JPH01221556A - Production of carbon fiber nonwoven cloth having high bulk density - Google Patents

Production of carbon fiber nonwoven cloth having high bulk density

Info

Publication number
JPH01221556A
JPH01221556A JP63041974A JP4197488A JPH01221556A JP H01221556 A JPH01221556 A JP H01221556A JP 63041974 A JP63041974 A JP 63041974A JP 4197488 A JP4197488 A JP 4197488A JP H01221556 A JPH01221556 A JP H01221556A
Authority
JP
Japan
Prior art keywords
carbon fiber
sheet
pitch
fibers
bulk density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63041974A
Other languages
Japanese (ja)
Inventor
Masao Sekido
関戸 正男
Akio Takamatsu
高松 明男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PETOKA KK
Petoca Ltd
Original Assignee
PETOKA KK
Petoca Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PETOKA KK, Petoca Ltd filed Critical PETOKA KK
Priority to JP63041974A priority Critical patent/JPH01221556A/en
Priority to EP89103092A priority patent/EP0330181A3/en
Publication of JPH01221556A publication Critical patent/JPH01221556A/en
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Inorganic Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To obtain a nonwoven cloth of carbon fiber having high bulk density and uniform porosity and exhibiting excellent performance as a filter material, electrode material, etc., by heat-treating an infusibilized pitch fiber sheet in an inert atmosphere and carbonizing the product. CONSTITUTION:An infusibilized pitch fiber sheet is heat-treated in an inert atmosphere at a temperature between the softening point of the pitch fiber and (softening point + 100 deg.C) in a state pinched between a number of press rollers applying forces perpendicular to the surface of the sheet. The pressing force is e.g. 0.1-10kg/cm<2> and the ratio of the roller gap to the thickness of the sheet supplied to the roller is e.g. 50-95%. The heat-treated fiber sheet is carbonized to obtain an excellent carbon fiber resistant to interlaminar peeling in use.

Description

【発明の詳細な説明】 イ)産業上の利用分野 本発明は高い嵩密度を有する炭素繊維不織布の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for producing a carbon fiber nonwoven fabric having a high bulk density.

本発明により製造される炭素繊維不織布は、嵩密度が高
く、均一な孔隙率を有しており、濾過材料、パツキン材
料、ブレーキライニング材料、電極材料、触媒担体、電
磁波遮蔽材料、耐熱容器、繊維複合材料の強化材等に用
いて、優れた性能を発揮する。
The carbon fiber nonwoven fabric produced by the present invention has a high bulk density and uniform porosity, and can be used as a filtration material, a packing material, a brake lining material, an electrode material, a catalyst carrier, an electromagnetic shielding material, a heat-resistant container, and a fiber. Demonstrates excellent performance when used as a reinforcing material for composite materials.

口)従来の技術 ピッチ系炭素繊維の不織布の製造は、他種の炭素繊維と
同様に、炭化後の繊維を切断して、通常の合成繊維と同
様の工程で行われる。またピッチ系炭素繊維特有の方法
として、熔融紡糸されたピッチ繊維を直ちに不織布状に
捕集する方法が行われる。
(Example) Conventional technology The production of pitch-based carbon fiber nonwoven fabrics, like other types of carbon fibers, is carried out by cutting the carbonized fibers and performing the same process as for ordinary synthetic fibers. Further, as a method specific to pitch-based carbon fibers, a method is used in which melt-spun pitch fibers are immediately collected in the form of a nonwoven fabric.

このような熔融紡糸後のピッチ繊維を直ちに不織布状に
捕集する方法は、従来から合成繊維のスパンボンド法や
ガラスウール(ガラス短繊維)、ロックウールの製法と
して広く用いられている方法とほぼ同様のものであった
This method of immediately collecting pitch fibers in the form of a non-woven fabric after melt-spinning is almost the same as the spunbond method for synthetic fibers and the method widely used for manufacturing glass wool (short glass fibers) and rock wool. It was similar.

合成繊維のスパンボンド法は、熔融紡糸された繊維を直
ちに延伸するか、あるいは配向結晶化する程度の速度で
牽引して繊維構造を安定化した後、ネットコンベヤー等
の多孔・質ベルト、あるいは多孔質ドラムの上に吸引等
の操作によりシート状に堆積させ、不織布に形成させる
In the spunbond method for synthetic fibers, the melt-spun fibers are immediately drawn or pulled at a speed that is sufficient to cause oriented crystallization to stabilize the fiber structure, and then the fibers are stretched on a porous/textured belt such as a net conveyor or porous. The material is deposited in a sheet form on a drum by suction or other operations to form a nonwoven fabric.

ガラス短繊維あるいはロックウールの不織布の場合には
、紡出されるガラス融液を気流もしくは遠心力によって
細化し、気流による吸引もしくは重カニより、多孔質ベ
ルトもしくは多孔質ドラム上に堆、積させ、シート化す
る。
In the case of short glass fibers or rock wool nonwoven fabrics, the spun glass melt is atomized by air current or centrifugal force, and deposited on a porous belt or drum by suction by air current or by heavy crab. Make it into a sheet.

合成繊維の場合にも、ガラス短1!雄と同様に気流によ
って融液を牽引細化して不織布化する、メルトブロー法
と呼ばレル方法が知られている。
Even in the case of synthetic fibers, glass short 1! Similar to the male method, there is a known method known as the melt blow method, in which the melt is pulled and thinned by air current to form a non-woven fabric.

ピッチ系炭素li維の不織布の場合にも、スパンボンド
法、遠心紡糸法およびメルトブロー法の適用が検討され
ており、遠心゛紡糸法については特公昭47−3214
8号等に、メルトブロー法については特開昭62−9(
1320号等にその技術が開示されている。
Application of the spunbond method, centrifugal spinning method, and melt blowing method is also being considered in the case of pitch-based carbon li fiber nonwoven fabric, and the centrifugal spinning method was described in Japanese Patent Publication No. 47-3214.
No. 8, etc., and the melt blow method is described in JP-A-62-9 (
The technology is disclosed in No. 1320 and the like.

これらの技術に共通する問題は、不融拒および炭化に対
しては静電状態での処理のみ開示されており、それ以外
の状態での処理でどのような不織布が出来るかは開示さ
れていないことである。−方熔融紡糸されたピッチ繊維
を直ちに捕集して製造した不織布は、厚さ方向の1!雑
の絡みが極めて少なく、眉間i4I離を起こし易い欠点
がある。また繊維に捲縮、捩れあるいは、弛み等を形成
させる嵩高化加工が困難であり、絡合あるいは収縮等に
よる緊密化加工も殆ど不可能に近いため、嵩高さにあま
り変化を付は難い欠点がある。
A common problem with these technologies is that they only disclose electrostatic treatment for non-melting and carbonization, but do not disclose what kind of nonwoven fabric can be produced by treatment in other conditions. That's true. - The nonwoven fabric produced by immediately collecting the melt-spun pitch fibers has a thickness of 1% in the thickness direction. It has the disadvantage that there is very little intertwining of miscellaneous objects, and it is easy to cause i4I separation between the eyebrows. In addition, it is difficult to process the fibers to make them bulky by crimping, twisting, or loosening them, and it is almost impossible to make them tight by entangling or shrinking them, so it is difficult to change the bulk. be.

ハ)発明が解決しようとする問題点 本発明はピッチ系炭素繊維不織布の欠点である、厚さ方
向の絡みが極めて少なく、眉間剥離を起こ−し易い問題
点、および嵩高化加工あるいは緊密化加工が困難である
ため、青高さにあまり変化を付は難い問題点を解決し、
嵩密度の大きい不織布を形成することを目的とする。
C) Problems to be Solved by the Invention The present invention addresses the disadvantages of pitch-based carbon fiber nonwoven fabrics, which are that there is very little entanglement in the thickness direction, which tends to cause peeling between the eyebrows, and bulking or tightness processing. This solves the problem that it is difficult to make much change in blue height because it is difficult to
The purpose is to form a nonwoven fabric with high bulk density.

二)問題点を解決する手段 本発明は不敵化処理を終わったピッチ繊維のシートを、
不活性雰囲気中で該シートの面に事実上垂直方向に加圧
しつつ、該不敵化処理を終わったピッチ繊維の軟化点以
上、(軟化点+300> ’C以下の温度で加熱処理し
た後、炭化させることを特徴とする高嵩密度炭素繊維不
織布の製造方法である。
2) Means for solving the problem The present invention uses pitch fiber sheets that have been rendered invulnerable.
After heat treatment at a temperature above the softening point of the pitch fibers that have undergone the invulnerability treatment and below (softening point + 300>'C) while applying pressure in a direction substantially perpendicular to the surface of the sheet in an inert atmosphere, This is a method for producing a high bulk density carbon fiber nonwoven fabric, which is characterized by carbonization.

本発明に於いて、炭化処理時のシートの加圧は静的荷重
下もしくは、多数の圧搾ローラーに挟んで実施する。
In the present invention, the sheet is pressurized during the carbonization treatment under static load or by being sandwiched between a number of pressing rollers.

静的荷重による加圧は、重錘による加圧、油圧機等流体
圧による加圧、ねじによる加圧等が用いられる。静的荷
重による加圧の場合、シート面に垂直の′加圧ばかりで
なく、等方性加圧の利用も可能である。
Pressurization by a static load is performed by using a weight, pressurization by fluid pressure such as a hydraulic machine, pressurization by a screw, or the like. In the case of pressurization by static load, it is possible to use not only normal pressurization to the sheet surface but also isotropic pressurization.

静的荷重下の加圧の大きさは、0“、1g〜10kg/
an”、好ましくは1〜1000 g / e、m ”
である、加圧は大きすぎる場合ピッチ繊維に損傷を生じ
、小さすぎる場合嵩密度を大きくする効果が乏しくなる
The magnitude of pressurization under static load is 0", 1g~10kg/
an”, preferably 1-1000 g/e, m”
If the pressure is too large, the pitch fibers will be damaged, and if the pressure is too small, the effect of increasing the bulk density will be poor.

圧搾ローラーによる加圧にはほぼ同一表面速度で回転す
る対ローラーを用いる。圧搾ローラーには必要に応じ、
エプロンを掛ける事が出来る。エプロンは耐熱性を要求
されるので、耐熱合金製の金側や炭素繊維製の織物を用
いることが好ましい。
A pair of rollers rotating at approximately the same surface speed is used for applying pressure with the squeezing roller. If necessary, press rollers can be used.
You can hang an apron on it. Since the apron is required to have heat resistance, it is preferable to use a gold side made of a heat-resistant alloy or a woven fabric made of carbon fiber.

圧搾ローラーは表面がセラミックスのような耐熱性が優
れ、耐摩耗性の大きい材料であることが好ましい6例え
ばセラミックスを溶射加工したようなローラーを用いる
ことが好ましい。
The surface of the squeezing roller is preferably made of a material such as ceramic, which has excellent heat resistance and high abrasion resistance.6 For example, it is preferable to use a roller made of thermally sprayed ceramic.

圧搾は一段で行うことも可能であるが、とくにローラー
を用いる場合、多段で少しずつ行うことが好ましい、急
激な圧搾は、繊維間を絡ませる作用が強い利点があるが
、繊維に損傷を与え易く、繊維の損失を生じる上、浮遊
繊維により製造工程の設備環境が汚染されるので好まし
くない。
Squeezing can be done in one step, but it is preferable to do it little by little in multiple stages, especially when rollers are used. Sudden squeezing has the advantage of entangling the fibers, but it can damage the fibers. This is undesirable because it easily causes loss of fibers, and the floating fibers contaminate the manufacturing process equipment environment.

圧搾は不融化処理をある程度行った後行う、この処理後
のピッチ繊維を不融化処理を終わったピッチ繊維と呼ぶ
ことにする。不融化処理以前のピッチwI維は軟化点が
低く、低温で加圧効果が現れる利点があるが、強度が低
く、伸度が小さいので、圧搾加工によって繊維に損傷を
与え易い欠点があり、嵩密度を上げるには不利と考えら
れる。不融化処理は完全に不融化される最低の酸素含有
率に対し、20〜90%の値になるように行うことが好
ましい、不融化処理を完全に不融化されるまで、あるい
は完全に不磁化される水準、を過ぎた酸素含有率まで行
っても、本発明の高嵩密度炭素繊維不織布の製造は可能
であるが、軟化点が高くなるため、高温で圧搾加工する
必要があるため、設備寿命が短くなる欠点があり、ピッ
チからの炭素繊維不織布の収率が低くなる問題がある。
The compression is performed after a certain amount of infusibility treatment has been performed, and the pitch fibers after this treatment are referred to as pitch fibers that have undergone infusibility treatment. Pitch wI fibers before infusibility treatment have a low softening point and have the advantage of producing a pressurizing effect at low temperatures, but they have low strength and low elongation, so they have the disadvantage that the fibers are easily damaged during compression processing, and they are bulky. This is considered to be disadvantageous for increasing density. It is preferable that the infusibility treatment is carried out to a value of 20 to 90% of the lowest oxygen content at which complete infusibility is achieved. Although it is possible to produce the high bulk density carbon fiber nonwoven fabric of the present invention even if the oxygen content exceeds the level specified by There is a problem that the service life is short, and the yield of carbon fiber nonwoven fabric from pitch is low.

圧搾率はローラーに供給されるシートの厚さに対するロ
ーラー間隙の比率として、50%〜95%であることが
好ましい、圧搾率が大きい場合、圧搾効果が小さくなり
、圧搾率が小さい場合、繊維に損傷を与える傾向が生じ
るので好ましくない。
The compression rate is preferably 50% to 95% as a ratio of the roller gap to the thickness of the sheet fed to the rollers. If the compression rate is large, the compression effect will be small, and if the compression rate is small, the fibers will be This is undesirable because it tends to cause damage.

圧搾の段数は3〜50段が好ましく、最も好ましくは5
〜15段である0段数が少なすぎると圧搾効果が少なく
なる上、繊維に損傷を生じるので好ましくない1段数が
多すぎると設備コストが高くなる上、効果が飽和する傾
向が生じるので好ましくない。
The number of stages of compression is preferably 3 to 50, most preferably 5.
If the number of 0 stages (~15 stages) is too small, the squeezing effect will be reduced and the fibers will be damaged, which is undesirable.If the number of stages is too large, the equipment cost will increase and the effect will tend to be saturated, which is undesirable.

圧搾処理の温度は不融化ピッチ繊維の軟化点以上、(軟
化点+300> ℃以下である。好ましくはく軟化点+
25)℃〜(軟化点+150> ’Cである。
The temperature of the compression treatment is higher than the softening point of the infusible pitch fiber and lower than (softening point +300°C).Preferably, the softening point +
25) °C~(softening point +150>'C).

またこの温度は500℃を超えないことが好ましい。Moreover, it is preferable that this temperature does not exceed 500°C.

加圧処理は500〜1400℃で行う場合、これより低
温から引き続いて行う際にはその効果が顕著でない問題
があり、この温度範囲で急に加圧を始めると、既に繊維
の弾性率が大きくなっているためか、圧搾が進まず、!
!!!維の損傷ばかりが項著である問題がある。またこ
の温度範囲で加圧して生じた圧搾は、更に高温(特に8
00℃以上)での炭化処理で回復し、嵩密度が大きくな
り難い問題がある。
When pressure treatment is carried out at 500 to 1400°C, there is a problem that the effect is not noticeable when it is carried out successively at a lower temperature.If pressure treatment is suddenly started in this temperature range, the elastic modulus of the fiber has already increased. Perhaps because of this, the compression does not proceed!
! ! ! The main problem is that the fibers are damaged. In addition, the squeezing that occurs when pressurized in this temperature range is at even higher temperatures (especially 88
There is a problem in that it is difficult to recover by carbonization treatment at a temperature of 00° C. or higher, and the bulk density is difficult to increase.

ピッチ繊維の軟化点の測定は、フローテスターによる定
速昇温条件での比容積゛の測定を行う際に、試験用試料
の塑性変形によるコンパクト化が終了する温度を求める
ことで行う、測定器としては島津製作所製「高化式フロ
ーテスター」を用い、昇温速度2℃/分で測定する。
The softening point of pitch fibers is measured by determining the temperature at which compaction due to plastic deformation of the test sample ends when measuring the specific volume with a flow tester under constant rate heating conditions. The temperature is measured using a "Koka Type Flow Tester" manufactured by Shimadzu Corporation at a heating rate of 2° C./min.

本発明に於いて、原料として使用するピッチ繊維のシー
トは、熔融紡糸されたとッチm維を直ちに捕集して製造
したものであることが好ましい。
In the present invention, the pitch fiber sheet used as a raw material is preferably produced by immediately collecting melt-spun pitch fibers.

具体的には、熔融ピッチを通常の紡糸口金がら紡出し、
気流もしくはローラーによって牽引する、スパンボンド
式の紡糸方法、高速気流の中に一出口を有する紡糸孔も
しくはス・リフトから紡出する、メルトブロー式の紡糸
方法、高速回転するポットから遠心力により散布して液
流化する遠心紡糸法の、いずれも採用出来るが、特にメ
ルトブロー法が好ましい。
Specifically, the molten pitch is spun through a normal spinneret,
Spunbond spinning method, which is pulled by an air stream or rollers; Melt-blown spinning method, which involves spinning from a spinning hole or spool with one outlet in a high-speed air stream; Although any centrifugal spinning method can be used, the melt blowing method is particularly preferred.

メルトブロー法にはスリット状の高速気流の吐出孔の中
に、紡糸孔を一列に並べる方法あるいはスリットを設け
る方法、および礼状の高速気流の吐出孔の中に紡糸孔を
1個ないし数個設ける方法が知られているが、本発明に
対してはいずれの方法も使用することが出来る。
Melt blowing methods include a method in which spinning holes are arranged in a line or a slit is provided in a slit-shaped high-speed airflow discharge hole, and a method in which one or several spinning holes are provided in a high-speed airflow discharge hole in a thank you letter. is known, but either method can be used for the present invention.

本発明に使用するピッチは熔融紡糸および不敵化処理が
可能な高軟化点ピッチである。好ましくは光学異方性ピ
ッチであり、最も好ましくは実質的に100%の光学異
方性のピッチである。
The pitch used in the present invention is a high softening point pitch that can be melt-spun and rendered invincible. Preferably it is an optically anisotropic pitch, most preferably a pitch that is substantially 100% optically anisotropic.

本発明に使用するピッチは1種項であっても良く、また
2種類以上を用いることも可iである。
The pitch used in the present invention may be one type pitch, or two or more types may be used.

本発明によって製造される炭素繊維不織布は、高度に炭
化することにより、高い電気伝導性を与えることが可能
である。高い電気伝導性を有−する炭素繊維不織布は電
磁波遮蔽材、面発熱体、!極材料、触媒担体等に使用す
る事が可能である。
The carbon fiber nonwoven fabric produced according to the present invention can be highly carbonized to provide high electrical conductivity. Carbon fiber nonwoven fabric with high electrical conductivity can be used as electromagnetic wave shielding material, surface heating element, and more! It can be used as an electrode material, catalyst carrier, etc.

本発明によって製造される不縁布には、電気伝導性、形
態安定性等の改善のため、内部あるいは表面ニ金tAや
炭素繊維織物あるいはセラミックス11維製品等を含む
ことが可能である。また他の材料と張り合わすための接
着剤層、あるいは粘着剤層を有していることが可能であ
る。また植毛、フロック加工、樹脂コーティング、フィ
ルムとのラミネート加工等を行うことが可能である。
The non-woven fabric produced according to the present invention can contain galvanic tA, carbon fiber fabric, ceramic 11 fabric, etc. inside or on the surface to improve electrical conductivity, shape stability, etc. Further, it is possible to have an adhesive layer or a pressure-sensitive adhesive layer for bonding with other materials. It is also possible to perform flocking, flocking, resin coating, lamination with film, etc.

実施例 1 軟化点285℃、光学異方性分率100%の石油系ピッ
チを原料とし、内径0.3+s−外径0.6輸■の原料
吐出用管状ノズルを内蔵する直径0.81の紡糸孔を有
する口金を用い、管状ノズルの周辺から加熱空気を噴出
させて、熔融ピッチを牽引して紡糸・を行った。
Example 1 A petroleum-based pitch with a softening point of 285°C and an optical anisotropy fraction of 100% was used as a raw material, and a diameter of 0.81 was used, which had a built-in tubular nozzle for discharging the raw material with an inner diameter of 0.3 + s - outer diameter of 0.6 mm. Using a nozzle with a spinning hole, heated air was blown out from around the tubular nozzle to pull the molten pitch and perform spinning.

ピッチの吐出!12g/80H・分、ピッチ温度320
℃、口金温度420℃、加熱空気の流量0.43kg/
分、温度420℃であった。
Pitch discharge! 12g/80H・min, pitch temperature 320
℃, base temperature 420℃, heated air flow rate 0.43kg/
The temperature was 420°C.

紡出された繊維を、捕集部分が20メツ−シュのステン
レス製金網で出来たベルトの背面から吸引して、ベルト
上に捕集した。
The spun fibers were collected on the belt by suction from the back side of a belt whose collecting portion was made of 20 mesh stainless wire mesh.

得られたシートを酸素含有率が完全に不融化処理したと
きの75%である条件で不融化処理し、更に不活性ガス
炉中で圧搾しながら炭、化処理した。
The obtained sheet was infusible under conditions such that the oxygen content was 75% of the complete infusibility treatment, and was further charcoalized while being compressed in an inert gas furnace.

圧搾の段数は7段、各段の圧搾率は80%とした。The number of stages of compression was 7, and the compression rate of each stage was 80%.

温度は第1段が250℃、その後の各段で30℃ずつ昇
温し、圧搾処理した。
The temperature was 250°C in the first stage, and the temperature was increased by 30°C in each subsequent stage for compression treatment.

得られた炭素繊維不織布は、見掛は比重0.22、目付
80Fi/am’であった。この不織布は殆ど層間剥i
を起こさなかった。
The obtained carbon fiber nonwoven fabric had an apparent specific gravity of 0.22 and a basis weight of 80 Fi/am'. This nonwoven fabric has almost no delamination.
did not occur.

比較例 1 実施例 1と同様の条件で紡出された繊維シートを、常
法により不融化処理した後、圧搾を行わない状態で炭化
処理した。得られた炭素繊維不織布は見掛は比重0.0
8であり、層間剥離が激しく、軽くこするだけで多数の
薄い繊維層に分かれた。
Comparative Example 1 A fiber sheet spun under the same conditions as Example 1 was subjected to infusibility treatment by a conventional method, and then carbonized without compression. The obtained carbon fiber nonwoven fabric has an apparent specific gravity of 0.0.
8, and the delamination was severe, and it separated into many thin fiber layers just by rubbing lightly.

実施例 2 実施例 1と同様の条件で紡出された繊維シートを、軽
度に不融化した後、種々の条件で圧搾しながら炭化処理
し、得られた炭素繊維不織布の見掛は比重および層間剥
離を調べた。その結果を表1に示す。
Example 2 A fiber sheet spun under the same conditions as Example 1 was slightly infusible and then carbonized while being compressed under various conditions.The appearance of the obtained carbon fiber nonwoven fabric was determined by specific gravity and interlayer Checked for peeling. The results are shown in Table 1.

表1 炭化時の圧搾条件と眉間剥離 実施例 3 軟化点237℃の高軟化点等方性石油系ピッチを原料と
し、直径0 、15mmの紡糸孔を直線状の3列に30
00個有する口金から紡糸し、冷却後直ちにスリット状
の牽引ノズルにより吸引して、2枚のネットコンベヤー
に挟まれた、頂角60°の空間に噴出させて堆績させ、
シート状に捕集した。
Table 1 Pressing conditions during carbonization and glabella peeling example 3 Using high softening point isotropic petroleum pitch with a softening point of 237°C as raw material, 30 spinning holes with a diameter of 0 and 15 mm were arranged in 3 linear rows.
The fiber is spun from a nozzle having 00 pieces, and immediately after cooling, it is suctioned by a slit-shaped traction nozzle, and is ejected into a space with an apex angle of 60° sandwiched between two net conveyors to be deposited.
Collected in sheet form.

得られたシートを常法により不融化処理した後、不活性
気体中でローラーによって圧搾しつつ炭化処理を行った
。圧搾率は各段80%、温度は第1段が150℃で各段
毎に40℃ずつ昇温しながら、7段の処理を行った。
The obtained sheet was infusible by a conventional method, and then carbonized while being squeezed with a roller in an inert gas. The treatment was carried out in seven stages, with a compression ratio of 80% in each stage and a temperature of 150°C in the first stage, increasing the temperature by 40°C in each stage.

得られたシートは見掛は比重が0.25であり、殆ど層
間剥離を生じなかった。
The obtained sheet had an apparent specific gravity of 0.25, and almost no delamination occurred.

一方通常の圧搾を行わない炭化処理では、得られたシー
トの見掛は比重は0.02で、激しい眉間剥離を起こし
た。
On the other hand, in the case of carbonization treatment without ordinary compression, the resulting sheet had an apparent specific gravity of 0.02 and severe peeling occurred between the eyebrows.

ホ)発明の作用および効果 本発明は高い嵩密度を有する炭素繊維不織布の製造方法
に関する。
E) Functions and Effects of the Invention The present invention relates to a method for producing a carbon fiber nonwoven fabric having a high bulk density.

本発明により製造される炭素繊維不織布は、嵩密度が高
く、均一な孔隙率を有しており、使用中に繊維の絡まり
の少ない所から破壊を起こす、いわゆる眉間剥離を起こ
し難い特徴を有する。
The carbon fiber nonwoven fabric produced according to the present invention has a high bulk density and a uniform porosity, and has a characteristic that it is difficult to cause so-called glabellar peeling, which causes destruction from a place where the fibers are less entangled during use.

本発明により製造される炭素繊維不織布は、f過材料、
パツキン材料、ブレーキライニング材料、電極材料、触
媒担体、電磁波遮蔽材料、耐熱容器、繊維複合材料の強
化材等に用いて、優れた性能を発揮する。
The carbon fiber nonwoven fabric produced according to the present invention includes a carbon fiber material,
It exhibits excellent performance when used in packing materials, brake lining materials, electrode materials, catalyst carriers, electromagnetic shielding materials, heat-resistant containers, reinforcing materials for fiber composite materials, etc.

以上that's all

Claims (1)

【特許請求の範囲】[Claims]  不融化処理を終わったピッチ繊維のシートを不活性雰
囲気中で、該シートの面に事実上垂直方向に加圧しつつ
、該不融化処理を終わったピッチ繊維の軟化点以上、(
軟化点+300)℃以下の温度で加熱処理した後、炭化
させることを特徴とする高嵩密度炭素繊維不織布の製造
方法。
A sheet of pitch fibers that has undergone infusibility treatment is pressed in an inert atmosphere in a direction substantially perpendicular to the surface of the sheet, and the pitch fibers that have undergone infusibility treatment are heated at a temperature above the softening point of the pitch fibers (
A method for producing a high bulk density carbon fiber nonwoven fabric, which comprises carbonizing the fabric after heat treatment at a temperature below the softening point +300)°C.
JP63041974A 1988-02-26 1988-02-26 Production of carbon fiber nonwoven cloth having high bulk density Pending JPH01221556A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63041974A JPH01221556A (en) 1988-02-26 1988-02-26 Production of carbon fiber nonwoven cloth having high bulk density
EP89103092A EP0330181A3 (en) 1988-02-26 1989-02-22 Process for producing non-woven fabrics of high bulk density carbon fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63041974A JPH01221556A (en) 1988-02-26 1988-02-26 Production of carbon fiber nonwoven cloth having high bulk density

Publications (1)

Publication Number Publication Date
JPH01221556A true JPH01221556A (en) 1989-09-05

Family

ID=12623168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63041974A Pending JPH01221556A (en) 1988-02-26 1988-02-26 Production of carbon fiber nonwoven cloth having high bulk density

Country Status (2)

Country Link
EP (1) EP0330181A3 (en)
JP (1) JPH01221556A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434019A (en) * 1990-05-22 1992-02-05 Agency Of Ind Science & Technol Carbon short fiber and preparation thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2678513B2 (en) * 1990-01-26 1997-11-17 株式会社ペトカ Carbon fiber structure, carbon-carbon composite material, and methods for producing the same
JP5933433B2 (en) 2009-07-17 2016-06-08 カーボン ファイバー プリフォームズ リミテッド Fiber matrix and method for producing fiber matrix

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4032607A (en) * 1974-09-27 1977-06-28 Union Carbide Corporation Process for producing self-bonded webs of non-woven carbon fibers
DE3882452T2 (en) * 1987-04-03 1993-11-18 Nippon Oil Co Ltd Process for the manufacture of articles from carbon / carbon fibers.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0434019A (en) * 1990-05-22 1992-02-05 Agency Of Ind Science & Technol Carbon short fiber and preparation thereof

Also Published As

Publication number Publication date
EP0330181A3 (en) 1990-05-16
EP0330181A2 (en) 1989-08-30

Similar Documents

Publication Publication Date Title
US6583075B1 (en) Dissociable multicomponent fibers containing a polyacrylonitrile polymer component
JP5263294B2 (en) Manufacturing method of long fiber nonwoven fabric
Dabirian et al. Novel method for nanofibre yarn production using two differently charged nozzles
EP0543147B1 (en) Carbon fiber felt and process for its production
JP6575523B2 (en) Melt blown nonwoven fabric and method for producing the same
JP4502636B2 (en) Pitch-based carbon fiber sliver and method for producing spun yarn
JPH01221557A (en) Production of carbon fiber nonwoven cloth
JP4359999B2 (en) Method for producing polyphenylene sulfide fiber
US5336556A (en) Heat resistant nonwoven fabric and process for producing same
JPH01221556A (en) Production of carbon fiber nonwoven cloth having high bulk density
JP7176850B2 (en) Sea-island composite fiber bundle
EP0505568B1 (en) Heat-resistant nonwoven fabric and method of manufacturing said fabric
JPH06184905A (en) Production of polypropylene-based nonwoven fabric
JP5249713B2 (en) Heat resistant nonwoven fabric
JPH0814069B2 (en) Heat-bondable non-woven sheet
JP3173911B2 (en) Manufacturing method of long fiber non-woven fabric
JPH02216295A (en) Production of highly strong polyester fiber paper
WO2010021045A1 (en) Woven fabric of isotropic pitch carbon fiber and process for producing the same
JPH0329890B2 (en)
JPH02169725A (en) Carbon fiber and production thereof
JPH11107147A (en) Chemical-resistant conjugate fabric and formed product obtained by using the same
TW470791B (en) Process and apparatus for collecting continuous blow spun fibers
JPS589185B2 (en) Japanese sagebrush
US5407614A (en) Process of making pitch-based carbon fibers
JPH0382862A (en) Filament nonwoven fabric comprising polymethylpentene fiber and production thereof