JPH0434019A - Carbon short fiber and preparation thereof - Google Patents

Carbon short fiber and preparation thereof

Info

Publication number
JPH0434019A
JPH0434019A JP2131860A JP13186090A JPH0434019A JP H0434019 A JPH0434019 A JP H0434019A JP 2131860 A JP2131860 A JP 2131860A JP 13186090 A JP13186090 A JP 13186090A JP H0434019 A JPH0434019 A JP H0434019A
Authority
JP
Japan
Prior art keywords
pitch
fibers
fiber
carbon fibers
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2131860A
Other languages
Japanese (ja)
Other versions
JPH0781210B2 (en
Inventor
Yasuhiro Yamada
泰弘 山田
Hidemasa Honda
本田 英昌
Haruki Yamazaki
春樹 山嵜
Susumu Shimizu
進 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Tanaka Kikinzoku Kogyo KK filed Critical Agency of Industrial Science and Technology
Priority to JP2131860A priority Critical patent/JPH0781210B2/en
Priority to EP19910830214 priority patent/EP0458765A3/en
Publication of JPH0434019A publication Critical patent/JPH0434019A/en
Publication of JPH0781210B2 publication Critical patent/JPH0781210B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Inorganic Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To prepare the subject cotton-like fiber having a high strength and useful for composite materials in electronic industry, automobile industry, etc., without requiring a cutting process, by feeding a pitch into a spinning device, extruding the melted pitch while blowing out the melted pitch from the periphery of an extrusion hole and subsequently subjecting the spun fiber to a non- melting treatment and subsequently to a calcination. CONSTITUTION:An optically isotropic pitch and/or an optically anisotropic pitch is fed into a spinning device and the melted pitch is spun while being blown out from the periphery of an extrusion hole. The fiber spun thus is subjected to a non-melting treatment and to a calcination treatment to prepare the objective short fibers.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は綿状のピッチ系炭素短繊維及びその製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to cotton-like pitch-based short carbon fibers and a method for producing the same.

(従来の技術) 炭素繊維は、PAN系とピッチ系に大別される。(Conventional technology) Carbon fibers are broadly classified into PAN type and pitch type.

現在、工業的にはアクリロニトリルを特定条件下で焼成
し製造されているPAN系炭素繊維が主に高強度材料(
HPタイプ)として利用されている。しかし、PAN系
繊維は炭素の含有量が低いため、焼成工程において分解
ガスの発生があり、また収率が50〜60%と低く、し
かも高温における黒鉛構造が発達しに(いために、高強
度品は作りやすいが、弾性率の大きなものを作るのが困
難である。
Currently, industrially, PAN-based carbon fibers, which are produced by firing acrylonitrile under specific conditions, are mainly used as high-strength materials (
HP type). However, since PAN-based fibers have a low carbon content, decomposition gas is generated during the firing process, and the yield is as low as 50-60%. Furthermore, the graphite structure does not develop at high temperatures (due to the high strength It is easy to make products, but it is difficult to make products with a large elastic modulus.

一方、ピッチ系炭素繊維は、石炭、石油などのピッチを
原料としているため、紡糸した繊維中の炭素含有量が9
5%程度と高く、また収率も80〜90%と高く、しか
も物性面では大きな弾性率の発現に優れた特徴があるた
め、急速に開発が進められて来た。
On the other hand, pitch-based carbon fibers are made from coal, petroleum, etc. pitch, so the carbon content in the spun fibers is 9.
It has a high yield of about 5%, a high yield of 80 to 90%, and has an excellent property of exhibiting a large elastic modulus in terms of physical properties, so its development has progressed rapidly.

又ピッチ系炭素繊維でも、ピッチをそのまま溶融紡糸し
焼成すると、光学的等方性の炭素繊維が出来、いわゆる
汎用タイプ(GP品)の炭素繊維として安価で一定強度
が得られるとして構造物の補強材などに利用されている
。光学的異方性(メソフェース)をもつ炭素繊維は、全
面結晶性のピッチを紡糸することによって、紡糸時の剪
断応力場で液晶配列が繊維軸方向の配列となり、これを
炭化することによって巨大黒鉛結晶が生成され、高弾性
率をもつ(HMタイプ)炭素繊維となるものである。
In addition, even with pitch-based carbon fibers, if the pitch is melt-spun and fired, optically isotropic carbon fibers can be produced, which can be used as a general-purpose type (GP product) carbon fiber at low cost and with a certain level of strength for reinforcement of structures. It is used for materials, etc. Carbon fibers with optical anisotropy (mesophase) are produced by spinning entirely crystalline pitch, so that the liquid crystal alignment becomes aligned in the fiber axis direction under the shear stress field during spinning, and by carbonizing this, giant graphite is formed. Crystals are generated, resulting in a carbon fiber having a high modulus (HM type).

したがって、これらのそれぞれの特徴に適合した製品応
用が進められ、炭素繊維単体としてはフィルター、触媒
、電磁遮蔽材などに用いられ、複合体としては樹脂、金
属、炭素、セラミックスなどのマトリックスに対して補
強材料として用いられ、宇宙、航空用、レジャー、スポ
ーツ用、産業用等に広範に利用されている。
Therefore, the application of products that suit each of these characteristics is progressing, and carbon fiber alone is used in filters, catalysts, electromagnetic shielding materials, etc., and as a composite, it is used in matrices of resins, metals, carbon, ceramics, etc. It is used as a reinforcing material and is widely used in space, aviation, leisure, sports, industrial, etc.

最近ではエンジニアリングプラスチックと複合して、電
子部品、自動車部品や構造材料にするための研究が進め
られている。
Recently, research has been underway to combine it with engineering plastics to make electronic parts, automobile parts, and structural materials.

(発明が解決しようとする課題) これらの炭素繊維を複合材料として使用する場合、特に
構造物の補強材料として大量に使用するときには、安価
で強度の高い材料が必要となる。
(Problems to be Solved by the Invention) When these carbon fibers are used as a composite material, an inexpensive and high-strength material is required, especially when used in large quantities as a reinforcing material for a structure.

前述の通り、ピッチ系炭素繊維では光学的等方性の炭素
繊維(GP品)は安価である理由から、セメントとの複
合化により高層建築物の壁補強材料としてアスベストに
替わるものとして、その利用が進められて来ている。
As mentioned above, among pitch-based carbon fibers, optically isotropic carbon fibers (GP products) are inexpensive, so they are being used in place of asbestos as wall reinforcement materials for high-rise buildings by combining them with cement. is being advanced.

又その他構造用補強材として幅広い応用が検討され実施
されている。しかし強度が低いという点から、構造部材
として高強度を求められるプラスチック、金属、セラミ
ックスなどとの複合材に応用するには、必ずしも満足の
いく結果が得られていない。
In addition, a wide range of applications as structural reinforcing materials are being considered and implemented. However, due to its low strength, it has not always been possible to obtain satisfactory results when applied to composite materials with plastics, metals, ceramics, etc. that require high strength as structural members.

一方、光学的異方性の炭素繊維は、光学的等方性炭素繊
維と比べて、引張り強度も高く、かつ高い弾性率を得る
ことが出来るので、強度面では多少上述の欠陥を補うこ
とが出来るが、しかしそれでもさらに破壊靭性の高い材
料を必要とする電子工業、自動車工業、宇宙産業等の要
望は満足出来ない現状であり、さらに品質の安定性と量
産性、経済性という面で、汎用的に幅広く使用出来る状
態に至っていない。さて、光学的等方性炭素繊維の紡糸
方法に関して、等方性ピッチは、ロータリースピナーや
、エヤーサッカーで延伸する方法、渦流法など、溶融高
分子ならびにガラス繊維化技術が応用されており、これ
らの方法で得られる繊維は、数lθ〜20μmで長さ数
十〜数百mmの繊維である。そして補強材として使用す
るためにはこれをさらに切断しなければならない。一方
、異方性炭素繊維は、前述の手法で製造されることもあ
るが、大部分は長繊維として巻取り延伸によりロービン
グファイバーを作り、それをチョツプドファイバーとす
るため、10〜b 短くカットしたものを熱可塑性プラスチックなどのマト
リックス材に混合し、補強材として用いるもので、−旦
、長繊維から切断工程を経て、一定長さに切断するとい
う作業を行っている。
On the other hand, optically anisotropic carbon fiber has higher tensile strength and higher elastic modulus than optically isotropic carbon fiber, so it can somewhat compensate for the above-mentioned defects in terms of strength. However, the current situation is that it cannot satisfy the demands of the electronics industry, automobile industry, space industry, etc., which require materials with even higher fracture toughness. It has not yet reached a state where it can be widely used. Now, regarding the spinning method of optically isotropic carbon fiber, isotropic pitch is produced by applying molten polymer and glass fiber technology, such as a rotary spinner, an air sucker drawing method, and a vortex method. The fibers obtained by this method have a diameter of several lθ to 20 μm and a length of several tens to hundreds of mm. In order to use it as a reinforcing material, it must be further cut. On the other hand, anisotropic carbon fibers are sometimes produced using the method described above, but most of them are made into long fibers by winding and drawing to create roving fibers, which are then made into chopped fibers. The cut fibers are mixed with a matrix material such as thermoplastic plastic and used as a reinforcing material.First, the long fibers undergo a cutting process and are cut into a certain length.

これらの炭素繊維を複合材料として使用した場合、熱可
塑性プラスチックは延性材料であり、補強繊維である炭
素繊維は、引張強さ、弾性率は大きいが、延伸性が低い
ため、脆性材料としての挙動を示すので、クラックが一
旦発生すると、そのまま最終破壊まで進んで大きな事故
につながりやすく、危険なため、破壊靭性をいかに高め
るかが大きな問題となっている。そして、これらの炭素
繊維強化プラスチックが破壊する要因は、マトリックス
の破壊、マトリックスと繊維の剥離、繊維の破断、繊維
の引き抜は等があげられ、実際の破壊ではこれらの組み
合わせによるものと考えられる。しかし、中でも炭素繊
維とプラスチックの間の剥離と繊維の引き抜けが大きな
要因をしめている。
When these carbon fibers are used as a composite material, the thermoplastic plastic is a ductile material, and the reinforcing fiber carbon fiber has high tensile strength and elastic modulus, but has low elongation, so it behaves as a brittle material. Therefore, once a crack occurs, it can easily progress to final failure, leading to a major accident, which is dangerous, so how to improve fracture toughness has become a major problem. Factors that cause the destruction of these carbon fiber reinforced plastics include destruction of the matrix, separation of the matrix and fibers, rupture of fibers, pulling out of fibers, etc., and actual destruction is thought to be due to a combination of these. . However, the major factors are delamination between carbon fiber and plastic and fiber pull-out.

その理由は、炭素繊維が直線性の高い材料であること、
表面がなめらかで界面での接合性に問題があることなど
が考えられる。
The reason is that carbon fiber is a highly linear material,
It is possible that the surface is smooth and there is a problem with bonding at the interface.

又、炭素繊維を単体で使用する場合、フィルタ、触媒な
ど一定体積内に、より多くの表面積と、より多くの空間
部を設ける必要があり、網として織るか、マット状につ
み上げて、空間部を作るためのバインダーを用いて成形
していた。網は平面的に織られたものを重ね合わせても
空間部を一定に保つことがむずかしく、立体構造で一定
のすきまを設けた構造体にすることは大変困難であった
In addition, when using carbon fiber alone, it is necessary to provide more surface area and more space within a certain volume of filters, catalysts, etc. It was molded using a binder to make the parts. Even when nets are woven two-dimensionally and overlapped, it is difficult to maintain a constant space, and it is extremely difficult to create a three-dimensional structure with constant gaps.

まして、弾力構造を必要とする用途においては全く利用
することが出来なかった。
Moreover, it could not be used at all in applications requiring a resilient structure.

そこで、本発明は、従来の技術では解決出来なかった光
学的等方性炭素繊維、光学的異方性炭素繊維又はそれら
の複合繊維の強度を飛躍的に向上させると同時に、ねじ
れ、カールを生ぜしめ、さらに綿状とし、かつ、チョツ
プドファイバーの寸法に直接紡糸出来て、切断工程のい
らないマトリックス材料との適合性のすぐれたピッチ系
炭素短繊維及びその製造法を提供するものである。
Therefore, the present invention dramatically improves the strength of optically isotropic carbon fibers, optically anisotropic carbon fibers, or composite fibers thereof, which could not be solved with conventional techniques, and at the same time, To provide pitch-based short carbon fibers that are compact, cotton-like, can be directly spun to chopped fiber dimensions, and have excellent compatibility with matrix materials without the need for a cutting step, and a method for producing the same.

(課題を解決するための手段) 上記課題を解決するための本発明の炭素短繊維は、ピッ
チ系光学的等方性炭素繊維又はピッチ系光学的異方性炭
素繊維、若しくはそれらの複合繊維からなる綿状の炭素
短繊維であることを特徴とするものである。
(Means for Solving the Problems) The short carbon fibers of the present invention for solving the above problems are made from pitch-based optically isotropic carbon fibers, pitch-based optically anisotropic carbon fibers, or composite fibers thereof. It is characterized by being a cotton-like short carbon fiber.

また、上記綿状の炭素短繊維を作る本発明の製造法は、
光学的等方性のピッチ、光学的異方性のピッチ又は両ピ
ッチを紡糸装置に供給して、ピッチ吐出孔周囲よりガス
の圧力によって紡出することによって綿状短繊維を得て
、それを不融化処理して、次いで焼成することを特徴と
するものである。
Further, the production method of the present invention for producing the cotton-like short carbon fibers includes:
Optically isotropic pitch, optically anisotropic pitch, or both pitches are supplied to a spinning device and spun from around the pitch discharge hole by gas pressure to obtain flocculent short fibers. It is characterized by being subjected to infusibility treatment and then firing.

(作用) 上述の如(本発明の炭素短繊維は、綿状であることから
、マトリックス材料とのなじみが良(剥離による破壊強
度が向上した。また従来、このような綿状の炭素短繊維
を得るには、−旦、長繊維として紡糸した繊維をチョツ
プドストランドにするために、切断工程を入れて、この
寸法に仕上げていたものを、本発明の方法によれば直接
最終形状にすることが出来ることで著しい生産性の向上
が可能になった。
(Function) As mentioned above (because the carbon short fibers of the present invention are flocculent, they have good compatibility with the matrix material (improved breaking strength due to peeling). According to the method of the present invention, the fibers that have been spun as long fibers are first cut into chopped strands, which are then cut into these dimensions. By being able to do this, it has become possible to significantly improve productivity.

さらに、本発明の方法によって得られた繊維強度は、従
来の紡糸法で得られているものに比較して光学的等方性
炭素繊維の場合も、光学的異方性炭素繊維も、それぞれ
従来の強度と比べて約1−14〜約2.5倍の強度が得
られているから、複合材料にしたときの破壊靭性を高め
ることが出来る。
Furthermore, the fiber strength obtained by the method of the present invention is higher than that obtained by conventional spinning methods for optically isotropic carbon fibers and optically anisotropic carbon fibers, respectively. Since the strength is approximately 1-14 to 2.5 times higher than that of the composite material, it is possible to improve the fracture toughness when made into a composite material.

さらにまた、光学的等方性炭素繊維と光学的異方性炭素
繊維との複合繊維では、それぞれの膨張率の違いにより
、ねじれとかカールがさらに大きく生じて、そのことに
よりマトリックス材料との接合性がさらに改善される。
Furthermore, in composite fibers of optically isotropic carbon fibers and optically anisotropic carbon fibers, due to the difference in their expansion coefficients, more twisting and curling occurs, which leads to poor bondability with the matrix material. will be further improved.

そして、ねじれやカールによってみかけのかさ高さや弾
力性があり、繊維単独でも一定のふ(らみをもつ綿状繊
維として利用することも出来るものである。
The fibers have an apparent bulk and elasticity due to twisting and curling, and the fibers alone can also be used as cotton-like fibers with a certain amount of fluff.

本発明によるピッチ系炭素短繊維は、その出発原料に芳
香族六員環構造をその分子内に多くもった重質油、一般
には石炭タール、石油分解タールおよびスチームクラッ
カータールなどが用いられる。これらの原料の中から純
度、軟化点で最適なものを選択するか、要求に合わない
場合は溶媒抽出や熱改質などの前処理を施す。一般に原
料重質油中にはフリーカーボン等の微細固形分が含有し
ており、その除去が必要である。その一つとして、アン
トラセン油等の芳香族油やキノリン等の有機溶剤に溶解
し、濾過する。他の方法として、−炭熱処理により、ピ
ッチ中に含まれるフリーカーボン、鉱物質の微粒、微小
固形物が十分吸着されるだけのメソカーボン微小球体を
生成せしめたあと、これを抽出濾過で除去する。この濾
液を濃縮して得られたピッチを、さらに二次熱処理にか
け重縮合化させると同時に、軽質分を除いて、軟化点を
調整すと共に光学的に等方性のピッチを得る。
For the pitch-based short carbon fibers according to the present invention, heavy oils having many aromatic six-membered ring structures in their molecules, generally coal tar, petroleum cracking tar, steam cracker tar, and the like are used as starting materials. From these raw materials, select the one with the best purity and softening point, or if it does not meet the requirements, perform pretreatment such as solvent extraction or thermal modification. Generally, raw material heavy oil contains fine solids such as free carbon, which must be removed. One method is to dissolve it in an aromatic oil such as anthracene oil or an organic solvent such as quinoline and filter it. Another method is to generate mesocarbon microspheres that can sufficiently adsorb free carbon, mineral particles, and microsolids contained in the pitch by carbon thermal treatment, and then remove them by extraction filtration. . The pitch obtained by concentrating this filtrate is further subjected to a secondary heat treatment for polycondensation, and at the same time light components are removed to adjust the softening point and obtain optically isotropic pitch.

一方、光学的異方性ピッチは、ピッチを2〜3倍量にテ
トラヒドロキノリンで稀釈し、400〜450℃の温度
で、10〜30kgf/cnfの自生圧下で溶媒水添す
る。これを濾過して、フリーカーボンなどを十分除いた
あと、脱溶媒する。最後に450〜500℃の温度で熱
処理して光学的異方性(メソフェース)のピッチを得る
。他の方法としては、石油の軟質油の流動接触分触法で
ガソリンを製造する際、創製する重質タール(FFCデ
カントオイル)を熱処理して、メソフェースを成形させ
ると共に、軽質分を除却して軟化点を調整することによ
ってメソフェースピッチを得る。
On the other hand, optically anisotropic pitch is obtained by diluting the pitch with tetrahydroquinoline to 2 to 3 times the amount, and subjecting the pitch to solvent hydrogenation at a temperature of 400 to 450° C. under an autogenous pressure of 10 to 30 kgf/cnf. This is filtered to sufficiently remove free carbon and the like, and then the solvent is removed. Finally, heat treatment is performed at a temperature of 450 to 500°C to obtain an optically anisotropic (mesophase) pitch. Another method is to heat-treat the heavy tar (FFC decant oil) created when producing gasoline using the fluidized contact fractionation method of soft petroleum oil to form mesofaces and remove light components to soften it. Obtain the mesoface pitch by adjusting the points.

こうして得た光学的等方性ピッチと、光学的異方性ピッ
チでは炭素繊維化した場合の性質が異なっている。一般
に光学的等方性ピッチを紡糸し、炭素繊維化すると、炭
化後の繊維内黒鉛結晶は微細なものとなり、繊維軸方向
配列が悪くなるため、汎用タイプ(GP品)と呼ばれ、
引張強さは100kg/−1弾性率5 ton/−前後
が一般的である。
The optically isotropic pitch thus obtained and the optically anisotropic pitch have different properties when made into carbon fibers. Generally, when optically isotropic pitch is spun and made into carbon fibers, the graphite crystals within the fibers after carbonization become fine and the alignment in the fiber axis direction becomes poor, so it is called a general-purpose type (GP product).
Tensile strength is generally around 100 kg/-1 and elastic modulus of 5 ton/-.

光学的異方性の場合、原料ピッチの調製はもちろんであ
るが、特に高強度高弾性炭素繊維を得るためには、分子
の配向制御が重要であり、紡糸時の温度、ノズル形状、
液晶ピッチ特有の分子配向制御が影響する。よってその
条件で機械的特性も幅があり、現在得られている炭素繊
維の引張強さは300〜500kg/−1弾性率30〜
70ton/−である。
In the case of optical anisotropy, it is important not only to prepare the raw material pitch, but also to control the orientation of molecules, especially in order to obtain high-strength, high-elastic carbon fibers.
This is affected by molecular orientation control unique to liquid crystal pitch. Therefore, there is a wide range of mechanical properties depending on the conditions, and the tensile strength of currently available carbon fibers is 300 to 500 kg/-1, and the modulus of elasticity is 30 to 500 kg/-1.
70 tons/-.

又、光学的等方性の炭素繊維は熱膨張率は1000℃で
4 X 10 ’/ K ’に対して、光学的異方性の
炭素繊維は2X10−6/に’と半分の熱膨張係数であ
る。
Also, optically isotropic carbon fiber has a thermal expansion coefficient of 4 x 10'/K' at 1000°C, whereas optically anisotropic carbon fiber has a thermal expansion coefficient of 2 x 10-6/', which is half that. It is.

本発明は、上述のように光学的等方性の炭素繊維及び光
学的異方性の炭素繊維のそれぞれのもつ特性を、飛躍的
に向上させ、しかも紡糸後、不融化、焼成によって最終
使用形状に成形出来る綿状ピッチ系炭素短繊維を作り出
したものである。
As mentioned above, the present invention dramatically improves the properties of optically isotropic carbon fibers and optically anisotropic carbon fibers, and further improves the final use shape by infusibility and sintering after spinning. This is a cotton-like pitch-based short carbon fiber that can be molded into.

(実施例) 以下本発明の具体的な実施例について説明する。(Example) Specific examples of the present invention will be described below.

紡糸用ピッチとして、軟化点が230℃の光学的等方性
ピッチと軟化点が267℃の光学的異方性相を98%含
有するメソフェースピッチの2種類を用いた。紡糸装置
は第1図に示した構造のものを用いた。ここで、ピッチ
吐出孔lの内径は0.2mmであり、ガス流路用ノズル
2の孔径は0.5mmとした。
Two types of pitch were used for spinning: an optically isotropic pitch with a softening point of 230°C and a mesoface pitch containing 98% of an optically anisotropic phase with a softening point of 267°C. The spinning device used had the structure shown in FIG. Here, the inner diameter of the pitch discharge hole 1 was 0.2 mm, and the hole diameter of the gas flow path nozzle 2 was 0.5 mm.

上記の光学的等方性ピッチ3又は光学的異方性ピッチ4
のいずれかをピッチ溜部5に入れ、内部を窒素ガスで置
換した後、ヒーター6で加熱、溶融した。ピッチの温度
が所定温度に達した後、ピッチ溜部5の上部とガス導入
パイプ7から、同一圧力の窒素ガスを導入した。そして
、紡糸装置の下部から吐出する繊維状ピッチを採取した
。採取した繊維状ピッチを空気中、毎分2℃の昇温速度
で320℃まで加熱し、30分間保持して不融化処理し
た。次いで、窒素ガス気流中、1000℃で炭素化し、
更に、アルゴンガス気流中、2600℃で黒鉛化処理し
た。
Optically isotropic pitch 3 or optically anisotropic pitch 4 as described above
Either of these was placed in the pitch reservoir 5, the inside of which was replaced with nitrogen gas, and then heated and melted with the heater 6. After the temperature of the pitch reached a predetermined temperature, nitrogen gas at the same pressure was introduced from the upper part of the pitch reservoir 5 and the gas introduction pipe 7. Then, fibrous pitch discharged from the lower part of the spinning device was collected. The collected fibrous pitch was heated to 320°C in air at a rate of 2°C per minute and held for 30 minutes to be infusible. Then, it was carbonized at 1000°C in a nitrogen gas stream,
Furthermore, graphitization treatment was performed at 2600° C. in an argon gas stream.

このようにして得られた炭素繊維1本を繊維の長さが5
mmになるように台紙に貼りつけ、JISR7601に
規定する単繊維法に準拠して引張り強度を測定した。な
お、繊維の外径は同規定のレーザー回折法によって測定
した。
One carbon fiber obtained in this way has a fiber length of 5
It was attached to a mount so that the thickness of the sample was 3 mm, and the tensile strength was measured according to the single fiber method specified in JISR7601. In addition, the outer diameter of the fiber was measured by the laser diffraction method specified in the same regulations.

ピッチの種類、紡糸条件を変えて得た炭素繊維の物性を
下記の表にまとめて示す。
The physical properties of carbon fibers obtained by changing the pitch type and spinning conditions are summarized in the table below.

(以下余白) 上記の表に見られるように、ピッチの温度、ガス圧力が
高くなると、繊維径が細くなると共に、その長さも短く
なる。繊維の長さは同一ロット内においても長短あり、
−概に表すことが出来ないが、実施番号1−1で最長的
50mmである。
(The following is a blank space) As seen in the table above, as the pitch temperature and gas pressure increase, the fiber diameter becomes thinner and its length also becomes shorter. The length of fibers varies even within the same lot.
- Although it cannot be expressed generally, the longest length is 50 mm in implementation number 1-1.

第3図は上記表実施番号2−2の炭素短繊維の形状を走
査型電子顕微鏡で観察した写真(倍率500倍)である
。繊維径は大小あり、一定ではない。
FIG. 3 is a photograph (500x magnification) of the shape of the short carbon fiber of Example No. 2-2 in the above table, observed with a scanning electron microscope. The fiber diameter varies in size and is not constant.

しかも大部分面がっており、直線ではない。繊維が曲が
っていることは他の実施番号の場合も同様である。更に
、この実施番号の繊維の形状を調べるために倍率400
0倍で観察した写真が第4図である。この図に見られる
ように、繊維の断面形状は円形ではな(、偏平な楕円体
である。楕円体あるいは偏平な楕円体であることが、繊
維に曲がりを生じさせている理由であると考えられる。
Moreover, most of it is angled and not straight. The fact that the fibers are bent is the same for other implementation numbers. Furthermore, in order to examine the shape of the fiber of this execution number, the magnification was 400.
Figure 4 is a photograph observed at 0x magnification. As seen in this figure, the cross-sectional shape of the fiber is not circular (it is a flat ellipsoid).It is thought that the ellipsoid or flat ellipsoid is the reason why the fiber is curved. It will be done.

繊維径が10μm以下のものは長さが短く、かつ、曲が
りがあるため塊状になりやすが、その感触は柔らかく弾
力性があり綿状である。しかし、解繊性は良好で、水中
では容易に単繊維で分散する。
Fibers with a diameter of 10 μm or less are short and curved, so they tend to form lumps, but their feel is soft, elastic, and cotton-like. However, it has good defibration properties and is easily dispersed as single fibers in water.

又、この繊維の形状は偏平状でかつねじれ、カールとラ
ンダムになっており、綿状でかさ高さがあって、一定容
器に入れると、マット状にしなくても、繊維の弾力性で
固定されるため濾過用フィルターなどにそのままの状態
でも使用出来ることが確認出来た。又弾力性のあるプラ
スチック材料との複合体を作ることによって、従来不可
能であったゴム状の炭素繊維複合体が出来、耐摩耗性が
強く弾力性のあるパツキン等が製作出来た。
In addition, the shape of this fiber is flat, twisted, curled, and random, and it is fluffy and bulky, so when placed in a certain container, it is fixed by the elasticity of the fiber even if it is not made into a mat. It was confirmed that it could be used as it is in filtration filters, etc. Furthermore, by creating a composite with an elastic plastic material, a rubber-like carbon fiber composite, which was previously impossible, was created, and a highly abrasion-resistant and elastic packing material was made possible.

そして本発明の炭素短繊維の製造法において、紡糸装置
の紡糸孔の先端及び吐出孔の断面形状を種々変えたもの
を用いて、ピッチ系炭素短繊維を製造することによって
、偏平断面以外に複雑な断面形状を得ることが出来る。
In addition, in the method for producing carbon short fibers of the present invention, pitch-based short carbon fibers are produced using various cross-sectional shapes of the tip of the spinning hole and the discharge hole of the spinning device. A cross-sectional shape can be obtained.

尚、光学的等方性炭素繊維と、光学的異方性炭素繊維を
組み合わせて複合した複合炭素短繊維も第2図に示す如
(仕切り板8を設けた紡糸装置により製造することが出
来る。
Note that composite short carbon fibers made by combining optically isotropic carbon fibers and optically anisotropic carbon fibers can also be produced using a spinning apparatus provided with a partition plate 8 as shown in FIG.

(発明の効果) 以上の説明で判るように本発明の炭素短繊維の製造方法
は、従来ならチョツプドストランドにする為、切断工程
を入れていたものを、全く必要としなくなったことで、
生産性の向上により、大きな経済効果を上げることが出
来るものである。
(Effects of the Invention) As can be seen from the above explanation, the method for producing short carbon fibers of the present invention completely eliminates the need for the cutting process that was conventionally required to make chopped strands.
Improving productivity can bring significant economic benefits.

従来、光学的等方性炭素繊維は汎用品(GP)しか作る
ことが出来ないと考えられていたが、本発明の炭素短繊
維の製造方法によればピッチ系光学的等方性炭素繊維で
強度がピッチ系光学的異方性炭素繊維と同等又はとそれ
以上の強度が得られることから、ピッチ原料の調整など
の製造コストが大幅に削減出来るものである。又、光学
的異方性の炭素繊維では強度が従来の紡糸法で得られた
繊維と比較して同等かそれ以上のものが得られることか
ら、高強度複合材料として電子工業、自動車工業、宇宙
産業等の用途向けに金属、カーボン、セラミックスなど
の高強度、精密度の高い構造部品として極めて有用な材
料として利用出来る。
Conventionally, it was thought that optically isotropic carbon fibers could only be produced as general-purpose products (GP), but according to the method for producing short carbon fibers of the present invention, pitch-based optically isotropic carbon fibers can be produced. Since the strength is equivalent to or even higher than that of pitch-based optically anisotropic carbon fiber, manufacturing costs such as adjustment of pitch raw materials can be significantly reduced. In addition, optically anisotropic carbon fibers have strength comparable to or higher than fibers obtained by conventional spinning methods, so they are used as high-strength composite materials in the electronics industry, automobile industry, and space industry. It can be used as an extremely useful material for high-strength, high-precision structural parts such as metals, carbon, and ceramics for industrial applications.

又、繊維断面形状が、偏平でかつ、ねじれ、カール状に
出来ることからそのままで綿状のかさ高さがあること及
び弾力性、伸縮性を備えていることから、複合材の製作
に用いた際、柔軟なマトリックス材との適合性が良いの
で、ピッチ系炭素繊維とマトリックス材との剥離が起き
にくいものである。従って、伸縮性電導材、弾力性パツ
キン及びエンジニアリングプラスチックなどの複合材と
して応用することで従来にない高強度複合材料を作るこ
とが出来る。
In addition, because the cross-sectional shape of the fibers is flat, twisted, and curled, it has a cotton-like bulk as it is, and has elasticity and stretchability, so it is used in the production of composite materials. In this case, since it has good compatibility with the flexible matrix material, peeling between the pitch-based carbon fiber and the matrix material is less likely to occur. Therefore, by applying it as a composite material such as a stretchable conductive material, elastic packing, and engineering plastic, it is possible to create a composite material with unprecedented high strength.

また本発明の炭素繊維の製造法によれば、上記の優れた
効果を有するピッチ系炭素短繊維を容易に、しかも−度
に大量に製造することが出来、しかも紡糸装置の紡糸孔
先端の紡糸口金断面形状を種々変えたものを用いて製造
することにより、繊維断面形状が種々変えたものを適宜
製造出来る。
Furthermore, according to the method for producing carbon fibers of the present invention, pitch-based short carbon fibers having the above-mentioned excellent effects can be easily produced in large quantities at one time, and the fibers can be spun at the tip of the spinning hole of the spinning device. By manufacturing using caps with various cross-sectional shapes, it is possible to appropriately manufacture fibers with various cross-sectional shapes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の製造方法の一実施例を示す図、第2図
は本発明の製造方法の他の実施例を示す図、第3図は本
発明の炭素短繊維の形状を走査型電子顕微鏡で撮影した
500倍の写真、第4図は第3図の繊維を更に拡大した
4000倍の写真である。 1・・・ピッチ吐出孔、2・・・ガス流路用ノズル、3
・・・光学的等方性ピッチ、4・・・光学的異方性ピ・
ソチ、5・・・ピッチ溜部、6・・化−ター 7・・・
ガス導入パイプ、8・・・仕切板。 第 図
Fig. 1 is a diagram showing one embodiment of the manufacturing method of the present invention, Fig. 2 is a diagram showing another embodiment of the manufacturing method of the present invention, and Fig. 3 is a diagram showing the shape of the short carbon fiber of the present invention by scanning type. A 500x photograph taken with an electron microscope, and FIG. 4 is a 4000x photograph of the fiber in FIG. 3, which is further enlarged. 1... Pitch discharge hole, 2... Gas flow path nozzle, 3
...Optical isotropic pitch, 4... Optical anisotropic pitch,
Sochi, 5...Pitch storage section, 6...Converter 7...
Gas introduction pipe, 8...partition plate. Diagram

Claims (1)

【特許請求の範囲】 1)ピッチ系光学的等方性炭素繊維、ピッチ系光学的異
方性炭素繊維のいずれか又はそれらの複合繊維からなる
綿状の炭素短繊維であることを特徴とする炭素短繊維。 2)光学的等方性ピッチ、光学的異方性ピッチのいずれ
か又はそれら両ピッチを紡糸装置に供給し、溶融したピ
ッチを吐出孔周囲よりガス圧力で吹き出しながら紡糸し
、不融化、焼成することを特徴とする炭素短繊維の製造
法。
[Scope of Claims] 1) It is characterized by being a cotton-like short carbon fiber made of pitch-based optically isotropic carbon fiber, pitch-based optically anisotropic carbon fiber, or a composite fiber thereof. Short carbon fiber. 2) Either optically isotropic pitch, optically anisotropic pitch, or both pitches are supplied to a spinning device, and the molten pitch is spun while being blown out with gas pressure from around the discharge hole, and is infusible and fired. A method for producing short carbon fibers characterized by:
JP2131860A 1990-05-22 1990-05-22 Method for producing short carbon fibers Expired - Lifetime JPH0781210B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2131860A JPH0781210B2 (en) 1990-05-22 1990-05-22 Method for producing short carbon fibers
EP19910830214 EP0458765A3 (en) 1990-05-22 1991-05-22 Carbon short fiber and process for preparing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2131860A JPH0781210B2 (en) 1990-05-22 1990-05-22 Method for producing short carbon fibers

Publications (2)

Publication Number Publication Date
JPH0434019A true JPH0434019A (en) 1992-02-05
JPH0781210B2 JPH0781210B2 (en) 1995-08-30

Family

ID=15067818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2131860A Expired - Lifetime JPH0781210B2 (en) 1990-05-22 1990-05-22 Method for producing short carbon fibers

Country Status (2)

Country Link
EP (1) EP0458765A3 (en)
JP (1) JPH0781210B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221105A (en) * 2012-04-17 2013-10-28 Shin Kobe Electric Mach Co Ltd Resin molded body and resin-made gear using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6385116A (en) * 1986-09-26 1988-04-15 Dainippon Ink & Chem Inc Heat insulating material of carbon fiber
JPH01221556A (en) * 1988-02-26 1989-09-05 Petoka:Kk Production of carbon fiber nonwoven cloth having high bulk density
JPH02169725A (en) * 1988-12-16 1990-06-29 Petoka:Kk Carbon fiber and production thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4331620A (en) * 1980-02-25 1982-05-25 Exxon Research & Engineering Co. Process for producing carbon fibers from heat treated pitch
JPH0699693B2 (en) * 1981-09-07 1994-12-07 東燃株式会社 Optically anisotropic carbonaceous pitch and its manufacturing method
JPS62170528A (en) * 1986-01-22 1987-07-27 Nitto Boseki Co Ltd Carbon fiber and production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6385116A (en) * 1986-09-26 1988-04-15 Dainippon Ink & Chem Inc Heat insulating material of carbon fiber
JPH01221556A (en) * 1988-02-26 1989-09-05 Petoka:Kk Production of carbon fiber nonwoven cloth having high bulk density
JPH02169725A (en) * 1988-12-16 1990-06-29 Petoka:Kk Carbon fiber and production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221105A (en) * 2012-04-17 2013-10-28 Shin Kobe Electric Mach Co Ltd Resin molded body and resin-made gear using the same

Also Published As

Publication number Publication date
EP0458765A3 (en) 1993-04-07
JPH0781210B2 (en) 1995-08-30
EP0458765A2 (en) 1991-11-27

Similar Documents

Publication Publication Date Title
US4628001A (en) Pitch-based carbon or graphite fiber and process for preparation thereof
US4818612A (en) Process for the production of pitch-type carbon fibers
US5188894A (en) Composite carbon fiber and process for preparing same
JPS6246644B2 (en)
JPH0133568B2 (en)
US4913889A (en) High strength high modulus carbon fibers
US4503026A (en) Spinnable precursors from petroleum pitch, fibers spun therefrom and method of preparation thereof
WO1996041044A1 (en) Spinning carbon fibers from solvated pitches
KR910005574B1 (en) Process for producing pitch for carbon
JPS59196390A (en) Preparation of pitch for carbon fiber
JPH0434019A (en) Carbon short fiber and preparation thereof
JP2557985B2 (en) Curl-shaped pitch-based carbon fiber and method for producing the same
JPS61186520A (en) Production of pitch carbon yarn
JP2786519B2 (en) Short carbon fiber spinning device
JPH0545685B2 (en)
JPH0718057B2 (en) Pitch-based fiber manufacturing method
JPH0788604B2 (en) Method for manufacturing pitch-based carbon fiber
JP3055295B2 (en) Pitch-based carbon fiber and method for producing the same
JPS61258024A (en) Production of pitch carbon yarn
JPH0380888B2 (en)
JPH03152218A (en) Pitch conjugate carbon fiber and production thereof
JPH0518922B2 (en)
JP2711918B2 (en) Pitch-based carbon fiber
JPH04257321A (en) Production of pitch carbon fiber having high tensile elastic modulus and high compression strength
JPS584823A (en) Production of carbon fiber

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term