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4020665A JPH05188203A (en) 1992-01-10 1992-01-10 Antireflection film for caf2 substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4020665A JPH05188203A (en) 1992-01-10 1992-01-10 Antireflection film for caf2 substrate

Publications (1)

Publication Number Publication Date
JPH05188203A true JPH05188203A (en) 1993-07-30

Family

ID=12033497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4020665A Pending JPH05188203A (en) 1992-01-10 1992-01-10 Antireflection film for caf2 substrate

Country Status (1)

Country Link
JP (1) JPH05188203A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001035125A1 (en) * 1999-11-05 2001-05-17 Asahi Glass Company, Limited Antireflection base for ultraviolet and vacuum ultraviolet regions
US6261696B1 (en) 1996-03-22 2001-07-17 Canon Kabushika Kaisha Optical element with substrate containing fluorite as main ingredient, and method and apparatus for producing the optical element
WO2004059750A1 (en) * 2002-12-25 2004-07-15 Japan Science And Technology Agency Light emitting element device, light receiving element device, optical apparatus, fluoride crystal, process for producing fluoride crystal and crucible
US6833949B2 (en) 2000-04-07 2004-12-21 Corning Incorporated Film coated optical lithography elements and method of making

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6261696B1 (en) 1996-03-22 2001-07-17 Canon Kabushika Kaisha Optical element with substrate containing fluorite as main ingredient, and method and apparatus for producing the optical element
WO2001035125A1 (en) * 1999-11-05 2001-05-17 Asahi Glass Company, Limited Antireflection base for ultraviolet and vacuum ultraviolet regions
US6628456B2 (en) 1999-11-05 2003-09-30 Asahi Glass Company, Limited Ultraviolet and vacuum ultraviolet antireflection substrate
US6829084B2 (en) 1999-11-05 2004-12-07 Asahi Glass Company, Limited Ultraviolet and vacuum ultraviolet antireflection substrate
US6833949B2 (en) 2000-04-07 2004-12-21 Corning Incorporated Film coated optical lithography elements and method of making
WO2004059750A1 (en) * 2002-12-25 2004-07-15 Japan Science And Technology Agency Light emitting element device, light receiving element device, optical apparatus, fluoride crystal, process for producing fluoride crystal and crucible
JPWO2004059750A1 (en) * 2002-12-25 2006-05-11 独立行政法人科学技術振興機構 Light emitting device, light receiving device, optical device, fluoride crystal, fluoride crystal manufacturing method, and crucible
US7696690B2 (en) 2002-12-25 2010-04-13 Japan Science And Technolgoy Agency Short-wavelength light-emitting element arranged in a container with a window having a window board formed of a calcium fluoride crystals
JP4834198B2 (en) * 2002-12-25 2011-12-14 独立行政法人科学技術振興機構 Light emitting device, light receiving device, optical device, fluoride crystal

Similar Documents

Publication Publication Date Title
US7265890B1 (en) Electrochromic infrared tunable filter and emissivity modulator
JP2627864B2 (en) Mirror for reflecting light of selected frequency and method for forming the same
KR100653320B1 (en) Semiconductor laser device
JP2003302520A (en) Reflection mirror for infrared laser and method for manufacturing the same
JP2007193060A (en) Mirror for solid laser
US4685110A (en) Optical component of a laser
Kozlowski et al. High-power optical coatings for a megajoule class ICF laser
JPH05188203A (en) Antireflection film for caf2 substrate
JP3261961B2 (en) Discharge lamp
EP0814350B1 (en) Optically usable multilayer stack of fluoride materials and its method of manufacturing
JP7410498B2 (en) porous thin film
JP4208981B2 (en) Light-absorbing antireflection body and method for producing the same
JP2019059986A (en) Method for forming thin film, and optical element
JP3979814B2 (en) Optical thin film manufacturing method
JP3069641B2 (en) Dielectric multilayer film
JPH04228560A (en) Dielectric multiplayer film nad its formation
JP2005221867A (en) Reflection type optical device
US5741595A (en) Ultraviolet optical part having coat of ultraviolet optical thin film, and wavelength-changing device and ultraviolet light source unit having coat of ultraviolet optical thin film
JPH11142604A (en) Optical thin film and its production
JPH10268107A (en) Synthetic resin lens with antireflection film
JP3084784B2 (en) Argon gas laser mirror
JPH0784105A (en) Reflecting film
JPH06240446A (en) Production of multilayer optical thin film
JPH0297901A (en) Multilayered film for high repetition and high output laser
KR970000380B1 (en) Isolating ultraviolet glass and its process