JPH0297461A - Production of molded body of barium titanate semiconductor ceramics - Google Patents

Production of molded body of barium titanate semiconductor ceramics

Info

Publication number
JPH0297461A
JPH0297461A JP63250391A JP25039188A JPH0297461A JP H0297461 A JPH0297461 A JP H0297461A JP 63250391 A JP63250391 A JP 63250391A JP 25039188 A JP25039188 A JP 25039188A JP H0297461 A JPH0297461 A JP H0297461A
Authority
JP
Japan
Prior art keywords
parts
pts
weight
molded body
wax
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63250391A
Other languages
Japanese (ja)
Other versions
JPH0529624B2 (en
Inventor
Takeo Nishimura
威夫 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISHIMURA TOGYO KK
Original Assignee
NISHIMURA TOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISHIMURA TOGYO KK filed Critical NISHIMURA TOGYO KK
Priority to JP63250391A priority Critical patent/JPH0297461A/en
Publication of JPH0297461A publication Critical patent/JPH0297461A/en
Publication of JPH0529624B2 publication Critical patent/JPH0529624B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • H01C7/022Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances
    • H01C7/023Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient mainly consisting of non-metallic substances containing oxides or oxidic compounds, e.g. ferrites
    • H01C7/025Perovskites, e.g. titanates

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To easily obtain the title molded body having high density and accu racy by blending powdery starting material for a BaTiO3 semiconductor with wax, thermoplastic resin and a surface treating agent for powder and carrying out injection molding and sintering. CONSTITUTION:100 pts.wt. powdery starting material for a BaTiO3 semiconduc tor having about 1mum average particle size and about 1m<2>/g specific surface area is blended with 10-30 pts.wt. wax having 60-200 deg.C m.p. such as paraffin wax, 2-25 pts.wt. thermoplastic resin such as polystyrene, 2-5 pts.wt. surface treating agent for powder such as amino acid and 0-5 pts.wt. plasticizer such as dibutyl phthalate and they are kneaded under melting to obtain a blend. This blend is injected-molded and the resulting molded body is dewaxed and sintered.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、チタン酸バリウム系半五体セラミックス成形
体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a barium titanate semi-pentate ceramic molded body.

従来技術 いわゆる原子価制御の原理によってy、o、等の希土類
金属酸化物を添加して半導体化したチタン酸バリウム(
BaTi03)系セラミックスはPTC(P。
Prior Art Barium titanate (which has been made into a semiconductor by adding rare earth metal oxides such as y and o based on the so-called valence control principle)
BaTi03) based ceramics are PTC (P.

5itive Temperature Coeffi
cient)セラミックスとも称され、その特性を活か
して、電気回路の過熱防止、電子回路の温度補償、ポテ
ンショメーターの無接点リレー、定温発熱体素子、モー
ター起動素子、カラーTVの自動消磁素子、温度検出、
その他の機器に広く利用されることが知られている。
5tive TemperatureCoeffi
Also known as ceramics, its properties can be used to prevent overheating in electrical circuits, compensate for temperature in electronic circuits, contactless relays for potentiometers, constant temperature heating elements, motor starting elements, automatic degaussing elements for color TVs, temperature detection,
It is known that it is widely used in other devices.

特に、最近、これ等の実用化技術の進歩は目ざましく、
様々な形状で利用されるようになってきた。軽薄短小、
小型複雑化への要望は益々強くなってくるが、チタン酸
バリウム系セラミックス(以下、PTCセラミックスと
称する)の素子の従来の製造技術では下記の通り限界が
あった。
In particular, the progress of these practical technologies has been remarkable recently.
It has come to be used in various shapes. Flirty, short and small,
Although the demand for smaller and more complex devices is becoming stronger and stronger, the conventional manufacturing technology for elements of barium titanate ceramics (hereinafter referred to as PTC ceramics) has the following limitations.

即ち、比較的形状の大きなものについては、プレス成形
で成形され、物によっては古来から継承される伝統的な
鋳込成形等が実施される。また、フィルムシートを用い
たドグダーブレード法では薄い基板の成形が可能である
。更に、パイプやノ\ニカムといった形状のものは、押
出成形が適用される。しかし、このような方法では、次
のようなものの成形は不可能であった。
That is, objects with relatively large shapes are formed by press molding, and depending on the object, traditional casting molding inherited from ancient times is performed. Furthermore, the dogder blade method using a film sheet allows the formation of thin substrates. Furthermore, extrusion molding is applied to shapes such as pipes and nicums. However, with this method, it was impossible to mold the following items.

a、複雑な形状あるいは加工工程を必要とするもの。a. Items that require complex shapes or processing steps.

b、製品各部の最大肉厚が51以下のもの。b. The maximum wall thickness of each part of the product is 51 mm or less.

C1製品各部の最小肉厚が1mm以下のもの。C1 The minimum wall thickness of each part of the product is 1 mm or less.

d、製品各部にφQ、5鰭以下の貫通穴を有するもの。d. Products with through holes of φQ, 5 fins or less in each part.

e、製品重量が1g以下のもの。e.Product weight is 1g or less.

f、高密度な製品が要求されるもの。f. Those that require high-density products.

g、高度な寸法精度が製品に要求されるもの。g. Products that require a high degree of dimensional accuracy.

h、数量、ロフトの大きいもの。h, quantity, large loft.

i、粉末の平均粒径が0.5 μl以下のもの。i. Powder with an average particle size of 0.5 μl or less.

j、粉末価格の高いもの。j. Highly priced powder.

発明の解決しようとする課題 本発明は、このようなPCTセラミックスの成形におい
て、前記a −jのように、小型で複雑な物品をも精度
良く、容易に製造できる方法を提供することを課題とす
る。
Problems to be Solved by the Invention It is an object of the present invention to provide a method for easily manufacturing small and complex articles, such as those shown in a-j, with high accuracy in the molding of PCT ceramics. do.

課題を解決するための手段 本発明は、PCTセラミックスを射出成形で成形可能と
することによって、上記課題を解決した。
Means for Solving the Problems The present invention has solved the above problems by making PCT ceramics moldable by injection molding.

即ち、本発明では、チタン酸バリウム系半導体の原料粉
末100重量部に、ワックス類10〜30重量部、熱可
塑性樹脂2〜25重量部、及び粉末表面処理剤2〜5重
量部を添加混合した配合物を射出成形し、焼成すること
を特徴とする。
That is, in the present invention, 10 to 30 parts by weight of waxes, 2 to 25 parts by weight of thermoplastic resin, and 2 to 5 parts by weight of a powder surface treatment agent were added and mixed to 100 parts by weight of barium titanate-based semiconductor raw material powder. The formulation is characterized by injection molding and firing.

射出成形では、PTCセラミックス原料粉末に添加する
バインダーの選定が最大の要点となる。
In injection molding, the most important point is the selection of the binder to be added to the PTC ceramic raw material powder.

PTCセラミックス原料粉末に流動性を与え、成形を可
能にするのがバインダー類の役割であるが、その後の焼
成工程ではこれが妨げとなる。従って、バインダーに要
求される特性としては、少量の添加で良好な流動性が得
られるもの、PTCセラミックス原料粉末との親和性が
良いこと、焼成時の脱バインダー性が良いことなどが選
択の要点となる。逆に、PTCセラミックス原料粉末側
からすれば、バインダー量を減らすためには、例えば平
均粒子径(1μm前後)、粒度分布(ブロード)、比面
積(1m”7g> 、粒子形状(球状)のような粉体が
理想となる。バインダーとして添加する有機材料はそれ
ぞれ次の役割を有している。
The role of binders is to provide fluidity to the PTC ceramic raw material powder and enable it to be molded, but this hinders the subsequent firing process. Therefore, the key characteristics required for a binder when selecting a binder include the ability to obtain good fluidity with a small amount of addition, good affinity with the PTC ceramic raw material powder, and good debinding properties during firing. becomes. On the other hand, from the PTC ceramic raw material powder side, in order to reduce the amount of binder, it is necessary to change the average particle diameter (around 1 μm), particle size distribution (broad), specific area (1 m"7g>, particle shape (spherical), etc.) Ideally, the organic material added as a binder has the following role.

・PTCセラミックス原料粉末に加熱流動性をそして成
形体に保形性を与える結合剤 ・離型性とPTCセラミックス原料粉末の粒子の間の滑
りを良好にする滑剤 ・レオロジー性の付与と可塑性、柔軟性を与える可塑剤 ・PTCセラミックス原料粉末の表面活性化させ結合剤
との親和性を高める粉末表面処理剤の以上である。
・Binding agent that gives heat fluidity to the PTC ceramic raw material powder and shape retention to the molded body ・Lubricant that improves mold releasability and slippage between particles of the PTC ceramic raw material powder ・Provides rheology, plasticity, and flexibility The above describes a plasticizer that imparts properties and a powder surface treatment agent that activates the surface of PTC ceramic raw material powder and increases its affinity with the binder.

PTCセラミックス原料粉末100重量部に対する有機
材料の添加量は次のようなものが好ましい。
The amount of organic material added to 100 parts by weight of PTC ceramic raw material powder is preferably as follows.

熱可塑性樹脂(有機結合剤) 、2〜25重量部アクリ
ル           (0〜10重量部)ポリエチ
レン        (0〜5重量部)ポリスチレン 
       (0〜5重量部)エチレン酢酸ビニル共
重合体 (0〜5重量部)ワックス類 (滑剤)   
    10〜30重量部可塑剤(ジブチルフタレート
)0〜5重量部置部)末表面処理剤       2〜
5重量部本発明において、ワックス類の添加量が、PT
Cセラミックス原料粉末に対して10重量%より少なく
なると、ワックス類より熱分解性の悪い熱可塑性樹脂を
多(必要とし、成形体の脱脂が国難となる。また、ワッ
クス類が30重量%を越えると、ワックス類よりバイン
ダー力の良好な熱可塑性樹脂の使用量が少な(なるため
、成形体の強度が低下するので好ましくない。
Thermoplastic resin (organic binder), 2 to 25 parts by weight Acrylic (0 to 10 parts by weight) Polyethylene (0 to 5 parts by weight) Polystyrene
(0 to 5 parts by weight) Ethylene vinyl acetate copolymer (0 to 5 parts by weight) Waxes (Lubricant)
10-30 parts by weight Plasticizer (dibutyl phthalate) 0-5 parts by weight) Terminal surface treatment agent 2-
5 parts by weight In the present invention, the amount of waxes added is 5 parts by weight.
C If it is less than 10% by weight based on the ceramic raw material powder, it will require a large amount of thermoplastic resin, which has poor thermal decomposition properties than waxes, and degreasing the molded product will become a national problem.Also, if the wax content exceeds 30% by weight In this case, the amount of thermoplastic resin that has better binder power than waxes is used (this is not preferable because the strength of the molded product decreases).

ワックスとしては、合成ワックス系のもので、融点が6
0〜200℃の範囲のものを用いるのが好ましい。融点
が60℃未満では成形加工中ワックスの一部が蒸発し、
組成変化を起こす可能性があり、また200 ℃を越え
ると成形加工が困難となる。
The wax is a synthetic wax type with a melting point of 6.
It is preferable to use a temperature range of 0 to 200°C. If the melting point is less than 60°C, part of the wax will evaporate during the molding process,
There is a possibility of compositional changes, and if the temperature exceeds 200°C, molding becomes difficult.

最に使用されるワックス類としては、パラフィンワック
ス、マイクロクリスタルワックス、変形ワックス等が挙
げられる。
The most commonly used waxes include paraffin wax, microcrystalline wax, and modified wax.

また、熱可塑性樹脂としては、アクリル、ポリスチレン
、ポリエチレン、エチレン酢酸ビニール共重合体、ポリ
プロピレン、ポリブチルメタクリレート、ポリエチレン
オキサイド等が使用される。
Further, as the thermoplastic resin, acrylic, polystyrene, polyethylene, ethylene vinyl acetate copolymer, polypropylene, polybutyl methacrylate, polyethylene oxide, etc. are used.

これらは一種のみ使用されてもよいが、数種を併用する
のが好ましい。熱可塑性樹脂は、PTCセラミックス原
料粉末に対して2〜25重量%の範囲で添加するが、2
5重量%を越えると樹脂量が多くなり、成形体の密度が
低下するため好ましくなく、また、2重量%未満となる
と、成形体の強度が十分に保てない。
Although only one type of these may be used, it is preferable to use several types in combination. The thermoplastic resin is added in an amount of 2 to 25% by weight based on the PTC ceramic raw material powder.
If it exceeds 5% by weight, the amount of resin increases and the density of the molded product decreases, which is undesirable. If it exceeds 2% by weight, the strength of the molded product cannot be maintained sufficiently.

わ)末表面処理剤としては、アミノ酸類などが使用され
るが、この添加量は、PTCセラミックス原料粉末に対
して2重量%に満たないと結合剤との親和性が劣り、ま
た5重量%を越えると焼結体密度が低下するため好まし
くなくなる。
W) Amino acids and the like are used as the final surface treatment agent, but if the amount added is less than 2% by weight based on the PTC ceramic raw material powder, the affinity with the binder will be poor; Exceeding this is not preferable because the density of the sintered body decreases.

なお、可塑剤は、必要に応じて使用されるが、−iにプ
ラスチックの加工に使用されているがいずれも使用でき
るが、ジブチルフタレート、ジブチルフタレート、ジオ
クチルフタレート等の化合物の中から選択して使用する
のが好ましい。可塑剤の添加量が、PTCセラミックス
原料粉末に対して5重量%を越えると成形体の強度が低
下するので好ましくない。
The plasticizer may be used as needed, but any of the plasticizers used in -i for processing plastics can be used, but plasticizers should be selected from compounds such as dibutyl phthalate, dibutyl phthalate, and dioctyl phthalate. It is preferable to use If the amount of plasticizer added exceeds 5% by weight based on the PTC ceramic raw material powder, the strength of the molded product will decrease, which is not preferable.

次に、実施例に従って、本発明を更に詳しく説明する。Next, the present invention will be explained in more detail according to examples.

実施例において部又は%とあるのは特に断らない限り重
量部又は重量%を示す。
In the examples, parts or % indicate parts by weight or % by weight unless otherwise specified.

実施例I PTCセラミックス原料粉末100部に対し、ワックス
29部、アクリル7.7部、ポリスチレン3゜1部、ポ
リエチレン3,1部、エチレン酢酸ビニル共重合体1.
5部、ジブチルフタレート4.6部、粉末表面処理剤4
.6部を加え、これを加圧ニーダにて100〜200℃
の温度で2〜5時間混練する。
Example I To 100 parts of PTC ceramic raw material powder, 29 parts of wax, 7.7 parts of acrylic, 1 part of polystyrene 3.1 parts, 3.1 parts of polyethylene, 1.
5 parts, dibutyl phthalate 4.6 parts, powder surface treatment agent 4
.. Add 6 parts and heat this in a pressure kneader at 100-200℃
Knead for 2 to 5 hours at a temperature of .

そして、この混練物を粉砕し、射出成形用コンパウンド
を作成する。次に、これを射出成形機に投入し、成形温
度100〜200℃、成形圧力500〜100100O
/an2の条件にて、φ0.2mmの貫通穴を有する外
径φ2.4mm、長さ13mの成形体に成形し、この成
形体を450℃×2時間で脱脂し、1320℃で1時間
焼成してPTCセラミックスとした。製品は、精度ある
品質のよいセラミックス成形体となった。
This kneaded material is then pulverized to create an injection molding compound. Next, this was put into an injection molding machine, and the molding temperature was 100 to 200℃, and the molding pressure was 500 to 100,100O.
/an2 conditions, molded into a molded body with an outer diameter of 2.4 mm and a length of 13 m with a through hole of 0.2 mm, degreased at 450°C for 2 hours, and baked at 1320°C for 1 hour. and made it into PTC ceramics. The product is a ceramic molded body with high precision and high quality.

実施例2 実施例1と同様の方法で、射出成形してPTCセラミッ
クス成形体を製造し、その密度を成形で得られPTCセ
ラミックス成形体の密度を測定した。これを通常のプレ
ス成形で得たPTCセラミックス成形体の密度と比較し
て次表に示す。
Example 2 A PTC ceramic molded body was produced by injection molding in the same manner as in Example 1, and the density of the PTC ceramic molded body obtained by molding was measured. This is compared with the density of a PTC ceramic molded body obtained by ordinary press molding and is shown in the following table.

ミノクツ、成形体の製造が可能となり、PCTセラミッ
クスの特性を有する小型で複雑な製品をも、非常に高密
度で精度よく安定して製造できる。
It is now possible to manufacture compact molded bodies, and even small and complex products with the characteristics of PCT ceramics can be manufactured stably with extremely high density and precision.

Claims (1)

【特許請求の範囲】[Claims]  チタン酸バリウム系半導体の原料粉末100重量部に
、ワックス類10〜30重量部、熱可塑性樹脂2〜25
重量部、及び粉末表面処理剤2〜5重量部を添加混合し
た配合物を射出成形し、焼成することを特徴とするチタ
ン酸バリウム系半導体セラミックス成形体の製造方法。
100 parts by weight of barium titanate semiconductor raw material powder, 10 to 30 parts by weight of wax, and 2 to 25 parts by weight of thermoplastic resin.
1. A method for producing a barium titanate-based semiconductor ceramic molded body, which comprises injection molding a mixture containing 2 to 5 parts by weight of a powder surface treatment agent and firing the mixture.
JP63250391A 1988-10-03 1988-10-03 Production of molded body of barium titanate semiconductor ceramics Granted JPH0297461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63250391A JPH0297461A (en) 1988-10-03 1988-10-03 Production of molded body of barium titanate semiconductor ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63250391A JPH0297461A (en) 1988-10-03 1988-10-03 Production of molded body of barium titanate semiconductor ceramics

Publications (2)

Publication Number Publication Date
JPH0297461A true JPH0297461A (en) 1990-04-10
JPH0529624B2 JPH0529624B2 (en) 1993-05-06

Family

ID=17207217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63250391A Granted JPH0297461A (en) 1988-10-03 1988-10-03 Production of molded body of barium titanate semiconductor ceramics

Country Status (1)

Country Link
JP (1) JPH0297461A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011506238A (en) * 2007-12-05 2011-03-03 エプコス アクチエンゲゼルシャフト Raw material and method for preparing the raw material
JP2011506127A (en) * 2007-12-05 2011-03-03 エプコス アクチエンゲゼルシャフト Injection molded PTC ceramic
US7973639B2 (en) 2007-12-05 2011-07-05 Epcos Ag PTC-resistor
WO2015124225A1 (en) * 2014-02-24 2015-08-27 Siemens Aktiengesellschaft Thermoelectric high-power generator and method for the production thereof
US9321689B2 (en) 2008-08-07 2016-04-26 Epcos Ag Molded object, heating device and method for producing a molded object
US9363851B2 (en) 2008-08-07 2016-06-07 Epcos Ag Heating device and method for manufacturing the heating device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011506238A (en) * 2007-12-05 2011-03-03 エプコス アクチエンゲゼルシャフト Raw material and method for preparing the raw material
JP2011506127A (en) * 2007-12-05 2011-03-03 エプコス アクチエンゲゼルシャフト Injection molded PTC ceramic
US7973639B2 (en) 2007-12-05 2011-07-05 Epcos Ag PTC-resistor
US9034210B2 (en) 2007-12-05 2015-05-19 Epcos Ag Feedstock and method for preparing the feedstock
US9321689B2 (en) 2008-08-07 2016-04-26 Epcos Ag Molded object, heating device and method for producing a molded object
US9363851B2 (en) 2008-08-07 2016-06-07 Epcos Ag Heating device and method for manufacturing the heating device
WO2015124225A1 (en) * 2014-02-24 2015-08-27 Siemens Aktiengesellschaft Thermoelectric high-power generator and method for the production thereof

Also Published As

Publication number Publication date
JPH0529624B2 (en) 1993-05-06

Similar Documents

Publication Publication Date Title
WO2020200424A1 (en) Sinterable feedstock for use in 3d printing devices
JP7123682B2 (en) COMPOSITION FOR THREE-DIMENSIONAL PRINTER AND METHOD FOR MANUFACTURING LARGE LAMINATED PRODUCT USING SAME COMPOSITION
CN110143817B (en) Special powder injection molding material for bismuth stearate coated lead lanthanum zirconate titanate and preparation method thereof
JPH02302357A (en) Ceramic injection molding material and injection molding using the same material
JPH0297461A (en) Production of molded body of barium titanate semiconductor ceramics
JPH03174356A (en) Zirconia composition for injection molding and sintered body thereof
CN114082940A (en) Molding composition and method for producing three-dimensional shaped article
JP6984144B2 (en) Manufacturing method of molded product
JP5510232B2 (en) Method for manufacturing sintered body
EP2217545B1 (en) Method for preparing a feedstock
JPH04140105A (en) Manufacture of aluminum nitride ceramic formed body
JPH036302A (en) Manufacture of sintered product composed of binder for forming powder and metal powder or ceramic powder
JPS59121150A (en) Injection molding material
JP3427100B2 (en) Method for producing colored ceramic sintered body
JP4292599B2 (en) Composition for injection molding of inorganic powder and method for producing inorganic sintered body
JPH0430723B2 (en)
JPH0620858A (en) Manufacture of ferrite core by injection molding
JPS61122152A (en) Ceramic composition for injection molding
JPH03294402A (en) Manufacture of compound for powder injection-molding
JPH07173502A (en) Production of metallic or ceramic sintered body
JPS616172A (en) Ceramic composition for injection molding
JPH0641601B2 (en) Molding composition
JPH0825178B2 (en) Method of manufacturing injection molded body
JPH0444621B2 (en)
JP2003095728A (en) Composition for injection molding