JPH04338155A - Ceramic composition for injection molding - Google Patents

Ceramic composition for injection molding

Info

Publication number
JPH04338155A
JPH04338155A JP3135916A JP13591691A JPH04338155A JP H04338155 A JPH04338155 A JP H04338155A JP 3135916 A JP3135916 A JP 3135916A JP 13591691 A JP13591691 A JP 13591691A JP H04338155 A JPH04338155 A JP H04338155A
Authority
JP
Japan
Prior art keywords
acid
injection molding
ceramic
unsaturated carboxylic
thermoplastic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3135916A
Other languages
Japanese (ja)
Inventor
Masakazu Yuge
弓削 雅和
Masaru Kojima
勝 小島
Kenji Tanaka
謙次 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP3135916A priority Critical patent/JPH04338155A/en
Publication of JPH04338155A publication Critical patent/JPH04338155A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To offer a ceramic compsn. for injection molding which can shorten the time for dewaxing by reducing the amt. of a binder while maintaining the fluidity during molding. CONSTITUTION:The compsn. essentially consists of ceramic material and thermoplastic resin. The thermoplastic resin is at least one kind of polymer selected from polyethylene, wax, acrylic acid and derivs. of these. An unsatd. carboxylic acid as a deflocculant is added to this compsn.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は例えば4GHz帯用の誘
電体共振器などに用いられ、複雑な形状を有する生成形
体を容易に製造することのできる射出成形用セラミック
組成物に関するものである。 【0002】 【従来の技術】近年  セラミックは構造用のみならず
、誘電体、圧電体、磁性体などの電子部品用セラミック
スとしての応用に用途が拡大している。このような用途
の場合、その形状は従来にない複雑なものが要求される
。 従来の主たる成形方法である乾式プレスでは、粉体に加
わる圧縮応力の不均一や粉体間の摩擦による圧力損失な
どにより、均一な成形密度の成形体を得ることが困難で
、その結果、所望の寸法精度を有しかつ均一な焼結密度
を有する焼成体を得ることができなかった。また成形可
能な形状も単純な形状に限定されている。それ故に、焼
成後研削などの後加工が必要である場合が多く、コスト
アップの要因となっている。この粉体プレス成形法以外
にも押し出し成形,鋳込み成形などの方法もあるが、形
状が限定されたり寸法精度が悪いなど問題が多い。 【0003】これらの成形法に対し、射出成形法はそれ
自体プラスチック成形では周知の技術であり、複雑な形
状のものを寸法精度よく製作できるため、市場の要求に
応えることが可能である。 【0004】 【発明が解決しようとする課題】ところが、射出成形法
では成形時の流動性を得るため、35〜50vol%程
度の熱可塑性樹脂、つまりバインダーを使用する必要が
あった。その結果、成形品にクラック、ブクなどの欠陥
が生じやすく、これを防止するには通常500℃までを
2℃/hrの昇温速度でゆっくり脱脂する必要があった
。そのため、脱脂工程に100〜200時間もの長時間
を要し、コスト的に非常に不利であるという問題があっ
た。 【0005】そこで、本発明の目的は、成形時の流動性
を維持したままでバインダーを削減する事により、脱脂
時間を短縮できる射出成形用セラミック組成物を提供す
ることにある。 【0006】 【課題を解決するための手段】本発明は、主としてセラ
ミック材料と熱可塑性樹脂とを含む射出成形用組成物で
ある。前記熱可塑性樹脂はバインダーとして機能させる
ため、ポリエチレン,ワックス,アクリル酸およびそれ
らの誘導体の中から選ばれる少なくとも一種の重合体を
用いる。この組成物には解膠剤として不飽和カルボン酸
が添加されている。 【0007】このような組成物を用いたセラミックスの
製造は次のようにして行われる。まず、セラミック原料
とバインダー(熱可塑性樹脂)と解膠剤(不飽和カルボ
ン酸)とを混練トルクが一定になるまで十分混練する。 次に、混練物をペレタイザーなどの押出造粒機により押
し出し後、カットし、射出成形用原料とする。この原料
を射出成形機により通常の成形条件で成形し、生成形体
を得る。この生成形体はゆるやかな昇温速度によりバイ
ンダーが完全に飛散する温度、すなわち500℃まで昇
温する。次に所定の焼成温度で焼成し、完成品を得る。 【0008】本発明では解膠剤を予めセラミック原料に
加える事により、セラミック原料と熱可塑性樹脂との親
和性を増し、少ない熱可塑性樹脂量で射出成形可能な流
動性の良いセラミック粉体と熱可塑性樹脂との混合物を
得た。この技術により、熱可塑性樹脂を従来に比べて大
幅に削減でき、脱脂時間を短縮すると共に脱脂時の欠陥
を大幅に低下させる事ができた。 【0009】セラミック材料としては、粒子径0.5〜
10μmのセラミック粉体を使用するのが望ましい。こ
れは、射出成形用の混練物を得る際に粒子径が大きすぎ
ると、バインダーと十分に混練しにくいからである。 【0010】また、熱可塑性樹脂および不飽和カルボン
酸の配合量はセラミック65〜75容量部に対して25
〜35容量部の範囲内とするのが、脱脂時間を短縮し、
脱脂時の欠陥を低下させるのに効果的である。 【0011】さらに、不飽和カルボン酸の添加量は0.
5〜2.0重量%の範囲にするのが望ましい。その理由
は、0.5重量%未満では流動性の向上に効果がなく、
2.0重量%を越えると、脱脂時にフクレ等の欠陥が生
じるからである。 【0012】熱可塑性樹脂としては、具体的にはワック
ス,低密度ポリエチレン,高密度ポリエチレン,ポリメ
タクリル酸メチル,ポリメタクリル酸エチル,ポリメタ
クリル酸ブチル,エチレン酢酸ビニール,ポリエチレン
,ポリスチレンなどの単体またはそれらの共重合体が使
用可能である。 【0013】また、前記不飽和カルボン酸としては、パ
ルミチン酸,ステアリン酸,オレイン酸,リノール酸,
リノレン酸,カプリン酸,ラウリン酸,ミリスチン酸な
どの炭素数10〜18の不飽和カルボン酸のうち少なく
とも一種が使用可能である。 【0014】 【実施例】平均粒径0.6μmのチタン酸バリウムを原
料とし、ワックスバインダーを用い加圧ニーダーで不飽
和カルボン酸と共に混練する。この不飽和カルボン酸の
効果を加圧ニーダーの混練トルクにより評価したところ
、表1のようになった。なお、加圧ニーダーの混練トル
クは、混練用回転羽根の駆動軸に直結されたトルクセン
サーからの電気信号から知ることができる。ここでは、
解膠剤として不飽和カンボン酸およびそれと比較するた
めにアミン系化合物、チタンカップリング剤を使用し、
これらの評価結果を示す。 【0015】 【表1】       【0016】ここで、各々の解膠剤は  
不飽和カンボン酸としてリノレン酸を、アミン系化合物
として二級アルキルアミンを、チタンカップリング剤と
してイソプロポキシチタントリイソステアレートを用い
た。この様に解膠剤として不飽和カンボン酸を添加する
と、大幅に混練トルクが低下し、成形時の流動性が改善
される事が分かる。なお、チタンカップリング剤もトル
ク低下に効果があるが、吸湿性があるため、原料に微量
水分が含まれていると、その効果が安定しないという欠
点がある。また、解膠剤は0.5%未満ではトルクの低
下に効果がなく、また2.0%以上加えた場合は脱脂時
にフクレが生じると言う問題が出る。そのため、解膠剤
の添加量は0.5〜2.0wt%の範囲が望ましい。 【0017】つぎに、解膠剤の中で最も効果のある不飽
和カンボン酸を用いて、バインダーを削減した時の加圧
ニーダーによる混練トルクは表2のようになった。 【表2】   ここで、成形性とは金型内に原料が充填した割合を
示し、×,△は未充填、○は充填したがウエルドライン
などの欠陥があるもの、◎は完全に充填し良品であるも
のをそれぞれ示す。 【0018】前記のように解膠剤を使用しない場合は、
成形可能なコンパウンドを得るために必要なバインダー
量は45vol%であったが、解膠剤を添加する事によ
り29vol%まで削減する事ができる。その結果、昇
温速度を10℃/hrと速くし脱脂時間を短縮した条件
において、表3に示す様に高い良品率となった。 【表3】       【0019】この結果から明らかなように
、解膠剤として不飽和カンボン酸を用いる事により、バ
インダー量を削減でき、従来より短時間の脱脂で高い良
品率を得ることができたことがわかる。 【0020】なお、この解膠剤はワックスバインダーを
使用した場合のみならず、他の熱可塑性樹脂に対しても
混練トルクを低下させる効果が大きく、その例を表4に
示す。 【表4】       【0021】 【発明の効果】以上の説明で明らかなように、本発明に
よれば、不飽和カルボン酸をセラミック原料に添加する
ことにより、セラミック原料と熱可塑性樹脂との親和性
が増し、少ない熱可塑性樹脂量で射出成形可能な流動性
の良いセラミック粉体と熱可塑性樹脂との混合物を得る
ことができる。その結果、脱脂時間を従来に比べて大幅
に短縮できるとともに、脱脂時の欠陥を低下させる事が
できた。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is an injection molding method that can be used, for example, in a dielectric resonator for the 4 GHz band, and can easily produce a shaped body having a complicated shape. The present invention relates to a ceramic composition for molding. [0002] In recent years, ceramics have been used not only for structural purposes, but also for use as ceramics for electronic components such as dielectrics, piezoelectrics, and magnetic materials. For such uses, the shape is required to be more complex than ever before. In dry pressing, which is the main conventional forming method, it is difficult to obtain a compact with uniform compaction density due to uneven compressive stress applied to the powder and pressure loss due to friction between the powder. It was not possible to obtain a fired body having a dimensional accuracy of 1 and a uniform sintered density. In addition, shapes that can be molded are also limited to simple shapes. Therefore, post-processing such as grinding after firing is often required, which is a factor in increasing costs. In addition to this powder press molding method, there are other methods such as extrusion molding and casting molding, but these have many problems such as limited shapes and poor dimensional accuracy. [0003] In contrast to these molding methods, injection molding is itself a well-known technology for plastic molding, and can meet market demands because it can manufacture products with complex shapes with high dimensional accuracy. [0004] However, in the injection molding method, in order to obtain fluidity during molding, it is necessary to use about 35 to 50 vol% of a thermoplastic resin, that is, a binder. As a result, defects such as cracks and voids are likely to occur in the molded product, and in order to prevent this, it is usually necessary to degrease slowly up to 500° C. at a temperature increase rate of 2° C./hr. Therefore, there was a problem in that the degreasing process required a long time of 100 to 200 hours, which was extremely disadvantageous in terms of cost. [0005] Accordingly, an object of the present invention is to provide a ceramic composition for injection molding which can shorten degreasing time by reducing the amount of binder while maintaining fluidity during molding. SUMMARY OF THE INVENTION The present invention is an injection molding composition primarily comprising a ceramic material and a thermoplastic resin. Since the thermoplastic resin functions as a binder, at least one polymer selected from polyethylene, wax, acrylic acid, and derivatives thereof is used. An unsaturated carboxylic acid is added to this composition as a deflocculant. Production of ceramics using such a composition is carried out as follows. First, a ceramic raw material, a binder (thermoplastic resin), and a deflocculant (unsaturated carboxylic acid) are sufficiently kneaded until the kneading torque becomes constant. Next, the kneaded material is extruded using an extrusion granulator such as a pelletizer, and then cut to obtain a raw material for injection molding. This raw material is molded using an injection molding machine under normal molding conditions to obtain a product. This formed body is heated at a slow heating rate to a temperature at which the binder is completely dispersed, that is, 500°C. Next, it is fired at a predetermined firing temperature to obtain a finished product. In the present invention, by adding a deflocculant to the ceramic raw material in advance, the affinity between the ceramic raw material and the thermoplastic resin is increased, and the fluidity of the ceramic powder and heat, which can be injection molded with a small amount of thermoplastic resin, is increased. A mixture with plastic resin was obtained. With this technology, we were able to significantly reduce the amount of thermoplastic resin used compared to conventional methods, shorten degreasing time, and significantly reduce defects during degreasing. [0009] As a ceramic material, the particle size is 0.5~
Preferably, a 10 μm ceramic powder is used. This is because when obtaining a kneaded material for injection molding, if the particle size is too large, it will be difficult to sufficiently knead it with the binder. [0010] The blending amount of the thermoplastic resin and unsaturated carboxylic acid is 25 to 75 parts by volume of the ceramic.
~35 parts by volume will shorten the degreasing time,
Effective in reducing defects during degreasing. Furthermore, the amount of unsaturated carboxylic acid added is 0.
It is desirable that the content be in the range of 5 to 2.0% by weight. The reason is that if it is less than 0.5% by weight, it is not effective in improving fluidity.
This is because if it exceeds 2.0% by weight, defects such as blistering will occur during degreasing. Examples of thermoplastic resins include wax, low density polyethylene, high density polyethylene, polymethyl methacrylate, polyethyl methacrylate, polybutyl methacrylate, ethylene vinyl acetate, polyethylene, polystyrene, etc., or single substances thereof. Copolymers of can be used. [0013] The unsaturated carboxylic acids include palmitic acid, stearic acid, oleic acid, linoleic acid,
At least one of unsaturated carboxylic acids having 10 to 18 carbon atoms such as linolenic acid, capric acid, lauric acid, and myristic acid can be used. [Example] Barium titanate having an average particle size of 0.6 μm is used as a raw material, and is kneaded with an unsaturated carboxylic acid in a pressure kneader using a wax binder. When the effect of this unsaturated carboxylic acid was evaluated by the kneading torque of a pressure kneader, the results were as shown in Table 1. The kneading torque of the pressure kneader can be determined from an electrical signal from a torque sensor directly connected to the drive shaft of the rotary kneading blade. here,
Using unsaturated carboxylic acid as a peptizing agent and an amine compound and a titanium coupling agent for comparison,
The results of these evaluations are shown below. [Table 1] Here, each peptizer is
Linolenic acid was used as the unsaturated carboxylic acid, secondary alkylamine was used as the amine compound, and isopropoxytitanium triisostearate was used as the titanium coupling agent. It can be seen that when unsaturated carboxylic acid is added as a deflocculant, the kneading torque is significantly reduced and the fluidity during molding is improved. Note that titanium coupling agents are also effective in reducing torque, but because they are hygroscopic, they have the disadvantage that their effects are unstable if the raw materials contain trace amounts of water. Furthermore, if the deflocculant is less than 0.5%, it will not be effective in reducing torque, and if it is added in an amount of 2.0% or more, there will be a problem that blistering will occur during degreasing. Therefore, the amount of deflocculant added is preferably in the range of 0.5 to 2.0 wt%. Next, Table 2 shows the kneading torque using a pressure kneader when the binder was reduced by using unsaturated carboxylic acid, which is the most effective peptizer. [Table 2] Here, moldability indicates the rate at which the raw material is filled into the mold, × and △ are not filled, ○ is filled but there are defects such as weld lines, and ◎ is completely filled. Indicates each item that is of good quality. [0018] When no deflocculant is used as mentioned above,
The amount of binder required to obtain a moldable compound was 45 vol%, but it can be reduced to 29 vol% by adding a deflocculant. As a result, as shown in Table 3, a high yield rate was obtained under conditions where the temperature increase rate was increased to 10° C./hr and the degreasing time was shortened. [Table 3] As is clear from this result, by using unsaturated carboxylic acid as a deflocculant, the amount of binder could be reduced and a higher yield rate could be obtained with shorter degreasing time than before. I understand that. [0020] This deflocculant has a great effect of reducing the kneading torque not only when a wax binder is used, but also when using other thermoplastic resins, and examples thereof are shown in Table 4. [Table 4] [Effects of the Invention] As is clear from the above explanation, according to the present invention, by adding an unsaturated carboxylic acid to the ceramic raw material, the affinity between the ceramic raw material and the thermoplastic resin is improved. It is possible to obtain a mixture of ceramic powder and thermoplastic resin with good fluidity that can be injection molded with a small amount of thermoplastic resin. As a result, the degreasing time could be significantly shortened compared to the conventional method, and defects during degreasing could be reduced.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  主としてセラミック材料と熱可塑性樹
脂とを含む射出成形用組成物であって、前記熱可塑性樹
脂はポリエチレン,ワックス,アクリル酸およびそれら
の誘導体の中から選ばれる少なくとも一種の重合体より
なり、これらセラミック材料および熱可塑性樹脂に対し
て不飽和カルボン酸が添加されていることを特徴とする
射出成形用セラミック組成物。
1. An injection molding composition mainly comprising a ceramic material and a thermoplastic resin, wherein the thermoplastic resin is at least one polymer selected from polyethylene, wax, acrylic acid, and derivatives thereof. A ceramic composition for injection molding, characterized in that an unsaturated carboxylic acid is added to these ceramic materials and thermoplastic resins.
【請求項2】  前記セラミック材料は粒子径0.5〜
10μmのセラミック粉体であることを特徴とする請求
項1に記載の射出成形用セラミック組成物。
2. The ceramic material has a particle size of 0.5 to
The ceramic composition for injection molding according to claim 1, characterized in that it is a 10 μm ceramic powder.
【請求項3】  前記熱可塑性樹脂および不飽和カルボ
ン酸の配合量はセラミック材料65〜75容量部に対し
て25〜35容量部の範囲内である請求項1または2に
記載の射出成形用セラミック組成物。
3. The ceramic for injection molding according to claim 1, wherein the blending amount of the thermoplastic resin and the unsaturated carboxylic acid is within a range of 25 to 35 parts by volume based on 65 to 75 parts by volume of the ceramic material. Composition.
【請求項4】  前記不飽和カルボン酸の添加量は0.
5〜2.0重量%の範囲である請求項1〜3のいずれか
に記載の射出成形用セラミック組成物。
4. The amount of the unsaturated carboxylic acid added is 0.
The ceramic composition for injection molding according to any one of claims 1 to 3, wherein the content is in the range of 5 to 2.0% by weight.
【請求項5】  前記熱可塑性樹脂はワックス,低密度
ポリエチレン,高密度ポリエチレン,ポリメタクリル酸
メチル,ポリメタクリル酸エチル,ポリメタクリル酸ブ
チル,エチレン酢酸ビニール,ポリエチレン,ポリスチ
レンなどの単体またはそれらの共重合体である請求項1
〜4のいずれかに記載の射出成形用セラミック組成物。
5. The thermoplastic resin may be wax, low density polyethylene, high density polyethylene, polymethyl methacrylate, polyethyl methacrylate, polybutyl methacrylate, ethylene vinyl acetate, polyethylene, polystyrene, etc., or a copolymer thereof. Claim 1 which is a combination
The ceramic composition for injection molding according to any one of items 1 to 4.
【請求項6】  前記不飽和カルボン酸はパルミチン酸
,ステアリン酸,オレイン酸,リノール酸,リノレン酸
,カプリン酸,ラウリン酸,ミリスチン酸などの炭素数
10〜18の不飽和カルボン酸のうち少なくとも一種で
ある請求項1〜5のいずれかに記載の射出成形用セラミ
ック組成物。
6. The unsaturated carboxylic acid is at least one type of unsaturated carboxylic acid having 10 to 18 carbon atoms such as palmitic acid, stearic acid, oleic acid, linoleic acid, linolenic acid, capric acid, lauric acid, and myristic acid. The ceramic composition for injection molding according to any one of claims 1 to 5.
JP3135916A 1991-05-10 1991-05-10 Ceramic composition for injection molding Pending JPH04338155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3135916A JPH04338155A (en) 1991-05-10 1991-05-10 Ceramic composition for injection molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3135916A JPH04338155A (en) 1991-05-10 1991-05-10 Ceramic composition for injection molding

Publications (1)

Publication Number Publication Date
JPH04338155A true JPH04338155A (en) 1992-11-25

Family

ID=15162843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3135916A Pending JPH04338155A (en) 1991-05-10 1991-05-10 Ceramic composition for injection molding

Country Status (1)

Country Link
JP (1) JPH04338155A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285561A (en) * 2009-06-12 2010-12-24 Sumitomo Metal Mining Co Ltd Composition for injection molding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285561A (en) * 2009-06-12 2010-12-24 Sumitomo Metal Mining Co Ltd Composition for injection molding

Similar Documents

Publication Publication Date Title
JP4236285B2 (en) Process for producing molded articles from ceramic and metal powders
JPS6256105B2 (en)
JPS59116172A (en) Composition for injection molding
JPH02302357A (en) Ceramic injection molding material and injection molding using the same material
CN110143817A (en) A kind of powder injection-molded PP Pipe Compound and preparation method of bismuth stearate cladding lead lanthanum zirconate titanate
JPH04338155A (en) Ceramic composition for injection molding
US4126653A (en) Method of manufacturing silicon nitride products
JPH0297461A (en) Production of molded body of barium titanate semiconductor ceramics
JPS6350300B2 (en)
JP4292599B2 (en) Composition for injection molding of inorganic powder and method for producing inorganic sintered body
JP2958579B2 (en) Production method of pearl core material
JPH0430723B2 (en)
JPS61101447A (en) Manufacture of ceramic formed body
JPH08111335A (en) Production of molded ferrite
JPS60151271A (en) Manufacture of ceramic product
JPH0733298B2 (en) Method for producing inorganic extrudate
JPH06287055A (en) Production of sintered article of ceramic
JPS60118663A (en) Manufacture of dewaxing agent for ceramic injection formation
JP2793919B2 (en) Method for producing raw material compound for metal powder injection molding
JPH0620858A (en) Manufacture of ferrite core by injection molding
JP3434865B2 (en) Manufacturing method of ceramic products by injection molding
JPH0238360A (en) Ceramic raw material for dry molding and production of molded article of ceramic using said raw material
JPH0383845A (en) Production of ceramic sintered compact
JPH02171206A (en) Injection molding method of ceramics
JPH05163082A (en) Production of porous sintered compact