JPH0433921B2 - - Google Patents

Info

Publication number
JPH0433921B2
JPH0433921B2 JP1987288A JP1987288A JPH0433921B2 JP H0433921 B2 JPH0433921 B2 JP H0433921B2 JP 1987288 A JP1987288 A JP 1987288A JP 1987288 A JP1987288 A JP 1987288A JP H0433921 B2 JPH0433921 B2 JP H0433921B2
Authority
JP
Japan
Prior art keywords
steel sheet
box
shaped steel
dam
embankment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1987288A
Other languages
Japanese (ja)
Other versions
JPH01198913A (en
Inventor
Masayuki Okimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1987288A priority Critical patent/JPH01198913A/en
Publication of JPH01198913A publication Critical patent/JPH01198913A/en
Publication of JPH0433921B2 publication Critical patent/JPH0433921B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Revetment (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は砂防ダム、貯水ダム、河川堤防等の堤
体を構築する方法に関し、特にプレフアブ式の堤
体構築方法に関する。 (従来の技術) 従来、砂防ダム、貯水ダムおよび河川堤防等の
堤体を構築する方法としては、鉄筋コンクリート
を利用するものが多く、第11図に示すように、
建設地の地盤1に掘削溝2a〜2cを掘り、鉄筋
コンクリートの本堤3と副堤4を構築する方法が
一般的で、5は水褥池、6a〜6bは間詰め、
7,8は堆積土砂である。比較的規模が小さく耐
力が低くても良い場所では、コルゲートセルや蛇
篭を用いて土砂を充填し、堤体を構築する方法が
採用されている。 また、その他の方法として、H型やI型鋼に加
えてU字型や直線型鋼矢板を用いて二重壁とした
り、セル構造として堤体を構成するいわゆるプレ
フアブ工法が採用されている。 このような構造部材を用いて構成されるダムと
した前述の砂防ダムのような重力ダムのほか、ア
ーチダムや三次元ダムも構築されており、計画地
点における河川の流向、水位、露出岩盤、崩壊、
転石等の状況に応じて適宜な方式が選定され、気
象条件や骨材入手条件に加えて、材料運搬手段ま
で綿密な検討のもとに施工される。 また、近時工期の短縮やコストの低減を目的と
して、特開昭60−233224号公報に開示されている
ように円筒形鋼板セルをボルトで連結し、連続し
た壁体とする堤体構築手段が提案されている。 (発明が解決しようとする課題) 従来の堤体の構築方法は、堤体がその重量と根
入れ深さに依存して土圧や水圧に耐える構造とな
つているため、一般的に大形であつて構築にあた
り工期が長くなり、またコスト高になると云う問
題点がある。 本発明は構造性能が優れ、築造が容易で信頼性
の高い堤体を経済的に構築できる方法を提供する
ことを目的とする。 (課題を解決するための手段) 本発明は、所望形状に掘削した地盤を均し施工
したのち、双腕継手を有する箱型鋼矢板を逐次連
結載置して連続壁体を構築し、ついで根固め施工
したのち前記箱型鋼矢板の内腔または箱型鋼矢板
の内腔と囲壁内腔に充填材を充填することを特徴
とする堤体構築方法である。 (作用) 本発明は剛性が高く結合強度の高い双腕継手を
有する箱型鋼矢板を連結して堤体本体とする構築
方法であるため、事前の加工が不要であり、連結
にあたり溶接など熟練を要する作業が無いので、
環境や足場の悪い施工場所でも作業を完全かつ迅
速に行うことができる。 また、本発明の方法は、所望形状に掘削した地
盤を均し施工したのち、双腕継手を有する箱型鋼
矢板を逐次連結載置するので、従来のように大形
重機を用いて鋼矢板を地盤深く打設する必要はな
く、大形重機が採用し難いような施工場所におけ
る堤体の構築を経済的に実施することを可能とす
る。 さらに、連結載置にあたつて箱型鋼矢板の姿勢
安定性が良いので、継手結合による作業の容易さ
と相俟つて築造作業が極めて単純化され、築造能
率が高く、工期の短縮化が可能である。 箱型鋼矢板の結合により壁体を構築したのち
に、箱型鋼矢板の内腔に充填材を充填するか、あ
るいは箱型鋼矢板の内腔と囲壁内腔の双方に充填
材を充填するため、従来法のように型枠などが必
要では無く、コンクリート、礫石あるいは土砂な
どを任意に選んで自由に充填できるので、経済的
施工が可能であるうえ、充填が容易で確実であ
り、強固な壁体を構築することができる。 また、箱型鋼矢板を任意数、任意形状に継手連
結することができ、所望の耐力に応じて最適強度
を有する堤体を構築することが可能で、設計の自
由度が大きく、設計変更も容易である。 (実施例) 第1図は本発明法により構築した堤体、たとえ
ば砂防ダム9の概略正面図で、10は双腕継手を
有する箱型鋼矢板11(代表例として単位箱型鋼
矢板の1つにのみ符号を付す)を所要数継手連結
したダム壁体で、12は水抜孔を示す。また、1
3は地盤で、破線14は掘削深さを示す線つまり
根入り深さ仮想線である。 第2図は砂防ダム9の概略平面図で、15は副
堤を示す。 第3図は砂防ダム9の概略縦断面図で、16a
〜16cはダム壁体10に充填されたコンクリー
トで、17はダム壁体10で囲われた囲壁内腔即
ちダム内腔18に投入された土砂である。19
a,19bは礫石たとえば根固め栗石20a,2
0b上に敷設された捨てコンクリート層で、捨て
コンクリート層19a,19b上には、さらに主
として砂とセメントからなるカラモルタル層21
a,21bが打設され、箱型鋼矢板11はカラモ
ルタル層21a,21bが硬化する前にカラモル
タル層21a,21bを貫入してコンクリート層
19a,19b上に載置する。 ここでは捨てコンクリート層19a,19bお
よびカラモルタル層21a,21bの如き支持層
をセメント系硬化層と総称する。 本発明では地盤13を所望形状に掘削したの
ち、施工場所で入手できる細粒土石や砕石あるい
は砂を用いて平坦化するほか、前述のようにセメ
ント系硬化層により平坦化しても良く、これを本
発明では均し施工と云う。 ダム壁体10は所望の耐力に応じて第2図に示
すようにボツクスタイプとするほか、副堤15の
如く単一壁体として構成しても良い。つまり、所
望耐力が大きい場合はボツクスの容積を任意に拡
大したり、三重、四重の重層構成とすることも本
発明では極めて容易であり、これは双腕継手を有
する箱型鋼矢板11を用いることによる。 箱型鋼矢板11の構造の詳細について、第4
図、第5図に従つて説明する。 第4図は、角鋼管22の角部に直線型鋼矢板の
半截体からなる継手23a〜23dを角鋼管22
のフランジ22a,22bのそれぞれの延長方向
に溶接24a〜24dして構成した双腕継手を有
する箱型鋼矢板25の概略平面図であり、本発明
では前述のように角鋼管22を本体とし、角鋼管
22のフランジ22a,22bの延長方向もしく
は略延長方向(継手が互いに平行でなく、やや開
いたり、すぼまつた状態を云う)に継手を溶着し
た箱型鋼矢板を双腕継手を有する箱型鋼矢板(以
下単に鋼矢板と云う)と云う。 角鋼管については、丸鋼管あるいはスパイラル
鋼管をロールフオーミングしたものや、平鋼板を
プレス加工したもの、および幅狭平鋼板を溶接し
て構成したものなど適宜採用できる。さらに、継
手については前述の継手23a〜23dのほか
に、雄継手に丸棒鋼を、雌継手にスリツトを設け
た継目無鋼管を用いた高強度の継手などを採用す
ることもできる。 第5図は箱型鋼矢板25と同じ箱型鋼矢板25
a〜25c、およびコーナー用箱型鋼矢板26を
継手連結したダム壁体27の一部を示す概略平面
図であつて、内腔28a〜28gに必要に応じて
コンクリート、モルタルあるいは土砂を充填す
る。 前述のように箱型鋼矢板25は連結数を変える
ことにより任意容積の函状体となし得るので、単
一函状体としたりあるいは単一函状体をさらに連
結し巨大な堤体を構築するなど、設計の自由度は
極めて大きい。 次に、本発明法により箱型鋼矢板を用いてアー
チ型の砂防ダムを構築する例について第6図〜第
8図に従つて説明する。 第6図は本発明の方法によつて構築したアーチ
型砂防ダム29の概略平面図で、箱型鋼矢板30
を連結してアーチ型のダム壁体31を構成し、第
7図に示す内腔32にコンクリートを打ち込むこ
とによつて構築されている。 この場合も、前述のように渓谷底部および両翼
斜面部を所望形状に掘削した地盤13上に礫石支
持基盤を構築するなど均し施工を行つたのち、基
盤上にセメント系硬化層を形成し、セメント系硬
化層上に箱型鋼矢板30を連結しつつ載置する。 第7図はアーチ型砂防ダム29の概略平面図
で、33は必要に応じて設けられる副堤で、箱型
鋼矢板25を前述の手順と同様に連結載置して構
成する。 箱型鋼矢板30はアーチ型に連結するために、
アーチの内側に位置する継手のアームは外側継手
のアームより短く製作されている。本発明におけ
る双腕継手とは、このような場合も含む。 次に、第8図はアーチ型砂防ダム29の概略縦
断面図で、箱型鋼矢板30は栗石20c〜20e
上に敷設された捨てコンクリート層19c〜19
e、カラモルタル層21c〜21e上に連結載置
され、ダム壁体31即ち耐衝撃連続壁体が構成さ
れる。 次に、継手強度の詳細について説明する。第9
図は長さ400mmの直線型鋼矢板34,35,36
を係合して引張り試験を行う状態を示したもの
で、直線型鋼矢板34〜36は下記の成分(ただ
し取鍋分析)の鋼から製造した。 C 0.31 % Si 0.08 % Mn 0.54 % P 0.012% S 0.022% Cu 0.35 % 残 Fe また、鋼片についてトツプ(T)、ミドル
(M)、ボトム(B)のそれぞれから製造した直線
型鋼矢板別に試験を実施したが、その結果を第1
表に示す。
(Industrial Application Field) The present invention relates to a method for constructing embankments such as erosion control dams, water storage dams, river embankments, etc., and particularly relates to a method for constructing prefabricated embankments. (Prior Art) Conventionally, many methods of constructing embankments such as erosion control dams, water storage dams, and river embankments have utilized reinforced concrete, and as shown in Fig. 11,
A common method is to dig trenches 2a to 2c in the ground 1 of the construction site and construct a main embankment 3 and a secondary embankment 4 made of reinforced concrete.
7 and 8 are sediments. In places where the scale of the embankment is relatively small and a low bearing capacity is acceptable, a method of constructing an embankment body by filling it with earth and sand using corrugated cells or gabions is adopted. In addition, as other methods, in addition to H-shaped and I-shaped steel, U-shaped or straight steel sheet piles are used to create a double wall, or the so-called prefabrication method is adopted in which the embankment is constructed as a cell structure. In addition to gravity dams such as the erosion control dams mentioned above, which are constructed using such structural members, arch dams and three-dimensional dams are also constructed. ,
Appropriate methods are selected depending on the situation such as rolling stones, etc., and construction is carried out based on careful consideration of weather conditions, aggregate procurement conditions, and even the means of transporting materials. In addition, for the purpose of shortening the construction period and reducing costs, recently, as disclosed in Japanese Patent Application Laid-Open No. 60-233224, a method of constructing an embankment body in which cylindrical steel plate cells are connected with bolts to form a continuous wall body has been developed. is proposed. (Problems to be Solved by the Invention) Conventional methods for constructing embankments generally require construction of large-sized embankments, as the embankment has a structure that can withstand earth pressure and water pressure depending on its weight and embedment depth. However, there are problems in that the construction period is long and the cost is high. An object of the present invention is to provide a method for economically constructing an embankment body that has excellent structural performance, is easy to construct, and has high reliability. (Means for Solving the Problems) The present invention is to construct a continuous wall body by sequentially connecting and mounting box-shaped steel sheet piles having double-arm joints after leveling the ground excavated into a desired shape, and then constructing a continuous wall body. This method of constructing an embankment body is characterized by filling the inner cavity of the box-shaped steel sheet pile or the inner cavity of the box-shaped steel sheet pile and the inner cavity of the surrounding wall with a filler after solidification. (Function) The present invention is a construction method in which box-shaped steel sheet piles having double-arm joints with high rigidity and high joint strength are connected to form the embankment body body, so no prior machining is required, and the connection requires skill such as welding. Since there is no work required,
Work can be carried out completely and quickly even in construction sites with poor environments or scaffolding. In addition, in the method of the present invention, after leveling the ground that has been excavated into a desired shape, the box-shaped steel sheet piles with double-arm joints are successively connected and placed. It is not necessary to cast the embankment deep into the ground, and it is possible to economically construct an embankment body in a construction site where it is difficult to employ large heavy machinery. Furthermore, since the box-shaped steel sheet piles have good posture stability when connected and placed, together with the ease of work by joining joints, construction work is extremely simplified, construction efficiency is high, and construction period can be shortened. be. After constructing a wall by joining box-shaped steel sheet piles, the inner cavity of the box-shaped steel sheet pile is filled with filler, or both the inner cavity of the box-shaped steel sheet pile and the inner cavity of the surrounding wall are filled with filler. Unlike the law, there is no need for formwork, and the material can be filled with any material such as concrete, gravel, or earth and sand, making construction economical, easy and reliable, and creating a strong wall structure. can be constructed. In addition, it is possible to connect box-shaped steel sheet piles in any number and shape with joints, and it is possible to construct an embankment body with optimal strength according to the desired yield strength, providing a high degree of freedom in design and making design changes easy. It is. (Example) Fig. 1 is a schematic front view of an embankment body constructed by the method of the present invention, for example, an erosion control dam 9, and 10 is a box-shaped steel sheet pile 11 having a double-arm joint (as a typical example, one of the unit box-shaped steel sheet piles). 12 indicates a drainage hole. Also, 1
3 is the ground, and a broken line 14 is a line indicating the excavation depth, that is, a virtual penetration depth line. FIG. 2 is a schematic plan view of the erosion control dam 9, with reference numeral 15 indicating a subbank. FIG. 3 is a schematic longitudinal cross-sectional view of the erosion control dam 9.
16c is concrete filled in the dam wall 10, and 17 is earth and sand poured into the inner cavity of the surrounding wall surrounded by the dam wall 10, that is, the dam inner cavity 18. 19
a, 19b are gravel stones, such as foot protection chestnut stones 20a, 2
0b, and on the sacrificial concrete layers 19a and 19b, there is further a Kara mortar layer 21 mainly made of sand and cement.
a, 21b are placed, and the box-shaped steel sheet pile 11 penetrates the empty mortar layers 21a, 21b and is placed on the concrete layers 19a, 19b before the empty mortar layers 21a, 21b harden. Here, supporting layers such as the sacrificial concrete layers 19a and 19b and the dry mortar layers 21a and 21b are collectively referred to as a cement-based hardened layer. In the present invention, after excavating the ground 13 into a desired shape, the ground 13 is leveled using fine soil, crushed stone, or sand available at the construction site, or it may be leveled using a hardened cement layer as described above. In the present invention, this is called leveling construction. Depending on the desired strength, the dam wall 10 may be of a box type as shown in FIG. 2, or may be constructed as a single wall like the sub-levee 15. In other words, when the desired yield strength is large, it is extremely easy to arbitrarily expand the volume of the box or create a triple or quadruple layered structure using the present invention. It depends. Regarding the details of the structure of the box-shaped steel sheet pile 11, please refer to the 4th section.
This will be explained with reference to FIGS. FIG. 4 shows joints 23a to 23d made of half-cut straight steel sheet piles attached to the corners of a square steel pipe 22.
It is a schematic plan view of a box-shaped steel sheet pile 25 having a double-arm joint configured by welding 24a to 24d in the respective extension directions of the flanges 22a and 22b. Box-shaped steel sheet piles with joints welded in the extending direction or approximately in the extending direction of the flanges 22a and 22b of the steel pipe 22 (the joints are not parallel to each other, but slightly open or narrow) are used as box-shaped steel sheets with double-arm joints. It is called sheet pile (hereinafter simply referred to as steel sheet pile). As for the square steel pipe, it is possible to appropriately adopt a roll-formed round steel pipe or a spiral steel pipe, a press-formed flat steel plate, a welded narrow flat steel plate, and the like. Furthermore, as for the joints, in addition to the above-mentioned joints 23a to 23d, high-strength joints using round steel bars for the male joints and seamless steel pipes with slits for the female joints may be employed. Figure 5 shows a box-shaped steel sheet pile 25 that is the same as the box-shaped steel sheet pile 25.
It is a schematic plan view showing a part of the dam wall body 27 to which the box steel sheet piles 26 for corners are connected by joints, and the inner cavities 28a to 28g are filled with concrete, mortar, or earth and sand as necessary. As mentioned above, the box-shaped steel sheet pile 25 can be made into a box of any volume by changing the number of connections, so a huge embankment can be constructed by forming a single box or further connecting the single boxes. The degree of freedom in design is extremely large. Next, an example of constructing an arch-shaped sabo dam using box-shaped steel sheet piles according to the method of the present invention will be described with reference to FIGS. 6 to 8. FIG. 6 is a schematic plan view of an arch-shaped sabo dam 29 constructed by the method of the present invention, in which a box-shaped steel sheet pile 30
are connected to form an arch-shaped dam wall 31, which is constructed by pouring concrete into the inner cavity 32 shown in FIG. In this case as well, as described above, after leveling work such as constructing a gravel support base on the ground 13 that has been excavated into the desired shape at the bottom of the valley and on both wing slopes, a hardened cement layer is formed on the base. The box-shaped steel sheet piles 30 are connected and placed on the cement-based hardened layer. FIG. 7 is a schematic plan view of the arch-shaped sabo dam 29, and 33 is a subbank provided as necessary, and is constructed by connecting and mounting box-shaped steel sheet piles 25 in the same manner as described above. In order to connect the box-shaped steel sheet piles 30 in an arch shape,
The arms of the joints located on the inside of the arch are made shorter than the arms of the outside joints. The double-arm joint in the present invention includes such a case. Next, FIG. 8 is a schematic vertical cross-sectional view of the arch-type erosion control dam 29, in which the box-shaped steel sheet piles 30 are made of chestnut stones 20c to 20e.
Discarded concrete layer 19c-19 laid on top
e. The dam wall 31, ie, the impact-resistant continuous wall, is constructed by being connected and placed on the empty mortar layers 21c to 21e. Next, details of joint strength will be explained. 9th
The figure shows straight steel sheet piles 34, 35, and 36 with a length of 400 mm.
The straight steel sheet piles 34 to 36 were manufactured from steel with the following composition (but ladle analysis). C 0.31% Si 0.08% Mn 0.54% P 0.012% S 0.022% Cu 0.35% Remaining Fe In addition, tests were conducted on straight steel sheet piles manufactured from the top (T), middle (M), and bottom (B) of the steel slabs. However, the results are the first
Shown in the table.

【表】 製造上の理由により爪破断したNo.4を除いて直
線型鋼矢板は非常に高い強度を有しており、直線
型鋼矢板を半截して継手とした箱型鋼矢板の強度
的信頼性は著しく高い。 さらに、第10図は荷重(Ton/m)と全伸び
(mm/400mm)について第1表に示す試験例のうち
の一部についてグラフ化したものであり、この図
からも明白なように直線型鋼矢板の横方向耐力は
非常に高く、破断はすべてウエブで発生し、継手
部は極めて高耐力である。 以上詳細に説明したように、箱型鋼矢板25お
よび30は継手結合の機械的強度が著しく高いた
めに横方向連結力が強く、砂防ダムにおける転石
や地滑り崩壊時の土砂による烈しい衝撃に対し十
分な耐力を発揮するので、本発明法により構築し
た堤体は重量や根入れのみに頼ること無く高い砂
防効果を有する。 また、本発明法により構築した堤体は高い水密
性を有するので、水抜きが必要な場合は壁体に水
抜孔を穿設するかあるいは水抜きパイプを設ける
が、このような加工も容易に実施できる利点を有
している。 (発明の効果) 本発明の方法は、主要構成部材として双腕継手
を有する箱型鋼矢板を均し施工した地盤上に連結
載置する簡易な方法であるため、作業性が良く、
経済的に堤体を構築できる。 また、構築した堤体の力学的強度が非常に高い
ので、比較的小型の堤体でも大きな耐力を発揮
し、その実用効果は極めて多大である。
[Table] Except for No. 4, which had a nail breakage due to manufacturing reasons, straight steel sheet piles have extremely high strength. Remarkably high. Furthermore, Figure 10 is a graph of load (Ton/m) and total elongation (mm/400mm) for some of the test examples shown in Table 1, and as is clear from this figure, the straight line The lateral yield strength of shaped steel sheet piles is extremely high, and all fractures occur in the webs, and the joints have extremely high yield strength. As explained in detail above, the box-shaped steel sheet piles 25 and 30 have extremely high mechanical strength in their joint connections, so they have a strong lateral connection force, and are strong enough to withstand the severe impact caused by boulders in sabo dams and earth and sand during landslide collapses. Since the embankment exhibits a bearing capacity, the embankment body constructed by the method of the present invention has a high erosion control effect without relying solely on weight or embedding. In addition, since the embankment constructed by the method of the present invention has high watertightness, if drainage is required, a drainage hole is bored in the wall or a drainage pipe is provided, but such processing is easy. It has the advantage of being practical. (Effects of the Invention) The method of the present invention is a simple method in which box-shaped steel sheet piles having double-arm joints as main components are connected and placed on leveled ground, so it has good workability.
Embankment bodies can be constructed economically. Furthermore, since the mechanical strength of the constructed embankment is extremely high, even a relatively small embankment exhibits a large yield strength, and its practical effects are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法で構築した砂防ダムの概
略正面図、第2図は同じく概略平面図、第3図は
同じく概略縦断面図、第4図は箱型鋼矢板の概略
平面図、第5図はダム壁体の部分概略平面図、第
6図、第7図はアーチ型砂防ダムの概略正面図お
よび概略平面図、第8図はアーチ型砂防ダムの概
略縦断面図、第9図は直線型鋼矢板の引張り試験
要領説明図、第10図は荷重と全伸びとの関係を
示す図、第11図は従来の重力式ダムの概略断面
図である。 1……地盤、2a〜2c……掘削溝、3……本
堤、4……副堤、5……水褥池、6a〜6d……
間詰め、7,8……堆積土砂、9……砂防ダム、
10……ダム壁体、11……箱型鋼矢板、12…
…水抜孔、13……地盤、14……根入り深さ仮
想線、15……副堤、16a〜16c……コンク
リート、17……土砂、18……ダム内腔、19
a〜19e……捨てコンクリート層、20a〜2
0e……栗石、21a〜21e……カラモルタル
層、22……角鋼管、22a,22b……フラン
ジ、23a〜23d……継手、24a〜24d…
…溶接、25……箱型鋼矢板、26……コーナー
用箱型鋼矢板、27……ダム壁体、28a〜28
g……内腔、29……アーチ型砂防ダム、30…
…箱型鋼矢板、31……ダム壁体、32……内
腔、33……副堤、34,35,36……直線型
鋼矢板。
Fig. 1 is a schematic front view of an erosion control dam constructed by the method of the present invention, Fig. 2 is a schematic plan view, Fig. 3 is a schematic vertical sectional view, and Fig. 4 is a schematic plan view of a box-shaped steel sheet pile. Figure 5 is a partial schematic plan view of the dam wall, Figures 6 and 7 are a schematic front view and plan view of the arch-type sabo dam, Figure 8 is a schematic vertical cross-sectional view of the arch-type sabo dam, and Figure 9 10 is a diagram illustrating the procedure for tensile testing of straight steel sheet piles, FIG. 10 is a diagram showing the relationship between load and total elongation, and FIG. 11 is a schematic sectional view of a conventional gravity dam. 1...Ground, 2a-2c...Excavation groove, 3...Main embankment, 4...Sub-levee, 5...Water pond, 6a-6d...
Filling, 7, 8...accumulated sediment, 9...sabo dam,
10... Dam wall, 11... Box-shaped steel sheet pile, 12...
... Drainage hole, 13 ... Ground, 14 ... Rooting depth imaginary line, 15 ... Subbank, 16a-16c ... Concrete, 17 ... Earth and sand, 18 ... Dam inner cavity, 19
a~19e...Discarded concrete layer, 20a~2
0e...Kurite stone, 21a-21e...Dark mortar layer, 22...Square steel pipe, 22a, 22b...Flange, 23a-23d...Joint, 24a-24d...
...Welding, 25... Box-shaped steel sheet pile, 26... Box-shaped steel sheet pile for corner, 27... Dam wall, 28a-28
g...Inner cavity, 29...Archid erosion control dam, 30...
...Box type steel sheet pile, 31...Dam wall, 32...Inner cavity, 33...Subbank, 34, 35, 36...Straight steel sheet pile.

Claims (1)

【特許請求の範囲】[Claims] 1 所望形状に掘削した地盤を均し施工したの
ち、双腕継手を有する箱型鋼矢板を逐次連結載置
して連続壁体を構築し、ついで根固め施工したの
ち前記箱型鋼矢板の内腔または箱型鋼矢板の内腔
と囲壁内腔に充填材を充填することを特徴とする
堤体構築方法。
1. After leveling the excavated ground into the desired shape, construct a continuous wall by successively connecting and mounting box-shaped steel sheet piles with double-arm joints, and then perform foot protection, and then fill the inner cavity or A method for constructing an embankment body characterized by filling the inner cavity of a box-shaped steel sheet pile and the inner cavity of an enclosing wall with a filler.
JP1987288A 1988-01-30 1988-01-30 Dam body construction method Granted JPH01198913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1987288A JPH01198913A (en) 1988-01-30 1988-01-30 Dam body construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1987288A JPH01198913A (en) 1988-01-30 1988-01-30 Dam body construction method

Publications (2)

Publication Number Publication Date
JPH01198913A JPH01198913A (en) 1989-08-10
JPH0433921B2 true JPH0433921B2 (en) 1992-06-04

Family

ID=12011302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1987288A Granted JPH01198913A (en) 1988-01-30 1988-01-30 Dam body construction method

Country Status (1)

Country Link
JP (1) JPH01198913A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2566867B2 (en) * 1992-04-13 1996-12-25 株式会社ナカミツ Dam
RU2495190C2 (en) * 2011-08-23 2013-10-10 Публичное акционерное общество "Укргидропроект" Gravity dam with expanded joints
KR101959691B1 (en) * 2018-10-24 2019-03-18 강병관 Ring-shaped structure of cofferdam using cross section square pipe and construction method
JP7172754B2 (en) * 2019-03-08 2022-11-16 日本製鉄株式会社 Embankment reinforcement structure

Also Published As

Publication number Publication date
JPH01198913A (en) 1989-08-10

Similar Documents

Publication Publication Date Title
CN102966119A (en) Geogrid reinforced wall and construction method thereof
CN106677205A (en) Fabricated special-shaped steel pipe pile combined retaining wall
KR20080061580A (en) Precast concrete file and method for constructing thereof
CN110777806B (en) Multi-connecting-rod plane frame permanent supporting structure and construction process thereof
CN101892670B (en) Multifunctional cofferdam of steel sheet piles and concrete arch rings construction method thereof
KR100289256B1 (en) Tunnel construction method in shallow toffee area
JP3905776B2 (en) Revetment structure
JPH0433921B2 (en)
CN111485571A (en) Arch bridge foundation of limestone foundation under deep round gravel layer and construction method thereof
JPS58120924A (en) Block for assembling retaining wall
CN217517602U (en) Nearly river dike underground structure
JP3135826B2 (en) How to build an arch tunnel structure in embankment
CN213448541U (en) Arch bridge foundation of limestone foundation under deep round gravel layer
JP7149919B2 (en) Improvement structure and improvement method of existing wharf
CN112609731A (en) Flexible permeable cutting retaining wall and construction method
JP6860895B2 (en) Retaining wall and its construction method
JPS6145724B2 (en)
JPS6029493Y2 (en) Steel box frame foundation dam retaining wall for civil engineering work
CN215948247U (en) Pile foundation structure
CN217324788U (en) Abrupt slope roadbed structure convenient to prefabrication installation
CN215367385U (en) Cantilever type retaining wall of non-excavation construction
CN212427250U (en) Waterproof anti-seepage vibration isolation empty ditch
CN216920353U (en) Deep foundation pit supporting system for serious defect diaphragm wall under complex geological condition
JP4231194B2 (en) Revetment structure
CN212656215U (en) Assembled pipe support of cross prefabricated steel concrete pile and steel-pipe column combination