JPH0433997B2 - - Google Patents

Info

Publication number
JPH0433997B2
JPH0433997B2 JP56195514A JP19551481A JPH0433997B2 JP H0433997 B2 JPH0433997 B2 JP H0433997B2 JP 56195514 A JP56195514 A JP 56195514A JP 19551481 A JP19551481 A JP 19551481A JP H0433997 B2 JPH0433997 B2 JP H0433997B2
Authority
JP
Japan
Prior art keywords
pump
rotor
outlet
fluid
pump chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56195514A
Other languages
Japanese (ja)
Other versions
JPS57146093A (en
Inventor
Waikuritsufu Henritsuku
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOC Group Ltd
Original Assignee
BOC Group Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOC Group Ltd filed Critical BOC Group Ltd
Publication of JPS57146093A publication Critical patent/JPS57146093A/en
Publication of JPH0433997B2 publication Critical patent/JPH0433997B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/126Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially from the rotor body extending elements, not necessarily co-operating with corresponding recesses in the other rotor, e.g. lobes, Roots type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary-Type Compressors (AREA)
  • Rotary Pumps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

【発明の詳細な説明】 本発明は、機械的なポンプ、特に、大型の無給
油で作動する高真空の多段式真空ポンプに関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to mechanical pumps, and in particular to large, oil-free, high-vacuum, multi-stage vacuum pumps.

特定の産業、例えば、食品加工産業では、機械
的なポンプまたは圧縮機で供給される空気その他
のガスは、油および粒子を含んではならない。
In certain industries, such as the food processing industry, air and other gases supplied by mechanical pumps or compressors must be free of oil and particles.

公知の無給油の機械的な回転ポンプでは、相補
状の輪郭を有する一対の共働する動バランスされ
たロータの各々は、対応する一対の平行軸にポン
プ室内で装着されている。各軸は、ロータの回転
運動を同期させるタイミングギヤを有している。
使用の際、一方の軸はモータで駆動され、タイミ
ングギヤは、軸とこれに関連するロータとを回転
し、それにより、ポンプ室の入口から出口へ流体
を圧送する。
In known oil-free mechanical rotary pumps, a pair of cooperating dynamically balanced rotors having complementary profiles are each mounted within a pump chamber on a corresponding pair of parallel shafts. Each shaft has a timing gear that synchronizes the rotary motion of the rotor.
In use, one shaft is driven by a motor and a timing gear rotates the shaft and associated rotor, thereby pumping fluid from the inlet to the outlet of the pumping chamber.

しかし、従来の回転ポンプは、出口での流体の
逆流を有効に阻止することができず、このような
不当な流体の逆流によりポンプ効率の低下等の問
題があつた。
However, conventional rotary pumps cannot effectively prevent backflow of fluid at the outlet, and such undue backflow of fluid causes problems such as a decrease in pump efficiency.

本発明の目的は、圧送チヤンバ内で潤滑剤を使
用することなく高真空を達成できると共に、圧送
される流体を少くとも大気圧に圧縮できる多段式
真空ポンプを提供することである。
It is an object of the present invention to provide a multi-stage vacuum pump which is capable of achieving high vacuum without the use of lubricants in the pumping chamber and which is capable of compressing the pumped fluid to at least atmospheric pressure.

本発明によると、多段式真空ポンプは、入口と
出口とを有し圧送すべき流体を流通させるポンプ
室と、該ポンプ室を貫通して延び異なる輪郭を有
する少くとも2対のロータを回転運動せしめるべ
く直列に支持する一対の平行な軸と、該ロータの
回転運動と同期させる装置と、前記軸の少くとも
一方を駆動する装置とを備え、前記ポンプ室の出
口に最も近い1対のロータはクロー型の輪郭を有
し、前記ポンプ室の出口には圧送すべき流体の該
出口を通る流通を制御するよう一方向弁を備えて
いる。
According to the invention, a multistage vacuum pump comprises a pump chamber having an inlet and an outlet through which the fluid to be pumped flows, and at least two pairs of rotors extending through the pump chamber and having different contours for rotational movement. the pair of rotors closest to the outlet of the pump chamber; has a claw-shaped profile and the outlet of the pumping chamber is provided with a one-way valve for controlling the flow of fluid to be pumped through the outlet.

最初に第1図を参照すると、一対の平行軸3
(1つのみ示す)が貫通するポンプ室2を有する
公知の機械的なポンプ1を示す。各軸3は一緒に
回転するロータ4を支持する。ロータ4は、点線
で示す如くほぼ8の字形状の相補状輪郭、即ちル
ーツ型の輪郭を有している。その右端では、各軸
3は、タイミングギヤ7を担持し、その左端で
は、一方の軸3が流体継手6を介しモータ5で駆
動される。
Referring first to FIG. 1, a pair of parallel shafts 3
1 shows a known mechanical pump 1 with a pump chamber 2 (only one shown) passing through it; Each shaft 3 supports a rotor 4 rotating together. The rotor 4 has a substantially figure-eight complementary contour, ie, a roots-shaped contour, as shown by the dotted line. At its right end, each shaft 3 carries a timing gear 7 , and at its left end one shaft 3 is driven by a motor 5 via a fluid coupling 6 .

使用の際、モータ5が流体継手6を介して一方
の軸3を駆動すると、他方の軸3は、タイミング
ギヤ7によつて一方の軸3に同期して回転され
る。ロータ4の輪郭は、圧送すべき流体がポンプ
室2の入口8に吸込まれ出口(図示せず)を介し
てポンプ室2から出るように、選択してある。
In use, when the motor 5 drives one shaft 3 via the fluid coupling 6, the other shaft 3 is rotated synchronously with the one shaft 3 by the timing gear 7. The contour of the rotor 4 is selected such that the fluid to be pumped is sucked into the inlet 8 of the pumping chamber 2 and exits the pumping chamber 2 via an outlet (not shown).

この公知の機械的なポンプは、極めて有用であ
り、処理装置、炉、風胴、宇宙シユミレータ、大
容量のおおまかな排気、包装、拡散ポンプの支
援、および油蒸気のブースターポンプ等に幅広く
使用されている。
This known mechanical pump is extremely useful and is widely used in processing equipment, furnaces, wind cylinders, space simulators, large volume rough pumping, packaging, diffusion pump support, and oil vapor booster pumps, etc. ing.

第2図から第4図までを参照すると、本発明の
多段式真空ポンプ21は、高真空の用途に好適で
あり、一対の平行軸23(1つのみが示される)
が貫通するポンプ室22を有する点で第1図の公
知のポンプと同じである。各軸23は、4つのロ
ータ34A,34B、34C,34Dを一体回転
可能に支持する。ロータ34Aから34Dの各対
は、相補状のロータ輪郭を有し、夫々の軸23に
タンデム駆動するように配置される。一方の軸2
3は、継手26を介しモータ(図示せず)で駆動
される。各軸23には、継手26に隣接してタイ
ミングギヤ27を装着してある。
Referring to FIGS. 2-4, the multi-stage vacuum pump 21 of the present invention is suitable for high vacuum applications and has a pair of parallel shafts 23 (only one shown).
It is the same as the known pump of FIG. 1 in that it has a pump chamber 22 through which it passes. Each shaft 23 supports four rotors 34A, 34B, 34C, and 34D such that they can rotate together. Each pair of rotors 34A to 34D has complementary rotor profiles and is arranged for tandem drive on a respective shaft 23. One axis 2
3 is driven by a motor (not shown) via a joint 26. A timing gear 27 is mounted on each shaft 23 adjacent to a joint 26.

ポンプ室22は、仕切壁28,29,30で4
つの離隔した区画に分割され、各区画に一対のロ
ータ34A〜34Dがそれぞれ位置する。
The pump chamber 22 has four partition walls 28, 29, and 30.
It is divided into two separated sections, and a pair of rotors 34A to 34D are located in each section.

ポンプ室22は、ロータ34Aで占められる区
画に直接連通する入口31と、ロータ34Dで占
められる区画に直接連通する出口32A,32B
とを有している。出口32Aから圧送される流体
の流れは、既知のフラツプ弁の如き薄い弾性部材
から成る一方向弁33Aにより制御され、出口3
2Bから圧送される流体は、同様な一方向弁(図
示せず)で制御される。即ち、図示の例では、第
2,3図に示すように、一方向弁33Aは、ロー
タ34Dが位置したポンプ室区画とは反対側の出
口32Aの壁にこの出口を閉じた状態で配置して
あり、ポンプ室からの流体の所定圧力を受けたと
きに出口32Aを開いて流体を流出させる(第2
図矢印)が、出口32Aからポンプ室への流体の
逆流入は阻止するものであり、一種の逆止め弁で
ある。出口32Bに関する一方向弁32Bも同じ
構成のものでよい。
The pump chamber 22 has an inlet 31 that directly communicates with the compartment occupied by the rotor 34A, and outlets 32A and 32B that directly communicate with the compartment occupied by the rotor 34D.
It has The flow of fluid pumped from the outlet 32A is controlled by a one-way valve 33A made of a thin elastic member such as a known flap valve.
Fluid pumped from 2B is controlled by a similar one-way valve (not shown). That is, in the illustrated example, as shown in FIGS. 2 and 3, the one-way valve 33A is disposed with the outlet closed in the wall of the outlet 32A opposite to the pump chamber section in which the rotor 34D is located. When receiving a predetermined pressure of the fluid from the pump chamber, the outlet 32A is opened to allow the fluid to flow out (second
The arrow in the figure) prevents the fluid from flowing back into the pump chamber from the outlet 32A, and is a kind of check valve. The one-way valve 32B associated with the outlet 32B may also have the same configuration.

通路36,37,38は、ポンプ室22の一区
画から次の隣接する区画へ圧送される流体の流通
用の通路である。
Passages 36, 37, and 38 are passageways for fluid flow that is pumped from one section of pump chamber 22 to the next adjacent section.

入口31に最も近いロータ34Aの輪郭は、ロ
ータ34Aが「最小残余量」(最小すきま容積)
を有する如く定められる。同様なことは、ロータ
34Aが位置する区画に直接に隣接する区画内の
ロータ34Bについても言える。ここで「最小残
余量」とは、共働するロータの相互作用の際、排
気が済んでロータの入口側にロータが回転して戻
るときに、ロータ間のガスの保有量が事実上最小
となるように、共働するロータの輪郭を形成する
ことを意味する。排気後の残余の流体がロータの
入口側へ戻つたときには、その流体が膨脹して、
ポンプの体積効率を減少するので、ロータの輪郭
をこのように形成することは、極めて重要であ
る。このような「最小残余量」を有するロータの
輪郭は、例えば第4図に示すようなルーツ型の輪
郭である。
The outline of the rotor 34A closest to the inlet 31 indicates that the rotor 34A has the "minimum remaining amount" (minimum clearance volume)
It is defined as having the following. The same is true for rotor 34B in a compartment directly adjacent to the compartment in which rotor 34A is located. The "minimum remaining amount" here means that during the interaction of the cooperating rotors, the amount of gas retained between the rotors is effectively the minimum when the rotors are rotated back to the inlet side of the rotors after exhausting. This means forming the contours of the cooperating rotors so that When the remaining fluid after exhaust returns to the inlet side of the rotor, the fluid expands and
This contouring of the rotor is extremely important as it reduces the volumetric efficiency of the pump. The profile of a rotor having such a "minimum residual amount" is, for example, a roots-shaped profile as shown in FIG.

出口32A,32Bに最も近い各ロータ34D
は第3図に示すような公知のいわゆるクロー
(claw)形式の輪郭を有している。同様なこと
は、ロータ34Dが位置する区画に直接に隣接す
る区画内のロータ34Cについても言える。クロ
ー型の輪郭をもつたロータがそのポンプ室の入口
と共働してポンプ作用を行うとき、既知のよう
に、ロータのすきま容積内の流体が入口と直通し
て再膨脹することが阻止されるから、一ポンプ室
を横切つて約30:1の圧力比を得ることが可能と
なる。
Each rotor 34D closest to the outlet 32A, 32B
has a known so-called claw-type profile as shown in FIG. The same is true for rotor 34C in a compartment directly adjacent to the compartment in which rotor 34D is located. When a rotor with a claw-shaped profile performs a pumping action in cooperation with the inlet of its pumping chamber, as is known, the fluid in the clearance volume of the rotor is prevented from re-expanding through direct communication with the inlet. This makes it possible to obtain a pressure ratio of approximately 30:1 across one pump chamber.

使用の際、モータが一方の軸23を駆動する
と、両方の軸23は、タイミングギヤ27により
同期して駆動され、これにより、対をなす輪郭付
きロータ34A〜34Dを同期的に駆動する。圧
送すべき流体は、入口31に入り、矢印で示す如
く出口32A,32Bを経て出るまで、継続的に
通路36,37,38を介して圧送される。
In use, when the motor drives one shaft 23, both shafts 23 are driven synchronously by the timing gear 27, thereby driving the pair of contoured rotors 34A-34D synchronously. The fluid to be pumped enters inlet 31 and is continuously pumped through passages 36, 37, 38 until it exits via outlets 32A, 32B as indicated by the arrows.

ポンプ21を高真空の用途に使用した場合、ロ
ータ34Dの行程容積部は主として低圧力となつ
ているから、出口32A,32Bから出るガスは
逆流を阻止するようにしなければ、行程容積部内
へ逆流してしまう。ガスが出口32A,32Bを
通つて行程容積部へ逆流したり、またロータ34
Dのすきま容積部からガスが再膨脹したりするこ
とが許されると、ガスは反復的に圧縮されること
になり、このため動力を過剰に消費し、ポンプの
温度を上昇させ、ポンプの騒音を増し、到達可能
な真空度が制限される。従つてロータ34Dはそ
のポンプ室への入口と共働してすきま容積内のガ
スが入口内へ再膨脹することを阻止することので
きるクロー型の輪郭を有し、そして行程容積部へ
のガスの逆流を阻止するために一方向弁(例えば
33A)が設けられる。
When the pump 21 is used for high vacuum applications, the stroke volume of the rotor 34D is mainly at low pressure, so the gas exiting from the outlets 32A and 32B will flow back into the stroke volume unless measures are taken to prevent backflow. Resulting in. Gas flows back into the stroke volume through the outlets 32A, 32B and also through the rotor 34.
If the gas is allowed to re-expand from the gap volume D, it will be repeatedly compressed, which will consume excessive power, increase pump temperature, and increase pump noise. increases, limiting the degree of vacuum that can be achieved. The rotor 34D thus has a claw-shaped profile which cooperates with the inlet to its pump chamber to prevent gas in the interstitial volume from re-expanding into the inlet, and prevents gas from entering the stroke volume. A one-way valve (e.g. 33A) is provided to prevent backflow of.

離隔した2つの出口32A,32Bは予圧縮を
避ける位置に配置されている。予圧縮はやはり動
力を消費するので好ましくなく、これは弁作用が
圧送されるガスの圧力で起るのではなくロータ3
4Dの形状および運動によつてのみ引起される場
合に発生する。従つて一方向弁の1つは、圧送さ
れるガスの圧力で作動するようになつている。
The two spaced apart outlets 32A, 32B are positioned to avoid pre-compression. Precompression is also undesirable because it consumes power, since the valve action does not occur at the pressure of the gas being pumped, but at the rotor 3.
Occurs when triggered only by 4D geometry and motion. One of the one-way valves is therefore adapted to operate under the pressure of the pumped gas.

第2図から第4図までを参照して説明したポン
プは、高真空を達成できると共に、簡単なユニツ
トとして構成できる。ポンプは、ポンプ室内に潤
滑剤を使用することなく高真空(充分に0.1ミリ
バール以下)を達成できる。ポンプは、低圧で大
きいポンプ能力を維持でき、圧送される流体を少
くとも大気圧に圧縮できる。
The pump described with reference to FIGS. 2 to 4 is capable of achieving high vacuums and can be constructed as a simple unit. The pump can achieve high vacuum (well below 0.1 mbar) without the use of lubricants in the pump chamber. The pump can maintain a large pumping capacity at low pressures and compress the fluid being pumped to at least atmospheric pressure.

上述の実施例では、ロータ34A,34Bのみ
が「最小残余体積」を有するものとして説明した
が、ロータ34Cは、ポンプの用途により「最小
残余体積」を与える輪郭を有してもよい。
In the embodiments described above, only the rotors 34A and 34B are described as having a "minimum residual volume," but the rotor 34C may have a profile that provides a "minimum residual volume" depending on the application of the pump.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は公知の機械的なポンプの一部を分解し
て示した斜視図、第2図は本発明の機械的な4段
式ポンプの縦断面図、第3図は第2図の機械的な
ポンプの出口に隣接する横断面図、第4図は第2
図の機械的なポンプの入口に隣接する別の横断面
図である。 22…ポンプ室、23…軸、28,29,30
…仕切壁、31…入口、32A,32B…出口、
33A…一方向弁、34A,34B,34C,3
4D…ロータ、36,37,38…通路。
FIG. 1 is a partially exploded perspective view of a known mechanical pump, FIG. 2 is a vertical cross-sectional view of a four-stage mechanical pump of the present invention, and FIG. 3 is a machine shown in FIG. Figure 4 is a cross-sectional view adjacent to the outlet of the pump.
FIG. 3 is another cross-sectional view adjacent the inlet of the mechanical pump shown; 22...Pump chamber, 23...Shaft, 28, 29, 30
...Partition wall, 31...Entrance, 32A, 32B...Exit,
33A...One-way valve, 34A, 34B, 34C, 3
4D... Rotor, 36, 37, 38... Passage.

Claims (1)

【特許請求の範囲】[Claims] 1 入口と出口とを有し圧送すべき流体を流通さ
せるポンプ室と、該ポンプ室を貫通して延び異な
る輪郭を有する少くとも2対のロータを回転運動
せしめるべく直列に支持する一対の平行な軸と、
該ロータの回転運動を同期させる装置と、前記軸
の少くとも一方を駆動する装置とを備えた多段式
真空ポンプにおいて、前記ポンプ室22の出口3
2A,32Bに最も近い1対のロータ34Dはク
ロー型の輪郭を有し、前記ポンプ室の出口32
A,32Bには圧送すべき流体の該出口32A,
32Bを通る流通を制御するよう一方向弁33A
が設けられていることを特徴とするポンプ。
1 a pump chamber having an inlet and an outlet through which the fluid to be pumped flows, and a pair of parallel parallel rotors extending through the pump chamber and supporting in series for rotational movement at least two pairs of rotors having different contours; axis and
In a multistage vacuum pump comprising a device for synchronizing the rotational movement of the rotor and a device for driving at least one of the shafts, the outlet 3 of the pump chamber 22
The pair of rotors 34D closest to 2A, 32B have a claw-shaped profile and are connected to the outlet 32 of the pump chamber.
A, 32B have the outlet 32A for the fluid to be pumped;
One-way valve 33A to control flow through 32B.
A pump characterized by being provided with.
JP19551481A 1980-12-05 1981-12-04 Mechanical pump Granted JPS57146093A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB8039073A GB2088957B (en) 1980-12-05 1980-12-05 Rotary positive-displacement fluidmachines

Publications (2)

Publication Number Publication Date
JPS57146093A JPS57146093A (en) 1982-09-09
JPH0433997B2 true JPH0433997B2 (en) 1992-06-04

Family

ID=10517780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19551481A Granted JPS57146093A (en) 1980-12-05 1981-12-04 Mechanical pump

Country Status (4)

Country Link
JP (1) JPS57146093A (en)
DE (1) DE3147824C2 (en)
FR (1) FR2495701B1 (en)
GB (1) GB2088957B (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2111126A (en) * 1981-12-09 1983-06-29 British Oxygen Co Ltd Rotary positive-displacement fluid-machines
US4504201A (en) * 1982-11-22 1985-03-12 The Boc Group Plc Mechanical pumps
DE3463550D1 (en) * 1983-02-15 1987-06-11 Zimmermann Otto Rotary piston engine
DE3312117A1 (en) * 1983-04-02 1984-10-04 Leybold-Heraeus GmbH, 5000 Köln TWO-SHAFT VACUUM PUMP WITH INTERNAL COMPRESSION
JPS61252889A (en) * 1985-04-23 1986-11-10 Anretsuto:Kk Multi-stage high pressure roots blower
GB8513684D0 (en) * 1985-05-30 1985-07-03 Boc Group Plc Mechanical pumps
GB2185288A (en) * 1986-01-11 1987-07-15 Fleming Thermodynamics Ltd Screw type compression and expansion machine
JPS6319090U (en) * 1986-07-23 1988-02-08
EP0409287B1 (en) * 1987-05-15 1994-04-06 Leybold Aktiengesellschaft Vacuum pump with displacement space
EP0290664B1 (en) * 1987-05-15 1991-12-27 Leybold Aktiengesellschaft Two-shaft pump
DE3786917D1 (en) * 1987-05-15 1993-09-09 Leybold Ag SINGLE OR MULTI-STAGE TWO-SHAFT VACUUM PUMP.
JPS6477782A (en) * 1987-09-19 1989-03-23 Ebara Corp Rotary machine of roots type
US4943215A (en) * 1988-02-29 1990-07-24 Leybold Aktiengesellschaft Multistage vacuum pump with bore for fouling removal
GB8808608D0 (en) * 1988-04-12 1988-05-11 Boc Group Plc Dry pump with booster
GB8809621D0 (en) * 1988-04-22 1988-05-25 Boc Group Plc Dry pump with closed loop filter
EP0448750B1 (en) 1990-03-27 1996-05-01 Leybold Aktiengesellschaft Multistage dry compressing vacuum pump and method for its operation
DE19503716C1 (en) * 1995-02-04 1996-03-28 K Busch Gmbh Druck & Vakuum Dr Twin=shafted rotary pump
DE19809957A1 (en) * 1998-03-07 1999-09-09 Pfeiffer Vacuum Gmbh Multi-shaft vacuum pump
JP2000170679A (en) * 1998-12-04 2000-06-20 Toyota Autom Loom Works Ltd Multi-stage roots pump and multi-stage pump
GB9902083D0 (en) 1999-01-29 1999-03-24 Boc Group Plc Vacuum pump systems
JP3758550B2 (en) 2001-10-24 2006-03-22 アイシン精機株式会社 Multistage vacuum pump
JP3941484B2 (en) * 2001-12-03 2007-07-04 アイシン精機株式会社 Multistage vacuum pump
US6666666B1 (en) * 2002-05-28 2003-12-23 Denis Gilbert Multi-chamber positive displacement fluid device
DE202017001029U1 (en) 2017-02-17 2018-05-18 Leybold Gmbh Multi-stage Roots pump
CN107420306B8 (en) * 2017-09-13 2021-10-08 上海伊莱茨真空技术有限公司 Three-shaft modularized dry vacuum pump
KR102254882B1 (en) * 2020-06-01 2021-05-24 한국원자력연구원 Fluid transfer device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338882U (en) * 1976-09-09 1978-04-05

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB596064A (en) * 1945-07-17 1947-12-24 Stothert & Pitt Ltd Improvements in or relating to rotary pumps
US1743583A (en) * 1927-04-18 1930-01-14 Wiltse Appliance Co Pump
AT140808B (en) * 1933-06-07 1935-02-25 Franz Dr Ing Heinl Machine with rotating pistons.
GB479199A (en) * 1936-08-01 1938-02-01 Edward Dodson Improvements in or connected with rotary pumps
GB877023A (en) * 1958-10-27 1961-09-13 Hidekuni Yokota Improvements in or relating to rotary fluid prime movers
GB1248032A (en) * 1967-09-21 1971-09-29 Edwards High Vacuum Int Ltd Rotary mechanical vacuum pumps of the intermeshing screw type
DE2007880A1 (en) * 1970-02-20 1971-09-02 Brown, Arthur Corning N Y (VStA) Rotary displacement machine
JPS47218U (en) * 1971-10-05 1972-05-22
JPS5267810A (en) * 1975-12-03 1977-06-04 Aisin Seiki Co Ltd High vacuum pump
CH621854A5 (en) * 1977-06-06 1981-02-27 Balzers Hochvakuum Roots pump
JPS55144885U (en) * 1979-04-04 1980-10-17

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338882U (en) * 1976-09-09 1978-04-05

Also Published As

Publication number Publication date
JPS57146093A (en) 1982-09-09
DE3147824C2 (en) 1995-03-23
FR2495701B1 (en) 1987-12-18
GB2088957B (en) 1984-12-12
DE3147824A1 (en) 1982-06-24
FR2495701A1 (en) 1982-06-11
GB2088957A (en) 1982-06-16

Similar Documents

Publication Publication Date Title
JPH0433997B2 (en)
CN101238294B (en) Vacuum pump
US4854825A (en) Multi-stage vacuum pump
US4504201A (en) Mechanical pumps
JPH0333492A (en) Two stage dry primary pump
KR100485429B1 (en) Vacuum pump
GB2111126A (en) Rotary positive-displacement fluid-machines
US3743453A (en) Compact rotary sliding vane compressor for an automotive air-conditioning system
JP2001027195A (en) Vacuum pump
JPH079239B2 (en) Screw vacuum pump
JPH0368237B2 (en)
US4431387A (en) Hermetic refrigeration rotary motor-compressor
JP2002310092A (en) Vacuum pump
US5846066A (en) Vacuum pumps with claw-type rotor and roots-type rotor near the outlet
RU207017U1 (en) COMPRESSOR
JPS61258989A (en) Scroll fluid machine
GB2065776A (en) Rotary-piston Fluid-machines
US2956735A (en) Rotary compressor
KR0127833B1 (en) Rotating-gylinder compressor
US3554676A (en) Vapor compressor
KR20040035177A (en) Capacity variable device for scroll compressor
JP2002174174A (en) Evacuator
US3235172A (en) Vacuum pump
RU2022175C1 (en) Two-rotor vacuum pump
AU2003100461A4 (en) "Batman" rotary pump